Introduction to Combinatorics Probabilistic method 2 - Problems

Wojciech Nadara, class 8, 2020-04-30

1. We are given a fair coin and we toss it n times. Let X be the random variable denoting number of heads we got. Determine $\mathbb{E} X^{3}$.
2. Wojtek is playing Icy Tower. In this game you have a character that jumps on higher and higher platforms. In every jump, if a character is on i-th platform he makes a jump to one of platforms $i+1, i+2, i+3, i+4, i+5$, each with $\frac{1}{5}$ probability. Maximal contiguous sequence of jumps by two or more platforms is called a combo. If a combo started on platform i and ended on platform j then Wojtek gets $(j-i)^{2}$ points for that. His total score is 10 times the index of platform where the game ended plus scores for all combos. For example, if a game consisted of jumps with heights $3,1,2,4$ then Wojtek gets $10(3+1+2+4)+3^{2}+(2+4)^{2}=145$ points. Wojtek got bored after n jumps and purposefully lost. Compute his expected score.
Comment: The result may be not pretty, but the method itself is important here.
3. Let $p \in\left(\frac{1}{2}, 1\right)$. Consider an infinite rooted binary tree T. For each of its edges we delete it with probability $1-p$ and let R be the graph formed by edges that survived. Let C be a connected component of R containing root of T. Prove that C is infinite with positive probability.
4. Let x_{1}, \ldots, x_{n} be boolean variables. A literal is a boolean variable x_{i} or its negation $\overline{x_{i}}$. A k-formula is an AND of clauses, each being an OR of k distinct literals. Such a formula ϕ is satisfiable if there exists an assignment $a \in\{0,1\}^{n}$ of values to variables for which $\phi(a)=1$. We say that two clauses overlap if they have a common variable x_{i}, regardless of whether the variable is negated or not in the clauses.
Let ϕ be a k-formula. Show that if each of its clauses overlaps with less than 2^{k-2} clauses, then ϕ is satisfiable.
5. Let $G=(V, E)$ be a graph with maximum degree not exceeding d. Let $V=V_{1} \cup \ldots \cup V_{r}$ be a partition of V into r pairwise disjoint sets. Suppose that for $1 \leq i \leq r$ we have $\left|V_{i}\right| \geq 2 e d$ (here e is the base of the natural logarithm). Prove that there is an independent set of vertices that contains a vertex from each set V_{i}.
6. Prove that $R(3, k)=\Omega\left(\frac{k^{2}}{\log ^{2} k}\right)$, i.e. there exists a positive constant C such that for any positive integer k you can color edges of clique on $\left\lfloor C \frac{k^{2}}{\log ^{2} k}\right\rfloor$ vertices with red and blue such that there is no red triangle and no blue k-clique.
