Introduction to Combinatorics Hints

Wojciech Nadara, class 4, 2020-03-19

1. Let x_{i} denote the chosen value in i-th vertex. Try expressing fact that for every pair of adjacent vertices their values are different as the fact that some polynomial is nonzero in some point.
2. It should be a good idea to consider two cases. First one when $|A|+|B| \geq p+1$, and second one when $|A|+|B| \leq p$. Assume by contrary that $|A+B| \leq|A|+|B|-2$ and try applying Combinatorial Nullstellensatz for a polynomial whose degree will be small thanks to this assumption.
3. Try using Cauchy-Davenport theorem where $|B|=2$.
4. Polynomial from the problem statement looks similar to the determinant of Vandermonde's matrix...

By the way this problem doesn't have a direct connection to the Combinatorial Nullstellensatz. You may feel deceived, but it will serve its purpose when the appropriate time comes :).
5. We can express fact that c is a permutation of b in the following way: $c_{i} \in\left\{b_{1}, \ldots, b_{k}\right\}$ and $c_{i} \neq c_{j}$ for $i \neq j$. Now, condition from statements requires $c_{i}+a_{i} \neq c_{j}+a_{j}(\bmod p)$ for $i \neq j$. Can all of this be encoded in some polynomial?

