Introduction to Combinatorics Problems

Wojciech Nadara, class 5, 2020-03-26

- 1. Show that a graph with minimum degree $\delta \geq 2$ has a cycle of length at least $\delta + 1$.
- 2. For every integer $n \ge 3$ determine the biggest number f(n) so that there exists a graph on n vertices with f(n) edges which doesn't have a Hamiltonian cycle.
- 3. Let G be an n-vertex graph with degrees $d_1 \leq d_2 \leq \ldots \leq d_n$. Prove that if $d_k \geq k+1$ for $k < \frac{n}{2}$, then G contains a Hamiltonian cycle.
- 4. On an $n \times n$ chessboard there are 2n pawns. Prove that there is a nonempty subset A of them so that in every row and in every column there is an even number of pawns from A.

Hint: Try to express this problem in terms of bipartite graphs. (Bipartite graph is a graph whose vertex set is partitioned into two sets A and B and every edge has one endpoint in A and second one in B).

5. There are *n* disks D_1, \ldots, D_n with disjoint interiors drawn on the plane. Prove that there exists $1 \le i \le n$ such that D_i is tangent to at most 5 other disks.

Bonus: Find all values of k so that there exists a drawing of disks D_1, \ldots, D_n so that for each D_i there are exactly k other disks which are tangent to it.

- 6. Let G be a planar graph and H_1, \ldots, H_k be its subgraphs with following properties:
 - each H_i is connected
 - they are all pairwise disjoint, i.e. $i \neq j \Rightarrow H_i \cap H_j = \emptyset$
 - for every pair of H_i and H_j (for $i \neq j$) there exist vertices $v_i \in H_i$ and $v_j \in H_j$ such that $v_i v_j \in E(G)$

Prove that $k \leq 4$.