Introduction to Combinatorics Analysis on the hypercube

Wojciech Nadara, class 9, 2020-05-08

- 1. Find all functions $f: \{-1, 1\}^n \to \mathbb{C}$ satisfying $f(x \cdot y) = f(x)f(y)$ for all $x, y \in \{-1, 1\}^n$.
- 2. In this problem we are going to go through combinatorial proof of the isoperimetric inequality on the discrete cube.

Let $u, v \in \{-1, 1\}^n$. Let *canonical path* between u and v consist of vertices $p_0, p_1, \ldots, p_k \in \{-1, 1\}^n$, where $p_0 = u, p_k = v$ which we get if we change differing bits in u and v (from u to v) from left to right.

For example the canonical path between (1, 1, -1, 1) and (-1, 1, 1, -1) is

$$(1, 1, -1, 1) \rightarrow (-1, 1, -1, 1) \rightarrow (-1, 1, 1, 1) \rightarrow (-1, 1, 1, -1).$$

Prove that $2^{n-1}|\partial A| \ge |A| \cdot |A^c|$ using properties of canonical paths.

3. Let $f : \{-1, 1\}^n \to \{-1, 1\}$ and consider the unique expansion $f = \sum_{S \subseteq [n]} a_S w_S$. The degree of f is defined as $\deg(f) = \max\{|S|: a_S \neq 0\}$. Show that

$$\sum_{i=1}^{n} |a_{\{i\}}| \le \deg(f).$$

4. Let a_1, \ldots, a_n be real numbers such that $\sum_{i=1}^n a_i^2 = 1$. Show that

$$\sum_{\varepsilon_1,\dots,\varepsilon_n \in \{-1,1\}} \left| \sum_{i=1}^n a_i \varepsilon_i \right| \ge 2^{n-\frac{1}{2}}$$

and show that this inequality is optimal.

Hint. You may want to follow these steps:

- (a) For $f : \{-1,1\}^n \to \{-1,1\}$ define $(Lf)(x) = \frac{1}{2} \sum_{|y-x|=2} (f(y) f(x))$. Prove that $\operatorname{Var}(f) \leq \mathbb{E}[f(-Lf)]$ by using Fourier analysis on the discrete cube.
- (b) Show that the above inequality improves to $\operatorname{Var}(f) \leq \frac{1}{2}\mathbb{E}[f(-Lf)]$ if f is an even function.
- (c) Let $f(x) = |\sum_{i=1}^{n} a_i x_i|$. Show that $-Lf \leq f$.
- 5. Let $A \subseteq \{-1, 1\}^n$ be a monotone subset (that is, if $x_i \leq y_i$ for all $1 \leq i \leq n$ then $(x_1, \ldots, x_n) \in A$ implies $(y_1, \ldots, y_n) \in A$). Let n be odd and define

Maj =
$$\left\{ (x_1, \dots, x_n) \in \{-1, 1\}^n : \sum_{i=1}^n x_i > 0 \right\}$$
.

Prove that $|\partial \text{Maj}| \ge |\partial A|$.