Introduction to Combinatorics Analysis on the hypercube

Wojciech Nadara, class 9, 2020-05-08

1. Find all functions $f:\{-1,1\}^{n} \rightarrow \mathbb{C}$ satisfying $f(x \cdot y)=f(x) f(y)$ for all $x, y \in\{-1,1\}^{n}$.
2. In this problem we are going to go through combinatorial proof of the isoperimetric inequality on the discrete cube.
Let $u, v \in\{-1,1\}^{n}$. Let canonical path between u and v consist of vertices $p_{0}, p_{1}, \ldots, p_{k} \in$ $\{-1,1\}^{n}$, where $p_{0}=u, p_{k}=v$ which we get if we change differing bits in u and v (from u to v) from left to right.
For example the canonical path between $(1,1,-1,1)$ and $(-1,1,1,-1)$ is

$$
(1,1,-1,1) \rightarrow(-1,1,-1,1) \rightarrow(-1,1,1,1) \rightarrow(-1,1,1,-1)
$$

Prove that $2^{n-1}|\partial A| \geq|A| \cdot\left|A^{c}\right|$ using properties of canonical paths.
3. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and consider the unique expansion $f=\sum_{S \subseteq[n]} a_{S} w_{S}$. The degree of f is defined as $\operatorname{deg}(f)=\max \left\{|S|: a_{S} \neq 0\right\}$. Show that

$$
\sum_{i=1}^{n}\left|a_{\{i\}}\right| \leq \operatorname{deg}(f)
$$

4. Let a_{1}, \ldots, a_{n} be real numbers such that $\sum_{i=1}^{n} a_{i}^{2}=1$. Show that

$$
\sum_{\varepsilon_{1}, \ldots, \varepsilon_{n} \in\{-1,1\}}\left|\sum_{i=1}^{n} a_{i} \varepsilon_{i}\right| \geq 2^{n-\frac{1}{2}}
$$

and show that this inequality is optimal.
Hint. You may want to follow these steps:
(a) For $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ define $(L f)(x)=\frac{1}{2} \sum_{|y-x|=2}(f(y)-f(x))$. Prove that $\operatorname{Var}(f) \leq \mathbb{E}[f(-L f)]$ by using Fourier analysis on the discrete cube.
(b) Show that the above inequality improves to $\operatorname{Var}(f) \leq \frac{1}{2} \mathbb{E}[f(-L f)]$ if f is an even function.
(c) Let $f(x)=\left|\sum_{i=1}^{n} a_{i} x_{i}\right|$. Show that $-L f \leq f$.
5. Let $A \subseteq\{-1,1\}^{n}$ be a monotone subset (that is, if $x_{i} \leq y_{i}$ for all $1 \leq i \leq n$ then $\left(x_{1}, \ldots, x_{n}\right) \in$ A implies $\left.\left(y_{1}, \ldots, y_{n}\right) \in A\right)$. Let n be odd and define

$$
\operatorname{Maj}=\left\{\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}: \sum_{i=1}^{n} x_{i}>0\right\}
$$

Prove that $|\partial \mathrm{Maj}| \geq|\partial A|$.

