Introduction to Combinatorics Probabilistic method - Problems

Wojciech Nadara, class 7, 2020-04-16

1. Let G be a graph with n vertices and m edges. Prove that we can partition $V(G)$ into A and B such that there are at least $\frac{m}{2}$ edges with one endpoint in A and one in B.
2. Let $k \geq 2$ be an integer. Prove that we can color integers from 1 to $\left\lfloor\sqrt{2^{k}(k-1)}\right\rfloor$ in two colors, so that there are no k integers with the same color forming an arithmetic sequence.
3. Let G be a graph with n vertices and m edges and let $d=\frac{2 m}{n}$ be its average degree. Prove that G has:
(a) an independent set of size at least $\frac{n}{2 d}$
(b) an independent set of size at least $\frac{n}{d+1}$.
4. Let $A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{n}$ be finite sets of integer numbers such that for every $1 \leq i \leq n$ it holds that $A_{i} \cap B_{i}=\emptyset$ and for every $1 \leq i<j \leq n$ it holds that $\left(A_{i} \cap B_{j}\right) \cup\left(A_{j} \cap B_{i}\right) \neq \emptyset$. Prove that for every $x \in[0,1]$ it holds that $\sum_{i=1}^{n} x^{\left|A_{i}\right|}(1-x)^{\left|B_{i}\right|} \leq 1$.
5. We are given set of n lines in general position that cuts the plane into some regions. We call a subset A of them good if there is no region with finite area (which is not cut by any other line) whose all sides are parts of lines from A. Prove that there exists a good set of lines:
(a) of size at least $\frac{\sqrt{n}}{2}$
(b) of size at least \sqrt{n}

Definition: A set of lines in the plane is in general position if no two are parallel and no three pass through the same point.
Comment+Hint: (b) may be very hard. You may try using discharging for it. Probabilistic method probably will not be enough.

