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1. Since f(1) = f(1 · 1) = f(1)2, we get f(1) = 1 or f(1) = 0. The latter leads to f(x) =
f(1)f(x) = 0. The former gives f(1) = f(x2

1, . . . , x
2
n) = f(x)2 and thus f(x) ∈ {−1, 1}. We

get that each f(1, . . . , xi, . . . , 1) is either identically 1 or is equal to xi.

Moreover

f(x1, . . . , xn) =
n∏

i=1

f(1, . . . , xi, . . . , 1).

Thus f = wS for some S ⊆ [n] (namely, that set S consists of indices i such that
f(1, . . . , xi, . . . , 1) = xi).



2. Let us calculate the number of canonical paths passing through a fixed directed edge.

(L0, xi, R0)→ . . .→ (L1, xi, R0)→ (L1,−xi, R0)→ . . .→ (L1, xi, R1).

To determine the a canonical path we have to choose L0 and R1. Therefore we have 2i−1 ·
2n−i = 2n−1 canonical paths passing through the edge

(L1, xi, R0)→ (L1,−xi, R0).

Take A ⊆ {−1, 1}n. There are |A| · |Ac| canonical paths x → . . . → y, where x ∈ A and
y ∈ Ac. Each of them passes through some edge from ∂A and at most 2n−1 passes through
a fixed edge. It follows that

|A| · |Ac| ≤ 2n−1|∂A|.



3. Let E denote the expectation with respect to the uniform distribution on the hypercube (as
in the lectures). For x = (x1, . . . , xn) let xi = (x1, . . . ,−xi, . . . , xn). We have

|a{i}| = |E[fw{i}]| =
1

2
|E[f(x1, . . . , 1, . . . xn)− f(x1, . . . ,−1, . . . xn)]| =

1

2
E[|f(x)− f(xi)|]

=
1

4
E|f(x)− f(xi)|2 = E[|∇if |2] =

∑
S: i∈S

a2S,

where the last equality follows from the fact that ∇if =
∑

S aS∇iwS =
∑

S:i∈S aS∇iwS and
form Parseval’s identity (this part has been showed during the lecture). Summing over i we
get

n∑
i=1

|a{i}| ≤
n∑

i=1

∑
S: i∈S

a2S =
∑
S

|S|a2S ≤ deg(f)
∑
S

a2S = deg(f).



4. We shall work on the discrete cube. For f : {−1, 1}n → {−1, 1} define (Lf)(x) = 1
2

∑
y∼x(f(y)−

f(x)). We have LwS = 1
2
(−|S|wS + (n− |S|wS))− n

2
wS = −|S|wS. We claim that always

Var(f) ≤ E[f(−Lf)].

To see this observe that by using Parseval’s identity the left hand side is equal to
∑

S 6=∅ a
2
S

whereas the right hand side is

E[f(−Lf)] = 〈f, (−L)f〉 =

〈∑
S

aSwS,
∑
S

|S|aSwS

〉
=

∑
S

|S|a2S

and the inequality follows.

We now claim that if f is even, that is f(x) = f(−x) then

Var(f) ≤ 1

2
E[f(−Lf)].

Since f we have aS = 0 whenever 2 - |S| (since aS = 〈f, wS〉 = 0 as fwS is odd), we get
f =

∑
S:2||S| aSwS. The inequality reduces to

∑
S 6=∅

a2S ≤
1

2

∑
S:2||S|

|S|a2S

and is clearly true.

We now define f(x1, . . . , xn) = |a1x1+ . . .+anxn| and observe that by the triangle inequality

(−Lf)(x) = n

2
f(x)− 1

2
(| − a1x1 + a2x2 + . . .+ anxn|+ . . .+ |a1x1 + a2x2 + . . .− anxn|)

≤ n

2
f(x)− 1

2
(n− 2)f(x) = f(x).

Thus −Lf ≤ f . Since f is even and non-negative, we get

Var(f) = E[f 2]− (E[f ])2 ≤ 1

2
E[f(−Lf)] ≤ 1

2
E[f(−Lf)] ≤ 1

2
E[f 2].

In other words E[f 2] ≤ 2(E[f ])2. From the assumption
∑n

i=1 a
2
i = 1 we get E[f 2] = 1. Thus

E[f ] ≥ 2−1/2, is precisely the desired inequality.

The equality holds for a1 = a2 =
1√
2

and a3 = . . . = an = 0.



5. We are going to present three different solutions. Because of that we will be going into less
details.

Solution 1.

For u, v ∈ {−1, 1}n such that ui ≤ vi and 2 +
∑

ui =
∑

vi let us call u a predecessor of v
and v a successor of u. If s(u) is a number of ones in u then u has s(u) predecessors and
n− s(u) successors. If there is an element a in A such that all its predecessors are not in A
and such that 2s(a) < n then by removing it from A we will get a monotone set with a set
whose boundary is bigger by n − 2s(a). Similarly, if there is an element a in Ac whose all
successors are in A then by adding it to A we increase boundary of A by 2s(a)− n.

Because of that if A is not Maj then we can increase its boundary what quickly proves the
thesis.

Solution 2.

If an edge of hypercube goes from u to v such that u is a predecessor of v than there
are exactly s(u)!(n− 1− s(u))! path shortest paths from (−1, . . . ,−1) to (1, . . . , 1) passing
through it. Note that every such path passes through exactly one edge of boundary of A.
Since s(u)!(n− 1− s(u))! is minimized when s(u) = n−1

2
and edges on boundary of Maj are

exactly edges minimizing it, it can be argued that Maj has the biggest possible boundary
out of monotone sets.

Solution 3.

By abuse of notation, let A(x) be a function denoting whether x ∈ A (A(x) = 1 if x ∈ A and
A(x) = −1 if x /∈ A).

Let’s consider function A(x)xi. We can see that this expression is directly proportional to
the number of edges in boundary of A in the i-th direction. Hence A(x)(x1 + . . . + xn) is
directly proportional to the size of boundary of A.

We can see that E(A(x)(x1 + . . . + xn)) ≤ E(|x1 + . . . + xn|) = E(Maj(x)(x1 + . . . + xn)),
hence |∂Maj| ≥ |∂A|.


