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1. Let xi denote the chosen value in i-th vertex and Si denote the set of values w. Fact that
for every pair of adjacent vertices their values are different is equivalent to the fact that
P (x1, . . . , x2n) = (x1 − x2)(x2 − x3) . . . (x2n−1 − x2n)(x2n − x1)) is nonzero. That polynomial
has degree 2n and it can be easily verified that its coefficient next to x1x2 . . . x2n is 2 (which
is nonzero). Moreover size of Si is 2 what is bigger than degree of xi in that monomial.
Hence based on Combinatorial Nullstellensatz we can deduce that there exist x1 ∈ S1, x2 ∈
S2, . . . , x2n ∈ S2n such that P (x1, . . . , x2n) is nonzero which is what we wanted.



2. Let us first deal with the case that |A| + |B| > p. We need to prove that A + B = Zp then.
Let c ∈ Zp. We can create p pairs (0, c), (1, c − 1), . . . , (p − 1, c − (p − 1)) so that sum of
values within them is c (modulo p). Since |A|+ |B| > p we can easily conclude that for some
of these pairs it is the case that its first element is in A and second is in B what proves our
case (based on simple application of Dirichlet’s pigeonhole principle).

Let us now assume that |A|+ |B| ≤ p. We need to prove that |A+B| ≥ |A|+ |B|−1. Assume
by contrary that |A+B| ≤ |A|+ |B| − 2. For convenience let C denote arbitrary set so that
A+B ⊆ C and |C| = |A|+ |B|− 2. Now let us define polynomial P (x, y) =

∏
c∈C(x+ y− c).

Based on the definition of A + B and C we clearly see that for every a ∈ A, b ∈ B we have
P (a, b) = 0.

Let us now inspect the coefficient of x|A|−1y|B|−1 in P . It is clearly equal
(|A|+|B|−2
|A|−1

)
which

is nonzero modulo p. Since degree of P is |A| + |B| − 2 (or when expressed a bit differently
(|A|−1)+(|B|−1)), so assumptions of Combinatorial Nullstellensatz are fulfilled and based
on it we conclude that there must exist a ∈ A, b ∈ B such that P (a, b) 6= 0 which is a
contradiction.



3. By taking remainders modulo p instead of set of 2p− 1 integers we can assume we are given
a sequence r1, r2, . . . , r2p−1 so that 0 ≤ r1 ≤ r2 ≤ . . . ≤ r2p−1 ≤ p− 1. We would like to take
advantage of Cauchy-Davenport and get p summands in total, so let us partition elements of
that sequence into p − 1 pairs (r1, rp), (r2, rp+1), . . . , (rp−1, r2p−2) and a singleton (r2p−1). If
we take exactly one number from each of these pairs and r2p−1 we will indeed take p numbers
in total. Before we use Cauchy-Davenport there is an important question — are elements
within every pair distinct? Let us consider two cases.

1) Let us assume that answer to that question is “no” which means there is some c ∈ [p− 1]
such that rc = rc+p−1. However since we assumed that sequence r is sorted we can deduce
that rc = rc+1 = rc+2 = . . . = rc+p−1. These are p equal numbers and their sum is clearly
disivible by p, so we are done in this case.

2) Let us now assume that answer to that question is “yes” which means that if we treat
elements of every pair as a set its size is 2. Let us denote Si = {ri, ri+p−1 and R0 = {r2p−1}.
We will now incrementally add sets Si to be able to have bigger and bigger set of remainders
modulo p we are able to express as some sums. Let us define Ri = Ri−1 + Si for every
i = 1, . . . , p − 1 (we are working modulo p). By induction we argue that we are able to
express all elements of Ri as sums of i + 1 elements of sequence r (namely r2p−1 and one
from pairs corresponding to sets S1, . . . , Si). However by Cauchy-Davenport we know that
|Ri| ≥ min(p, |Ri−1|+|Si|−1) = min(p, |Ri−1|+1), so by induction we argue that |Ri| ≥ i+1.
Hence |Rp−1| = p, so Rp−1 = {0, . . . , p− 1}, so in particular 0 ∈ Rp−1 what proves that 0 is
expressible as a sum of p elements of this sequence.



4. Let A be a k × k matrix such that aij = xj−1i . It is called Vandermonde’s matrix and its
determinant is

∏
1≤i<j≤k(xi − xj).

We are now going to briefly describe why determinant of this matrix is given by that formula.
Determinant of A is clearly a polynomial in variables x1, . . . , xn and its degree is 0+1+ . . .+
k − 1 =

(
k
2

)
. Moreover whenever xi = xj it has two equal rows, so this polynomial must be

divisible by (xi− xj). Hence we can conclude that det(A) =
∏

1≤i<j≤k(xi− xj)Q(x1, . . . , xk),
where Q is some polynomial. However degree of right hand side is

(
k
2

)
+degQ, so degQ = 0,

so Q is just a real number. By comparing the coefficient next to xk−11 xk−22 . . . x0k on both sides
we conclude that Q ≡ 1 (since this coefficient is 1 on both sides) what proves our assertion.

Polynomial from the statement is actually square of this determinant. So instead of analyzing
it, we analyze determinant of that matrix. Based on permutation formula for determinant
we get that it is equal

∑
σ∈Sk

sgn(σ)
∏k

i=1 ai,σ(i) =
∑

σ∈Sk
sgn(σ)

∏k
i=1 x

σ(i)−1
i , where Sk is the

set of all permutations of [k]. If we want to get xk−11 . . . xk−1k in the square of this expression
monomial

∏k
i=1 x

σ(i)−1
i from first factor must be paired with

∏k
i=1 x

k−σ(i)
i =

∏k
i=1 ai,k+1−σ(i)

from the second factor. Such monomial exists since if σ is a valid permutation of [k] then τ
where τ(i) = k+1−σ(i) is a valid permutation as well. Coefficient of the first monomial in first
factor is sgnσ, coefficient of the second monomial in second factor is sgn τ , so contribution of
that pair of monomials to the result is sgnσ · sgn τ . It turns out that sgn τ = sgnσ · (−1)b k2 c
because σ−1 can be transformed to τ−1 by bk

2
c swaps of pairs of elements and every swap

changes sign of the permutation (and sgnσ = sgnσ−1). These swaps are swaps of elements
on the pairs of positions (i, k + 1 − i) for i = 1, . . . , bk

2
c. Because of that we conclude that

sgnσ · sgn τ = (−1)b k2 c (so it doesn’t depend on σ!). We now know that for every monomial
from the first factor there is exactly one monomial from the second factor so that when
multiplied they give nonzero contribution to the coefficient of monomial xk−11 . . . xk−1k and no
matter what this monomial from first factor is, that contribution is (−1)b k2 c. Since there are
k! monomials in whole expression for determinant, we conclude that answer to this problem
is (−1)b k2 ck!.



5. Let us consider following polynomial:

P (c1, . . . , ck) =
∏

1≤i<j≤k

((ci − cj)((ci + ai)− (cj + aj)))

in k variables c1, . . . , ck over Zp. It is clear that sequences c1, . . . , ck that are fulfilling con-
ditions from problem statement are those that are not roots of this polynomial and such
that ci ∈ {b1, . . . , bk} (we can of course assume that 0 ≤ bi < p). Degree of P is k(k − 1)
which is the degree of monomial ck−11 · . . . · ck−1k as well. It is now clear that ai terms in
the expression for this polynomial don’t have any influence on coefficient of this monomial
since in order to reach maximum possible degree of a monomial we need to take either ci
or cj from the factor ((ci + ai) − (cj + aj)). After removing them this polynomial becomes∏

1≤i<j≤k(ci− cj)2 which is the polynomial from previous exercise! Based on that exercise we

know that coefficient next to this monomial is (−1)b k2 ck! which fortunately is not divisible
by p (i.e. it is nonzero in Zp). Because of that we can apply Combinatorial Nullstellensatz
for monomial ck−11 · . . . · ck−1k and sets Si = {b1, . . . , bk} and conclude that there exists a point
(c1, . . . , ck) such that ci ∈ Si and P (c1, . . . , ck) 6= 0 which is what we wanted to show.


