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1. In many combinatorial problems, random variables we are dealing with often express number
of events that happened. In these cases we can express these random variables as sums of
indicators of these events. Here, it is going to help us significantly since we will be able to
expand this sum and focus on conjunctions of a constant number of events.

Let Ai denote the event that we got heads in i-th toss. Then X = 1A1 + . . . + 1An . Hence
EX3 = E(1A1+. . .+1An)3 = E(

∑
1≤i≤n 13

Ai
+3
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1≤i,j≤n,i6=j 12
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1Aj
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However we can use linearity of expectation and the fact that 1c
A = 1A for any positive integer

c and get that EX3 =
∑

1≤i≤nE1Ai
+6
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1≤i<j≤nE1Ai
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∑
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all events are independent and hold with probability 1
2

we get that E1Ai
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2
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8
if i, j, k are distinct values. Hence EX3 = n · 1
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2. Solution 1.

Let Xi be the random variable denoting height of i-th jump. Total score consists of two parts
— first one is 10(X1 + . . .+Xn). It is very easy to compute expected value of this part, since
EXi = 3 we get that E10(X1 + . . .+Xn) = 30n. So, we can focus on part with combos.

Let x1, x2, . . . , xn be an arbitrary sequence of jumps our character made. Then if jumps
xl, . . . , xr form a combo then (xl + . . .+ xr)

2 is added to our score and we can expand it to∑
l≤i≤r x

2
i + 2

∑
l≤i<j≤r xixj. Hence, we can conclude that for some i < j the term xixj is

present in that sum expressing total values of combos if there is a combo containing both
i-th jump and j-th jump, which happens if and only if all jumps with indices from interval
[i, j] were by two or more platforms. Term x2i is present if and only if xi ≥ 2. Their total
contribution is n · 1

5
(22 + 32 + 42 + 52) = 54n

5
. Probability that term xixj is present is pj−i+1,

where p = 4
5

denotes the probability that a particular jump is by at least two platforms.

If we assume that it is present then its expected value is (2+3+4+5)(2+3+4+5)
4·4 = 49

4
. Hence

it remains to compute sum of these probabilities for all pairs of 1 ≤ i < j ≤ n which is
S :=

∑
1≤i<j≤n p

j−i+1. Then, our result will be 30n+ 54n
5

+ 49
2
S.

We will compute S by grouping by j−i. There are n−c such pairs with j−i = c. Hence S =∑n−1
c=1 (n−c)pc+1. After some long calculations it can be checked that S = 16

5
n−16+16 ·

(
4
5

)n
.

Therefore, final result is 30n+ 54n
5

+ 49
2
· (16

5
n− 16 + 16 ·

(
4
5

)n
) = 596

5
n− 392 + 49 · 22n+3 · 5−n.

Solution 2.

We can solve this problem inductively by determining some recurrences. Let Si be the
random variable denoting score after i jumps. However in order to determine difference
between Si and Si−1 we also need to keep track of current combo. Hence, let Ci be the
random variable denoting height of current combo after i jumps (that is, the sum of the
longest suffix consisting of jumps by two or more platforms). We can see that

ESi = ESi−1 + 10 · 1 + 2 + 3 + 4 + 5

5
+

22 + 32 + 42 + 52

5
+ 2 · 2 + 3 + 4 + 5

5
· ECi−1

ECi =
4

5
ECi−1 +

2 + 3 + 4 + 5

5

These relations follow from similar arguments as in previous solution. If current combo is Ci−1
and last jump is Xi and Xi ≥ 2 then the difference in current combo score before and after last
jump is (Ci−1+Xi)

2−C2
i−1 = 2Ci−1Xi+X

2
i . Expected contribution of term X2

i is 22+32+42+52

5
.

Since Ci−1 and Xi are independent variables we know that ECi−1Xi = ECi−1EXi. However
remember that this happens only when Xi ≥ 2.

Using these relations we can get the same result as in previous solution.



3. Let Xn be the random variable denoting number of vertices in C that are at distance n
from the root. It can be easily seen that probability that C is infinite is limn→∞ P(Xn > 0).
Because of that we would like to prove that there exists a positive constant c such that
P(Xn > 0) > c for every n.

We can simply determine EXn. There are 2n vertices that are at distance n from the root and
each of them belongs to C if whole path from it to root is in R and there is pn probability
for this, hence EXn = (2p)n. Since p > 1

2
we see that it goes to infinity as n goes to

infinity, however that alone doesn’t guarantee us a satisfying lower bound on P(Xn > 0),
because a priori it could be the case that this expected value is an effect of some very rare
events contributing a lot and vast majority of cases contributing zero to it. However, in such
hypothetical case, variance of Xn would be very big. Because of that we may try to proceed
in following two steps:

1) Deduce some general lower bound on P(X > 0) depending on EX and V ar(X).

2) Determine V ar(Xn) in order to apply derived bound.

P(X > 0) can be expressed as an expected value of a random variable 1X>0. Now, we can
write EX ≤ E(X · 1X>0) ≤

√
EX2 · E1X>0 =

√
EX2P(X > 0), where the key inequality

follows from Cauchy-Schwarz. Hence, if EX ≥ 0 we get that P(X > 0) ≥ (EX)2

EX2 . It’s not
exactly variance here, as I may have suggested, but EX2 often conveys similar intuition.

Let us now proceed to calculating EX2
n in order to use our freshly derived bound. As you may

have learnt in previous problems, it may be beneficial to express Xn as a sum of indicators
of events it consists of. Let us call vertices at distance n from the root as v1, . . . , v2n . Let Ai

be the event that vi ∈ C. Xn =
∑2n

i=1 1Ai
, so EX2

n = E(
∑2n

i=1 1Ai
)2 =

∑2n

i=1

∑2n

j=1E1Ai
1Aj

.
However, 1Ai

1Aj
= 1Ai∩Aj

. Event Ai ∩ Aj is an event where both vi and vj belong to C
and that happens if and only if sum of their paths to the root is in R. This happens with
probability p2n−k(i,j), where k(i, j) is the number of edges in the intersection of paths from
vi and vj to root. One can see that for a fixed i there are exactly 2c−1 vertices j such that
k(i, j) = n− c for c > 0 and 1 vertex (itself) for c = 0. Hence

EX2
n = 2n(pn + pn+1 + 2pn+2 + . . .+ 2n−1p2n) =

2npn + 2npn+1(1 + 2p+ . . .+ (2p)n−1) = 2npn + 2npn+1 (2p)n − 1

2p− 1
.

Now we can compute that

P(Xn > 0) ≥ (EXn)2

EX2
n

=
22np2n

2npn + 2npn+1 (2p)
n−1

2p−1

= (2p− 1)
22np2n

2npn + 22np2n+1 − 2npn+1
≥

≥ (2p− 1)
22np2n

22np2n + 22np2n+1
=

2p− 1

1 + p
.

2p−1
1+p

is indeed a positive constant, what completes our proof.



4. Consider a random assignment of values to variables xi (each is 0 or 1 with probability 1/2).
Let Ai be the event that the i-th clause of φ is not satisfied. If i-th clause contains literals x
and x for some variable x, then it is always satisfied and P (Ai) = 0. Otherwise it contains
literals using k distinct variables. For this clause to be not satisfied all literals of this clause
have to receive wrong values, thus P (Ai) = 2−k. Clearly Ai is mutually independent of the
family of events Aj such that the corresponding clauses Cj do not overlap with the clause Ci.
Thus we can use the LLL with d = 2k−2−1. Since e2−k2k−2 = e/4 < 1 we have P (

⋂
iA

c
i) > 0,

which means that there exists a good assignment.



5. We can assume that for each i one has |Vi| = k0 where k0 = d2ede. Otherwise we just replace
Vi with its subset V ′i of cardinality k0 and consider an induced subgraph on V ′1 ∪ . . . ∪ V ′r .
We now pick from each Vi a vertex xi uniformly and independently at random (each element
will be chosen with probability 1/k0). Let S = {x1, . . . , xr} be the resulting random set of
vertices. For each edge f ∈ E, let Af be the event that S contains both ends of f . Then
clearly P (Af ) ≤ 1

k20
. Let’s denote p = 1

k20
. Moreover, if the endpoints of f lie in Vi and Vj then

the event Af is mutually independents of the family of events {Ag : g = {u, v}, u, v /∈ Vi∪Vj}.
Thus the family of events {Af : f ∈ E} has a dependency graph of maximal degree less than
D = 2k0d − 2 (the number of edges going out of Vi ∪ Vj, excluded the edge f). Note that
ep(D + 1) ≤ e 1

k20
2k0d = 2ed/k0 ≤ 1. LLL finishes the proof.



6. Let us take a clique on n vertices and color its edges randomly in red and blue keeping
fingers crossed we get a coloring such that there is no red triangle and blue k-clique. Since
triangles are much smaller objects than general k-cliques, we should color each edge in red
with probability p := p(k) that should be significantly smaller than 1

2
(and, obviously, choices

for different edges are independent).

There are
(
n
3

)
events of a red triangle showing up (call them red events) and

(
n
l

)
events of a

blue k-clique showing up (call them blue events). In our first attempt we could just count
expected number of these events that happen and hope it is smaller than 1 for appropriately
chosen p, but if you do the calculations you will see it doesn’t give satisfying result. However,
we can see that very small fraction of events concerning red triangles are dependent to
each other. If we take triangles T1 and T2 such that they do not share an edge then their
corresponding events are independent. A triangle can share an edge with at most 3n other
triangles, which is much smaller number than their total number. Moreover, each k-clique
can share an edge with at most

(
k
2

)
n triangles. We may want to take an advantage of these

facts in Lovasz Local Lemma. However, red events and blue events are highly asymmetric
and that is why we may want to use its general asymmetric version.

For each event we are going to associate a real number from (0, 1) interval with it. Since
we have two types of events it seems like a good idea to associate the same value for all red
events (call it x) and the same value for all blue events (call it y), but x should probably
be different than y. Since each red event is dependent to at most 3n other red events and
at most

(
n
l

)
blue events and each blue event is dependent to at most

(
k
2

)
n red events and at

most
(
n
l

)
blue events in order to apply Lovasz Local Lemma we should have

p3 = P(Ri) ≤ x(1− x)3n(1− y)(
n
l)

(1− p)(
k
2) = P(Bi) ≤ y(1− x)(

k
2)n(1− y)(

n
l)

where Ri and Bi are arbitrary red and blue events.

So, if for a particular value of n we prove that there exist real numbers p, x, y from (0, 1)
satisfying these inequalities, based on Lovasz Local Lemma we can conclude that R(3, k) ≥ n.
Now, this problem turns to a less pleasant analytical one... It turns out that such numbers
can be found for n = Ω( k2

log2 k
), however since calculations are a bit lengthy, let me omit them,

but if you want to follow them then you can find them in this link from page 6.

https://theory.stanford.edu/~jvondrak/MATH233A-2018/Math233-lec02.pdf

