Introduction to Combinatorics

Wojciech Nadara, class II, 05/03/2020

1. Let v_1, \ldots, v_n be real numbers such that $|v_i| \ge 1$ for $i = 1, \ldots, n$. Define

$$A = \{x = (x_1, \dots, x_n) \in \{-1, 1\}^n : |v_1 x_1 + \dots + v_n x_n| < 1\}.$$

Prove that $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

In other words, the probability that the *n* step random walk with steps $\pm v_i$ (each taken with probability $\frac{1}{2}$) ends up in the interval [-1, 1] is upper bounded by $2^{-n} \binom{n}{\lfloor n/2 \rfloor} = O(1/\sqrt{n})$.

- 2. Suppose that in a given finite partial order the maximal lenght of a chain is equal to r. Prove that this partial order can be partitioned into r antichains.
- 3. Let s, r be positive integers. Show that in any partial order on a set of $n \ge sr + 1$ elements, there exists a chain of length s + 1 or an antichain of size r + 1.
- 4. Let s, r be positive integers. Show that every sequence of sr + 1 real numbers contains a non-decreasing subsequence of length s + 1 or a non-increasing subsequence of length r + 1.
- 5. Show that the above theorem is tight.
- 6. Find R(3,3) and R(4,3).
- 7. Show that for any integer $m \ge 3$ there exists an integer n = n(m) such that any set of n points in the Euclidean plane, no three of which are collinear, contains m points which are the vertices of a convex m-gon.
- 8. Show that for every $r \ge 2$ there exists n = n(r) such that in every coloring of $\{1, \ldots, n\}$ with r colors there exist monochromatic triple of distinct numbers satisfying x + y = z.