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1. We basically repeat what was said on the lecture and slightly adjust it to this problem. For
a set A ⊆ [n] we define function fA : {0, 1}n → Zp in the following way: fA(x1, . . . , xn) =∏

k∈L(
∑

i∈A xi−k). We note that fA(1B) =
∏

k∈L(|A∩B|−k). Hence if A 6= B ⇒ |A∩B| ∈ L
we deduce that A 6= B ⇒ fA(1B) = 0 and since |A| 6∈ L we deduce that fA(1A) 6= 0. Hence
if we treat these functions as elements of linear space we can conclude that they are linearly
independent. However they are spanned by functions xi1xi2 . . . xij (recall that even though f
takes values in Zp we in fact have xi ∈ {0, 1}, so xc

i = xi for positive c), where j ≤ |L| and
1 ≤ i1 < i2 < . . . < ij ≤ n and number of such functions is at most d =

(
n
0

)
+
(
n
1

)
+ . . .+

(
n
|L|

)
what proves that dimension of space that contains all functions fA is at most d, so number
of them is at most d since they are linearly independent.



2. We try following the idea that was used in previous problem, but we need to do some twists.
In our first attempt we may try do define fA(x1, . . . , xn) =

∏
k∈L(

∑
i∈A xi − k), but the

problem with it is that it could be the case that |A| ∈ L what will cause fA(1A) = 0.
In order to prevent this we may remove term for k = |A| if |A| ∈ L from that product.
Moreover since |A ∩ B| ≤ |A| terms with k > |A| actually do not change whether fA is zero
or not, so for convenience we may remove them as well and in our second attempt define
gA(x1, . . . , xn) =

∏
k∈L,k<|A|(

∑
i∈A xi−k). It follows that gA(1A) is nonzero, however it is not

necessarily the case that if A 6= B then gA(B) = 0 since it could be the case that |A∩B| = |A|.
Under wishful assumption that there is no such a pair of sets in F such that one contains
the other we would actually be done since we would be able to conclude functions gA are
linearly independent based on the fact that for A,B ∈ F we have gA(1B) 6= 0 ⇔ A = B
and continue in the same way we did in the previous problem. We cannot assume that but
in fact it turns out we are still able to argue that they are linearly independent!

Let us order elements of F in nondescending order of their sizes. |A1| ≤ |A2| ≤ . . . ≤ |A|F||.
We can now note that if i < j then it implies gAj

(1Ai
) = 0 because if |Ai| ≤ |Aj| and

Ai 6= Aj then we have that |Ai ∩Aj| < |Aj|, so there exists a term in product gAj
which will

be equal to zero. Because of that if we create a |F|×|F| matrix M where mij = gAi
(Aj) then

this matrix is upper-triangular with nonzero entries on the main diagonal. Such matrix is of
course non-singular what proves that functions gAi

are linearly independent and we conclude
the same way we did before.



3. By grouping the monomials in P by the power xn has we can say that there exist polynomials
on n − 1 variables P0, P1, . . . , Pq−1 such that P (x1, . . . , xn−1, xn) = x0

nP0(x1, . . . , xn−1) +
x1
nP1(x1, . . . , xn−1) + . . . + xq−1

n Pq−1(x1, . . . , xn−1). If we now fix variables x1, . . . , xn−1 we
can treat right hand side as a polynomial in one variable — namely xn. We can write
Qx1,...,xn−1(x) =

∑q−1
i=0 x

iPi(x1, . . . , xn−1). Since P vanishes for all points we know that Q
has q roots which is more than its degree. It means that all its coefficients are zero. It means
that we have Pi(x1, . . . , xn−1) = 0 for all i and for all choices of x1, . . . , xn−1. It means that
all polynomials P0, . . . , Pq−1 vanish on all their arguments spaces. Therefore we can apply
induction here (base case is trivial) and conclude that all coefficients of P are zero.



4. Dimension of said space is number of different monomials xc1
1 . . . xcn

n where c1, . . . , cn are
nonnegative integers summing of to at most d, so we need to count those.

There is a clear bijection between sequences of nonnegative integers of length n summing up
to at most d and sequences of nonnegative integers of length n + 1 summing up to exactly
d. In order to create this bijection we just append difference of d and sum c1 + . . . + cn to
sequence c1, . . . , cn to get the sequence of length n+ 1 and sum being exactly d.

So now, our question in how many sequence of nonnegative integers of length n+1 are there.
This is well-known problem of putting d indistinguishable balls into n + 1 distinguishable
buckets (sometimes called “stars and bars” problem as well) and the answer to it is

(
n+d
n

)
.

That is because we can think about this problem as a problem of ordering d balls and n
“walls” between buckets.



5.
(
n+q−2

n

)
is the dimension of space of all polynomials on n variables of degree at most q − 2.

Based on that and the hint next to the problem statement we should find linear map from
that space to the space of function from B to Fn

q . What is that map? It is quite clear — just
the evaluation, i.e. we map polynomial P into a function from B to Fq which at every point
of A takes value which P takes there. In order to prove that this mapping is injective we
need to prove that its kernel is trivial i.e. if some polynomial P from our space vanishes on
whole set B it in fact is zero polynomial, i.e. all its coefficients are zero.

In fact based on third problem it suffices to show that P vanishes on whole Fn
q and we are

going to do exactly that. We know that P vanishes on B (that is our assumption), so let us
take some point x outside of B and prove that it vanishes there as well. We know that there
is a line containing x so that x is the only point outside of B on that line. Let direction of
that line be v, so it is a set of points of form x+ tv where t ∈ Fq. For fixed x, v we can express
P (x + tv) as a polynomials in one variable — namely t. We know that this polynomial has
degree at most q − 2, but it has q − 1 roots on it, so in fact it is a zero polynomial, so it
vanishes in x as well, so we are done.



6. It is easy to construct a set of 20 starting colored point that suffice to color every point of
R3 in finite number of steps. Take for example set of points (x, y, z) such that x, y, z ∈ Z≥0
and x+ y + z ≤ 3.

Now we will prove that 20 is optimal. Crucial fact that will lead us to the solution is that
if cubic polynomial has at least four zeros it has to be zero everywhere. Assume that P is
some polynomial in variables x, y, z of degree at most 3. Let us restrict P to a line in R3.
Restricting to line means considering points x = x0 + tdx, y = y0 + tdy, z = z0 + tdz for some
fixed real numbers x0, y0, z0, dx, dy, dz and t being any real number, where (x0, y0, z0) is one
of points on this line and (dx, dy, dz) is its direction. After such substitution it becomes a
polynomial in one variable (namely t) of degree at most 3 which means that if it has four
zeros on that line it has to be zero everywhere on that line. Therefore it can be proven that
if P attains zero at some set of colored point, all points that we can color in finite number of
steps need to be roots of P as well. However space of polynomials in three variables of degree
at most 3 has in fact dimension 20, so if we start our construction with 19 points there exists
a polynomial whose values are zeros in all these points but which is nonzero what means
there are points where it has nonzero values which in turn cannot be colored in finite number
of steps.

By the way, if you haven’t solved this problem - don’t worry. When it was posed on an
international competition nobody solved it. But at least you got some hints and preceding
problems to help you along the way :).


