Introduction to Combinatorics Probabilistic method 2 – Hints

Wojciech Nadara, class 8, 2020-04-30

1.	Try	expressing	X	as	a s	sum	of	indicators	of	events	A_i ,	where	event	A_i	denotes	whether	we
	got	head in i -tl	h to	oss.													

2.	Try computing the contribution of a pair of jumps to the final combo score. Or try computing expected difference between scores after k and $k+1$ jumps.

3.	Let X_n be the random variable denoting number of vertices at distance n from the root that are in the connected component of root. Try bounding $\mathbb{P}(X_n > 0)$ from below by a constant (possibly depending on p). In order to do this compute $\mathbb{E}X_n$ and $\mathbb{E}X_n^2$.

4. Try random assignment and apply Lovasz Local Lemma.									

5.	Try	choosing	g vertex	from e	each gr	roup at	randon	n and a	apply l	Lovasz	Local L	emma.	

