Introduction to Combinatorics

Piotr Nayar, class I, 27/02/2020

1. Let A_{1}, \ldots, A_{m} be distinct subsets of an n element set. Suppose that $A_{i} \cap A_{j} \neq \emptyset$ for all i, j. Show that $m \leq 2^{n-1}$.
2. Prove that if \mathcal{F} is a family of distinct pairwise intersecting subsets of an n element set X, then there exists a family \mathcal{F}^{\prime} of distinct pairwise intersecting subsets of X, such that $\mathcal{F} \subseteq \mathcal{F}^{\prime}$ and $\left|\mathcal{F}^{\prime}\right|=2^{n-1}$.
3. Let A_{1}, \ldots, A_{m} be a family of distinct subsets of an n element set, such that $\left|A_{i}\right|$ and $\left|A_{i} \cap A_{j}\right|$ are even for all i, j. Prove that $m \leq 2^{[n / 2]}$. Is this bound tight?
4. Let n be odd. Let A_{1}, \ldots, A_{m} be a family of distinct subsets of an n element set, such that $\left|A_{i}\right|$ is even for all i and $\left|A_{i} \cap A_{j}\right|$ is odd for all i, j. Prove that $m \leq n$. Is this bound tight?
5. Let A be a $2 n \times 2 n$ matrix with zeroes on the main diagonal and ± 1 elsewhere. Show that A is non-singular over \mathbb{R}.
6. Suppose \mathbb{F} is a subfield of \mathbb{G}. Suppose v_{1}, \ldots, v_{k} are linearly independent in the vector space $\left(\mathbb{F}^{n}, \mathbb{F}\right)$. Does it follow that v_{1}, \ldots, v_{k} are linearly independent in the vector space $\left(\mathbb{G}^{n}, \mathbb{G}\right)$?
7. A family S_{1}, \ldots, S_{k} of subsets of a given set X is called a sunflower with k petals and core A (it could be that $A=\emptyset$) if $S_{i} \cap S_{j}=A$ for all $i \neq j$ and $S_{i} \backslash A$ is nonempty for all i.
Prove that every family of s element subsets of X satisfying $|\mathcal{F}|>s!(k-1)^{s}$ contains a sunflower with k petals.
8. Let \mathcal{F} be an antichain of subsets (with an inclusion order) of an n element set. Suppose that all of these sets have cardinality at most k where $2 k \leq n$. Show that $|\mathcal{F}| \leq\binom{ n}{k}$.
9. Let $n \leq 2 k$ and let A_{1}, \ldots, A_{m} be distinct k element subsets of a give set X with n elements. Suppose $A_{i} \cup A_{j} \neq X$ for all i, j. Show that $m \leq\left(1-\frac{k}{n}\right)\binom{n}{k}$.
10. Let A_{1}, \ldots, A_{m} and B_{1}, \ldots, B_{m} be subsets of a given finite set X such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$. Let $a_{i}=\left|A_{i}\right|$ and $b_{i}=\left|B_{i}\right|$. Prove the inequality

$$
\sum_{i=1}^{m}\binom{a_{i}+b_{i}}{a_{i}}^{-1} \leq 1
$$

11. Let A_{1}, \ldots, A_{m} be a element subsets and B_{1}, \ldots, B_{m} be b element subsets of a given finite set X, such that $A_{i} \cap B_{j}=\emptyset$ if and only if $i=j$. Show that $m \leq\binom{ a+b}{a}$. Is this bound tight?
12. Let v_{1}, \ldots, v_{n} be real numbers such that $\left|v_{i}\right| \geq 1$ for $i=1, \ldots, n$. Define

$$
A=\left\{x=\left(x_{1}, \ldots, x_{n}\right) \in\{-1,1\}^{n}:\left|v_{1} x_{1}+\cdots+v_{n} x_{n}\right|<1\right\} .
$$

Prove that $|A| \leq\binom{ n}{[n / 2]}$.
In other words, the probability that the n step random walk with steps $\pm v_{i}$ (each taken with probability $\frac{1}{2}$) ends up in the interval [$-1,1$] is upper bounded by $2^{-n}\binom{n}{[n / 2]}=O(1 / \sqrt{n})$.

