Introduction to Combinatorics

Wojciech Nadara, class II, 05/03/2020

1. Let v_{1}, \ldots, v_{n} be real numbers such that $\left|v_{i}\right| \geq 1$ for $i=1, \ldots, n$. Define

$$
A=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}:\left|v_{1} x_{1}+\cdots+v_{n} x_{n}\right|<1\right\} .
$$

Prove that $|A| \leq\binom{ n}{[n / 2]}$.
In other words, the probability that the n step random walk with steps $\pm v_{i}$ (each taken with probability $\frac{1}{2}$) ends up in the interval $[-1,1]$ is upper bounded by $2^{-n}\binom{n}{[n / 2]}=O(1 / \sqrt{n})$.
2. Suppose that in a given finite partial order the maximal lenght of a chain is equal to r. Prove that this partial order can be partitioned into r antichains.
3. Let s, r be positive integers. Show that in any partial order on a set of $n \geq s r+1$ elements, there exists a chain of length $s+1$ or an antichain of size $r+1$.
4. Let s, r be positive integers. Show that every sequence of $s r+1$ real numbers contains a non-decreasing subsequence of length $s+1$ or a non-increasing subsequence of length $r+1$.
5. Show that the above theorem is tight.
6. Find $R(3,3)$ and $R(4,3)$.
7. Show that for any integer $m \geq 3$ there exists an integer $n=n(m)$ such that any set of n points in the Euclidean plane, no three of which are collinear, contains m points which are the vertices of a convex m -gon.
8. Show that for every $r \geq 2$ there exists $n=n(r)$ such that in every coloring of $\{1, \ldots, n\}$ with r colors there exist monochromatic triple of distinct numbers satisfying $x+y=z$.

