Introduction to Combinatorics Problems

Wojciech Nadara, class 4, 2020-03-19

1. In every vertex of a $2 n$-gon there is a set of two real numbers. Prove that we can choose one number in every vertex so that no two adjacent vertices have the same number chosen.
2. (Cauchy-Davenport theorem) Let p be a prime number and let A and B be two subsets of \mathbb{Z}_{p}. Prove that $|A+B| \geq \min (p,|A|+|B|-1)$, where $A+B=\{a+b: a \in A, b \in B\}$.
3. (Erdős-Ginzburg-Ziv theorem - special case) Let p be a prime number. Prove that for every set of $2 p-1$ integers we can find p of them whose sum is divisible by p.
4. Let k be a positive integer. Determine the coefficient of $x_{1}^{k-1} \ldots x_{k}^{k-1}$ in $\prod_{1 \leq i<j \leq k}\left(x_{i}-x_{j}\right)^{2}$.
5. Let p be a prime number and k a positive integer such that $k<p$. Let $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{k}$ be integers so that b_{1}, \ldots, b_{k} are pairwise different modulo p. Prove that there exists a permutation c_{1}, \ldots, c_{k} of b_{1}, \ldots, b_{k} so that $a_{1}+c_{1}, \ldots, a_{k}+c_{k}$ are pairwise different modulo p.
