Introduction to Combinatorics

Piotr Nayar, class I, 27/02/2020

- 1. Let A_1, \ldots, A_m be distinct subsets of an *n* element set. Suppose that $A_i \cap A_j \neq \emptyset$ for all i, j. Show that $m \leq 2^{n-1}$.
- 2. Prove that if \mathcal{F} is a family of distinct pairwise intersecting subsets of an n element set X, then there exists a family \mathcal{F}' of distinct pairwise intersecting subsets of X, such that $\mathcal{F} \subseteq \mathcal{F}'$ and $|\mathcal{F}'| = 2^{n-1}$.
- 3. Let A_1, \ldots, A_m be a family of distinct subsets of an *n* element set, such that $|A_i|$ and $|A_i \cap A_j|$ are even for all i, j. Prove that $m \leq 2^{[n/2]}$. Is this bound tight?
- 4. Let n be odd. Let A_1, \ldots, A_m be a family of distinct subsets of an n element set, such that $|A_i|$ is even for all i and $|A_i \cap A_j|$ is odd for all i, j. Prove that $m \leq n$. Is this bound tight?
- 5. Let A be a $2n \times 2n$ matrix with zeroes on the main diagonal and ± 1 elsewhere. Show that A is non-singular over \mathbb{R} .
- 6. Suppose \mathbb{F} is a subfield of \mathbb{G} . Suppose v_1, \ldots, v_k are linearly independent in the vector space $(\mathbb{F}^n, \mathbb{F})$. Does it follow that v_1, \ldots, v_k are linearly independent in the vector space $(\mathbb{G}^n, \mathbb{G})$?
- 7. A family S_1, \ldots, S_k of subsets of a given set X is called a *sunflower* with k petals and core A (it could be that $A = \emptyset$) if $S_i \cap S_j = A$ for all $i \neq j$ and $S_i \setminus A$ is nonempty for all i. Prove that every family of s element subsets of X satisfying $|\mathcal{F}| > s!(k-1)^s$ contains a sunflower with k petals.
- 8. Let \mathcal{F} be an antichain of subsets (with an inclusion order) of an *n* element set. Suppose that all of these sets have cardinality at most *k* where $2k \leq n$. Show that $|\mathcal{F}| \leq {n \choose k}$.
- 9. Let $n \leq 2k$ and let A_1, \ldots, A_m be distinct k element subsets of a give set X with n elements. Suppose $A_i \cup A_j \neq X$ for all i, j. Show that $m \leq (1 - \frac{k}{n}) {n \choose k}$.
- 10. Let A_1, \ldots, A_m and B_1, \ldots, B_m be subsets of a given finite set X such that $A_i \cap B_j = \emptyset$ if and only if i = j. Let $a_i = |A_i|$ and $b_i = |B_i|$. Prove the inequality

$$\sum_{i=1}^{m} \binom{a_i + b_i}{a_i}^{-1} \le 1.$$

- 11. Let A_1, \ldots, A_m be a element subsets and B_1, \ldots, B_m be b element subsets of a given finite set X, such that $A_i \cap B_j = \emptyset$ if and only if i = j. Show that $m \leq \binom{a+b}{a}$. Is this bound tight?
- 12. Let v_1, \ldots, v_n be real numbers such that $|v_i| \ge 1$ for $i = 1, \ldots, n$. Define

$$A = \{x = (x_1, \dots, x_n) \in \{-1, 1\}^n : |v_1 x_1 + \dots + v_n x_n| < 1\}.$$

Prove that $|A| \leq \binom{n}{\lfloor n/2 \rfloor}$.

In other words, the probability that the *n* step random walk with steps $\pm v_i$ (each taken with probability $\frac{1}{2}$) ends up in the interval [-1, 1] is upper bounded by $2^{-n} \binom{n}{\lfloor n/2 \rfloor} = O(1/\sqrt{n})$.