Introduction to Combinatorics Problems

Wojciech Nadara, class 5, 2020-03-26

1. Show that a graph with minimum degree $\delta \geq 2$ has a cycle of length at least $\delta+1$.
2. For every integer $n \geq 3$ determine the biggest number $f(n)$ so that there exists a graph on n vertices with $f(n)$ edges which doesn't have a Hamiltonian cycle.
3. Let G be an n-vertex graph with degrees $d_{1} \leq d_{2} \leq \ldots \leq d_{n}$. Prove that if $d_{k} \geq k+1$ for $k<\frac{n}{2}$, then G contains a Hamiltonian cycle.
4. On an $n \times n$ chessboard there are $2 n$ pawns. Prove that there is a nonempty subset A of them so that in every row and in every column there is an even number of pawns from A.
Hint: Try to express this problem in terms of bipartite graphs. (Bipartite graph is a graph whose vertex set is partitioned into two sets A and B and every edge has one endpoint in A and second one in B).
5. There are n disks D_{1}, \ldots, D_{n} with disjoint interiors drawn on the plane. Prove that there exists $1 \leq i \leq n$ such that D_{i} is tangent to at most 5 other disks.
Bonus: Find all values of k so that there exists a drawing of disks D_{1}, \ldots, D_{n} so that for each D_{i} there are exactly k other disks which are tangent to it.
6. Let G be a planar graph and H_{1}, \ldots, H_{k} be its subgraphs with following properties:

- each H_{i} is connected
- they are all pairwise disjoint, i.e. $i \neq j \Rightarrow H_{i} \cap H_{j}=\emptyset$
- for every pair of H_{i} and H_{j} (for $i \neq j$) there exist vertices $v_{i} \in H_{i}$ and $v_{j} \in H_{j}$ such that $v_{i} v_{j} \in E(G)$

Prove that $k \leq 4$.

