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1 Extremal combinatorics

1.1 Fisher's inequality

Theorem 1 (Fisher's inequality). Fix 1 ≤ k ≤ n. Let A1, A2, . . . , Am be distinct subsets of a n element
set, such that |Ai ∩ Aj| = k for all i 6= j. Prove that m ≤ n.

Proof. Let v1, . . . , vm be {0, 1} vectors such that jth coordinate of vi is 1 if and only if j ∈ Ai. It
su�ces to prove that these vectors are linear independent. Suppose, by contradiction, that for some
λ1, . . . , λm we have

∑m
i=1 λivi = 0, with not all coe�cients being zero. Note that 〈vi, vj〉 = k for i 6= j

and 〈vi, vi〉 = |Ai| for i = 1, . . . ,m. We have

0 =

〈
m∑
i=1

λivi,
m∑
i=1

λivi

〉
=

m∑
i=1

λ2
i |Ai|+ k

∑
i 6=j

λiλj

=
m∑
i=1

λ2
i (|Ai| − k) + k

(
m∑
i=1

λi

)2

.

There exist at least two indexes i, j such that λi, λj 6= 0. It follows that |Ai| = |Aj| = k. This contradicts
the condition |Ai ∩ Aj| = k and Ai 6= Aj.

1.2 Clubs in Oddtown

Suppose citizens of a certain town form clubs according to the following two rules:

(a) Each club has an odd number of members.

(b) Each pair of clubs share an even number of members.

What is the maximal number of clubs that can be formed in this town? The answer is given by the
following theorem.

Theorem 2. Suppose A1, . . . , Am be distinct subsets of a given set of cardinality n. Suppose |Ai| is
odd for every i and |Ai ∩ Aj| is even for every i 6= j. Then m ≤ n.

Remark. Equality can be achieved, for example if the sets Ai are all the singletons.

First proof. Let us assume that the citizens are numbered 1 through n. To each club we associate a
vector vi ∈ Zn2 = {0, 1}n in such a way that the jth coordinate of vi is equal to 1 if and only if the jth
citizen is a member of the ith club. We shall work over the �eld Z2. Let us introduce the standard
scalar product

〈(x1, . . . , xn), (y1, . . . , yn)〉 = x1y1 + . . .+ xnyn,

where the sum is taken in Z2. By our assumption we have 〈vi, vj〉 = 1 for i = j and 〈vi, vj〉 = 0 for
i 6= j. We claim that v1, . . . , vm are linearly independent. Indeed, suppose that λ1v1 + . . .+ λmvm = 0.
Taking the scalar product of both sides with the vector vi one gets λi = 0, which shows the claim. Since
the vector space (Zn2 ,Z2) has dimension n, we must have k ≤ n (it is not possible to �nd more than n
linearly independent vectors in a vector space of dimension n).
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Second proof. We again shall work in Z2. Let us consider vectors vi as above and let M be an m × n
matrix with rows vi. We shall again show that the vectors vi are linearly independent. By our assumption
MMT is the m×m identity matrix (note that the (i, j) entry of this matrix is |Ai ∩Aj| in Z2). For any
matrices A,B (over arbitrary �eld) such the number of columns of A equals the number of rows of B,
we have

rank(AB) ≤ min(rank(A), rank(B)).

Applying this for A = M and B = MT we get m = rank(MMT ) ≤ rank(M) ≤ n, since M has n
columns.

1.3 Sperner's lemma

Theorem 3 (Sperner's lemma, [AI]). Let F be a family of subsets of a given n element set X, such
that for any pair of subsets A,B ∈ F we have A * B. Then

|F| ≤
(

n

[n/2]

)
The family for which we have equality is the family of all subsets of cardinality [n/2].

Proof. Without loss of generality we shall assume that X = {1, . . . , n}. To prove the above fact we
consider the family F and we count pairs (π, S), where π is a permutation of {1, . . . , n} and S is a set
of the form S = {π(1), . . . , π(k)} for π, such that S ∈ F . For each π we can have at most one S ∈ F .
Therefore, the number of pairs (π, S) is not greater than n!. Moreover, a �xed set S ∈ F of cardinality
k will be counted exactly k!(n − k)! times. So, if sk is the number of sets in F of cardinality k then
the number of pairs (π, S) is equal to

∑n
k=0 skk!(n − k)!. Thus,

∑n
k=0 skk!(n − k)! ≤ n!. It means that

|F|
( n
[n/2])

≤
∑n

k=0
sk

(nk)
≤ 1.

We have in fact proved the following fact.

Theorem 4 (LYM inequality). Let X be an n element set and let F be an antichain over X, that is, a
family of subsets of X such that no set in F is a subset of another set in F . Let sk be the number of
sets in F of cardinality k. Then

∑n
k=0

sk

(nk)
≤ 1.

Remark. LYM stands for Lubell�Yamamoto�Meshalkin.

Alternative proof. For every subset A of X exactly |A|!(n − |A|)! maximal chains (chains having n + 1
members of consecutive cardinalities) over X contain A. Since F is an antichain, none of the n! maximal
chains meet F more than once. Let CA be the family of maximal chains that meet A. We have |CA| =
|A|!(n− |A|)! and CA for di�erent A do not intersect. Thus

∑
A∈F |A|!(n− |A|)! =

∑
A∈F |CA| ≤ n!.

Theorem 5. Let v1, . . . , vn be real numbers such that |vi| ≥ 1 for i = 1, . . . , n. De�ne

A = {x = (x1, . . . , xn) ∈ {−1, 1}n, |v1x1 + · · ·+ vnxn| < 1} .

Then |A| ≤
(

n
[n/2]

)
. In other words, the probability that the random walk with steps ±vi (each taken

with probability 1
2
) ends up in the interval [−1, 1] is upper bounded by 2−n

(
n

[n/2]

)
= O(1/

√
n).

Proof. This is a special case of the Littlewood-O�ord problem, see [E]. Without loss of generality we can
assume that vi ≥ 1 for i = 1, . . . , n. A point x in {−1, 1}n can be seen as a subset Bx of {1, 2, . . . , n},
i.e., i ∈ Bx if and only if xi = 1. It is easy to observe that if |v1x1 +· · ·+vnxn| < 1 for some x ∈ {−1, 1}n,
then changing one or more signs xi from −1 to 1 gives a point, for which |v1x1 + · · · + vnxn| ≥ 1. It
means that {Bx, x ∈ A} satis�es the assumption of Sperner's lemma. Thus, |A| ≤

(
n

[n/2]

)
.
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1.4 Erdös-Ko-Rado theorem

Theorem 6 (Erdös-Ko-Rado theorem). Let 2k ≤ n and let F be a family of k element subsets of [n]
such that each subset in of size k and for every A,B ∈ F we have A ∩B 6= ∅. Then |F| ≤

(
n−1
k−1

)
.

Proof. The idea is to count pairs (π, S) where π is a circular permutation (π(1), π(2), . . . , π(n)) (placing
π(1), π(2), . . . , π(n) on the circle with no speci�ed starting point) and S is an interval (on the circle) of
length k in this permutation such that S ∈ F . In other words S is an interval on the discrete circle,
where the numbers are placed according to π and the elements in this interval must form a set from F .
We have (n − 1)! cyclic permutations. Each of them contains at most k pairwise intersecting intervals
of length k and thus at most k elements of our family. In this step we have used the fact that 2k ≤ n.
Each set in our family occurs in precisely k!(n−k)! cyclic permutations. Thus, |F|k!(n−k)! ≤ k(n−1)!.
Our assertion follows.

1.5 Mirsky's and Dilworth's theorems

A poset is a partially ordered set. In a poset there are comparable and incomparable elements. A subset
of a poset which consists of pairs of comparable elements is a chain. A subset which consists of pairwise
incomparable elements is called an antichain.

We want to partition a given poset into as few chains (or antichains) as possible (clearly singletons
give us a partition into both chains and antichains). Suppose that the maximal length of a chain in our
poset is equal to r. Then it is not possible to have a partition of our poset into fewer than r antichains
(since then from the pigeonhole principle we would have an antichain having at least two elements from
our chain of maximal length, which is impossible). Is it always possible to partition our poset into
exactly r antichains?

Now, suppose the cardinality of the maximal antichain in our poset equals r. Then it is not possible
to create a partition into fewer than r chains, since then one of the chains would have at least two
elements of our maximal antichain, which gives a contradiction. Is it always possible to partition our
poset into exactly r chains?

Theorem 7 (Mirsky's theorem). Suppose that in a given �nite poset the maximal lenght of a chain is
equal to r. Then the poset can be partitioned into r antichains.

Proof. For x is our poset its rank is the maximal possible cardinality l of a chain x1 < x2 < . . . xl = x.
Let Ai consists of all the elements having rank i. Clearly Ai are non-empty only for i ≤ r. We claim that
each Ai is an antichain. Suppose by contradiction that x, y ∈ Ai and, say, x < y. Then the maximal
chain x1 < . . . < xi = x can be prolonged to x1 < . . . < xi = x < y, which means that the rank of y is
at least i+ 1, contradiction.

Theorem 8 (Dilworth's theorem). Suppose that in a give �nite poset the maximal cardinality of an
antichain is equal to r. Then the poset can be partitioned into r chains.

Proof. Induction on the cardinality of the poset. Let a be any maximal element in P and consider
P ′ = P \ {a}. Suppose r is the size maximal size of an antichain in P ′. From induction hypothesis we
can partition P ′ into chains C1, . . . , Cr. We shall prove that one of the following two situations hold:

(a) P has an r + 1 element antichain (and in this case we are done with the proof since we can
easily partition P into r+ 1 chains just by taking the partition of P ′ into r chains from induction
hypothesis, and then add a singleton chain {a}).

(b) P is a union of r chains (and in this case we are also done since in P ′ ⊂ P there is an antichain
of size r).
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There exists an r element antichain in P ′ (by the de�nition of r). This antichain has exactly one
element from each Ci (it cannot have two elements, since then it would not be an antichain). Let ai be
the maximal element in Ci which belongs to certain r element antichain in P ′ (by de�nition of r there
is at least one r element antichain in P ′ and this antichain meets every Ci, so the elements ai are well
de�ned). Now, clearly A = {a1, . . . , ar} is an antichain in P ′. Indeed, if ai < aj then aj is comparable
to all the elements in Ci that are less then or equal ai. Thus the r element antichain containing aj has
to meet Ci higher than at ai, which contradicts the de�nition of ai.

If A ∪ {a} is an antichain, then we are done ((a) holds). Otherwise a > ai for some i (it cannot be
a < ai since a is maximal). Thus C = {a} ∪ {x ∈ Ci : x ≤ ai} is a chain in P . Observe that there are
no r element antichains in P ′′ = P \C, since (P \C) ∩Ci only contains element greater than ai, which
contradicts the de�nition of ai as the maximal element in Ci participating in an r element anichain in
P ′. From the induction hypothesis P ′′ can be partitioned into r− 1 chains and thus P = P ′′ ∪C can be
partitioned into r chains (note that P ′′ cannot be partitioned into fewer than r−1 chains since P cannot
be partitioned into fewer than r chains, as P ′ cannot be partitioned in such a way, see the remark before
the formulation of the theorem).

1.6 Erdös-Szekeres theorem

Theorem 9 (Erdös-Szekeres theorem, [ES]).

(a) Any sequence of real numbers x1, x2, . . . contains a non-increasing or a non-decreasing subsequence.

(b) Let n,m ≥ 1 be integers. Suppose we have a sequence of (n− 1)(m− 1) + 1 real numbers. Then
there exists a non-decreasing sequence of length n or a non-increasing sequence of length m.

Proof. (a) The assertion clearly hold when x1, x2, . . . is not bounded (take a monotone sequence con-
verging to ∞ or to −∞). If our sequence is bounded then from the Bolzano-Weierstrass we can �nd
its converging subsequence A = {xi1 , xi2 , . . . }. Let g be the limit of this subsequence. One of the sets
A ∩ (−∞, g], A ∩ [g,∞) is in�nite. In the �rst case we can �nd a non-decreasing subsequence of A and
in the second case we can �nd a non-increasing subsequence of A.

(b) This is the Erdös-Szekeres theorem, see [ES]. The presented proof can be found in [AZ]. Assume,
by way of contradiction, that there are no non-decreasing sequence of length n. De�ne the function
f : {1, 2, . . . , (n− 1)(m− 1) + 1} → {1, 2, . . . , n− 1} in the following way,

f(i) = length of longest increasing subsequence that ends with xi.

The function f has domain o size (n − 1)(m − 1) + 1 and the range of size n − 1. Thus, there exist
i1 < i2 < · · · < im and a number k ∈ {1, . . . , n− 1} such that

f(i1) = f(i2) = · · · = f(im) = k.

Note that xij > xij+1
since otherwise f(ij+1) = k + 1 (add the point xij+1

to the longest sequence that
ends with xij). Thus, the sequence

xi1 > xi2 > · · · > xim

is a decreasing sequence of length m.

1.7 Sauer-Shelach lemma

De�nition 1. We say that a family F of subsets of a given set X shatters a set S ⊆ X if for every
T ⊆ S there exists F ∈ F such that S ∩ F = T . We also say that F has VC-dimension k if k is the
largest cardinality of a subset of X that can be shattered by F .
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Theorem 10 (Sauer-Shelach lemma). Suppose a family F of subsets of X with |X| = n satis�es

|F| >
(
n

0

)
+

(
n

1

)
+ . . .+

(
n

k − 1

)
.

Then the VC-dimension of F is at least k, that is, there exists a set S ⊆ [n] of cardinality k such that
F shatters S.

We shall deduce the above theorem from a more general fact.

Theorem 11 (Pajor, [P]). Suppose F is a �nite family of subsets of a given set X. Then F shatters at
least |F| sets.

Proof of Sauer-Shelach lemma. From the assumption and form the above theorem F shatters more that(
n
0

)
+
(
n
1

)
+ . . .+

(
n
k−1

)
, which is the number of sets of cardinality at most k− 1. Thus F has to shatter

a set of cardinality at least k.

Proof of Pajor's theorem. Induction on |F|. If |F| = 1 then the assertion holds since F shatters an
empty set. Suppose |F| ≥ 2. Let x ∈ X be an element that belongs to some but not all the members of
F . This gives a split F = F0∪F1, where F0 consists of members of F not containing x, and F1 consists
of members of F containing x. Note that |F0| < |F| and |F1| < |F|. From induction hypothesis F0

shatters at least |F0| sets and F1 shatters at least |F1| sets. Clearly |F| = |F0|+ |F1|, but the problem
is that some of the sets can be shattered by both F0 and F1.

We observe that none of the sets shattered by F0 and none of the sets shattered by F1 contains x.
Indeed a set containing x cannot be shattered by F0 since none of the members of F0 contains x. But
also a set S containing x cannot be shattered by F1, since T = ∅ ⊂ S, but all the subsets of the form
S ∩ F1, where F1 ∈ F1 contain x.

We now claim that if S is shattered by both F0 and F1, then x /∈ S and both S and S ∪ {x} are
shattered by F . From the above observation we have the �rst part of the claim. Now, of course S is
shattered by F as it is shattered by F0. We shall show that S ∪ {x} is shattered by F . Subsets of
S ∪ {x} have the form T or T ∪ {x}, where T ⊆ S. There is a set F0 ∈ F0 ⊆ F such that T = S ∩ F0

(since F0 shatters S). Also, there is a set F1 ∈ F1 ⊆ F such that T = S ∩ F1 (F1 shatters S) and since
x ∈ F1, we get T ∪ {x} = (S ∪ {x}) ∩ F1.

Now, the sets S (do not containing x) shattered by F0 or by F1 are of three types. There are
sets shattered only by F0 (call this collection S0), sets shattered only by F1 (call this collection S1)
and sets shattered by both F0 and F1 (call this collection S01). These families are disjoint. We have
|S0 ∪ S01| ≥ |F0| and |S1 ∪ S01| ≥ |F1|. The number of sets S shattered by F0 or by F1 is thus
|S0| + |S1| + |S01| = |S0 ∪ S01| + |S1 ∪ S01| − |S01| ≥ |F0| + |F1| − |S01|. Above we proved that the
number of sets of the form S ∪ {x} shattered by F is at least |S01|. Altogether, we gave at least
|F0|+ |F1| − |S01|+ |S01| = |F0|+ |F1| shattered by F .

1.8 Ramsey theorem for graphs

Theorem 12. Let r, b ≥ 1. There exists a number R(r, b) depending only on r and b with the following
property: for every complete graph G with R(r, b) vertices whose edges are colored red or blue, there
exists either a complete subgraph on r vertices which is entirely red, or a complete subgraph on b vertices
which is entirely blue. We will assume that R(r, b) is the smallest number having this property.

Moreover, we have
R(r, b) ≤ R(r − 1, b) +R(r, b− 1), r, b ≥ 1

and R(r, b) ≤
(
r+b−2
r−1

)
.
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Proof. This is the so-called Ramsey's theorem. We prove the inequality R(r, b) ≤ R(r−1, b)+R(r, b−1),
where we assume that R(r− 1, b) and R(r, b− 1) exist and are �nite. The proof then goes by induction
on r + b (in the case r + b = 2, r = b = 1 we trivially have R(r, b) = 1). Take a complete graph
V with R(r − 1, b) + R(r, b − 1) elements and color its edges red of blue. We are to show that there
exists a blue subgraph of b elements or a red subgraph of r element. Take any vertex v ∈ V . Since
deg(v) = R(r − 1, b) + R(r, b − 1) − 1, there are at least R(r − 1, b) red edges incident to v or at least
R(r, b − 1) blue edges incident to v. Without loss of generality we can assume the �rst possibility.
Consider a subraph G of R(r−1, b) vertices connected to v with red edges. We now use the de�nition of
R(r−1, b). If in this graph there exists a complete blue subgraph of b vertices, then triviali our assertion
follows. We can therefore assume that there are r − 1 vertices v1, . . . , vr−1 that form a red subgraph.
The graph induced by v1, . . . , vr−1, v is red and has r vertices.

The second part follows trivially from the inequality we just proved and from the fact that R(1, k) =
R(k, 1) = 1.

Remark. The above theorem is a cornerstone of the so-called Ramsey theory. The numbers R(r, b) are
called Ramsey numbers. The Ramsey numbers R(k, k) are known only for k ≤ 4. See [R] for more
information and open problems on Ramsey numbers.

1.9 Ramsey theorem for sets

Theorem 13. Let k ≤ s be positive integers. There exists a number Rr(k; s) such that whenever
n ≥ Rr(k; s) then for any r-coloring (coloring with r colors) of k element subsets of a set X of cardinality
n (there are

(
n
k

)
such subsets and each of them gets one of r colors) there exists an s-subset (subset

with s elements) that is k-monochromatic (that is, all of its k element subsets are colored with the same
color). We assume that Rr(k; s) is the smallest number having the above property. We shall split the
proof into two parts.

Remark. Note that R2(2; s) = R(s, s) with notation from the previous section.

Remark. Clearly Rr(k; s) ≥ s ≥ k, since in a set with less than k elements there are no s ≥ k element
subsets.

Step 1. We shall reduce the theorem to the case r = 2. To do this we shall prove the inequality

Rr+1(k; s) ≤ Rr(k;R2(k; s)).

Let us take a set X having at least Rr(k;R2(k; s)) elements and let us color its k-subsets using r + 1
colors 0, 1, 2, . . . , r. Our goal is to show that there is an s-subset of X being k-monochromatic. We
now consider a new coloring where we treat 0 and 1 as one color. Since |X| ≥ Rr(k;R2(k; s)) from the
de�nition of Rr(k;R2(k; s)) there exists an R2(k; s)-subset Y of X that is k-monochromatic in the new
coloring. The k-subsets of Y are either monochromatic is the old coloring (if their color in the new
coloring is one of the colors 2, 3, . . . , r) or they may have two di�erent colors in the old coloring (if their
color in the new coloring is 0 = 1). In the �rst case we are done as R2(k; s) ≥ s and so we can choose
our desired set to be any s-element subset of Y . In the second case the set Y is an R2(k; s)-set having
k-subsets colored using two colors 0, 1. By the de�nition of R2(k; s) the set Y contains an s-subset that
is k-monochromatic, and we are done.

Step 2. To deal with the case r = 2, for k ≤ r, b we de�ne Ramsey number R(k; r, b) to be the smallest
number such that if n ≥ R(k; r, b) then every coloring of k-subsets of a set X with |X| = n using two
colors (red and blue), there either exists a k-red r-subset of X, or a k-blue b-subset of X. Note that
R(k; s, s) = R2(k; s). We shall show that the numbers R(k; r, b) are �nite.

6



Remark. We again clearly have R(k; r, b) ≥ min(r, b) ≥ k.

The existence of R(k; r, b) is proved by induction on k inside which there is an induction on r + b,
based on the inequality

R(k; r, b) ≤ R(k − 1;R(k, r − 1, b), R(k; r, b− 1)) + 1, r, b ≥ k + 1, k ≥ 2.

Note that the number on the right hand side is well de�ned as from the above remark we have
R(k, r − 1, b), R(k; r, b − 1) ≥ k > k − 1. This inequality cannot be used either when k = 1, in
which case R(1; r, s) = r + s − 1 is clearly �nite, or if one of the numbers r, b equals k, in which case
R(k; r, b) is also �nite as R(k; k, l) = R(k; l, k) = l for l ≥ k.

We now prove the above inequality. LetX be a set with |X| = R(k−1;R(k, r−1, b), R(k; r, b−1))+1.
Suppose k-subsets of X are colored red or blue. Our goal is to either �nd a k-red r-subset of X or a
k-blue b-subset of X. Let X ′ = X \ {x}. Clearly |X ′| = R(k− 1;R(k, r− 1, b), R(k; r, b− 1)). Note that
our coloring χ induces a coloring χ′ of (k − 1)-subsets of X ′ by χ′(A) = χ(A ∪ {x}). Then there either
exists a (k− 1)-red R(k; r− 1, b)-subset of X ′ or a (k− 1)-blue R(k; r, b− 1)-subset of X ′. Without loss
of generality we can assume that the �rst possibility holds.

Let Y be (k−1)-red R(k; r−1, b)-subset of X ′. We are now going to use the de�nition of R(k; r−1, b).
If this subset contains a k-blue (in coloring χ) b-subset then we are done. Otherwise Y contains a k-red
(in coloring χ) (r − 1)-subset Z0. De�ne Z = Z0 ∪ {x}. We will show that this set is an k-red r-subset
(in coloring χ), which will �nish the proof.

Let A be a k-subset of Z.

Case 1. If x ∈ A then A′ = A \ {x} is a (k − 1)-subset of Z0 ⊆ Y and since Y was (k − 1)-red (in χ′),
the set A′ is red in χ′, which means that χ(A) = χ′(A′) is red.

Case 2. If x /∈ A, then A ⊆ Z0, |A| = k, and since Z0 is k-red, the set A is red.

1.10 Extremal graph theory

Theorem 14 (Mantel's theorem). If a graph G on n vertices contains more than n2/4 edges, then G
contains a triangle.

Proof. Suppose G = (V,E) has no triangle. Then for {x, y} ∈ E we have d(x) + d(y) ≤ n, where d(x)
is the degree of x. Thus, we have

n|E| ≥
∑
{x,y}∈E

(d(x) + d(y)) =
∑
x∈V

d(x)2 ≥ 1

n

(∑
x∈V

d(x)

)2

=
4|E|2

n
.

Thus |E| ≤ n2

4
.

Theorem 15 (Turan's theorem). If a graph G = (V,E) on n vertices has no (k + 1)-clique then
|E| ≤

(
1− 1

k

)
n2

2
.

Proof. Induction on n. For n = 1 the assertion is trivial. Without loss of generality we can assume that
G has a k-clique A (otherwise just add edges). Consider B = V \ A. The number of edges within A is
|EA| =

(
k
2

)
. The number of edges within B satis�es |EB| ≤ 1

2
(1 − 1

k
)(n − k)2 by induction hypothesis.

Now, each vertex of B has at most k − 1 neighbors in A since otherwise we would have a (k + 1)-clique
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in G. Thus the number of edges between A and B satis�es |EA,B| ≤ (n−k)(k−1). Putting these things

together and using the identity (1− 1
k
)n

2

2
=
(
k
2

)
(n
k
)2 yields

|E| = |EA|+ |EB|+ |EA,B| ≤
(
k

2

)
+

1

2

(
1− 1

k

)
(n− k)2 + (n− k)(k − 1)

=

(
k

2

)
+

(
k

2

)(
n− k
k

)2

+ (n− k)(k − 1) =

(
k

2

)(
1 +

n− k
k

)2

=

(
k

2

)(n
k

)2

=

(
1− 1

k

)
n2

2
.

2 Geometric combinatorics

2.1 Equiangular lines

In this section we will prove an upper bound on the number of pairwise equiangular lines in Rn.

Theorem 16. Suppose v1, . . . , vn are unit vectors in Rd such that there exists θ ∈ (0, π/2] for which
| 〈vi, vj〉 | = cos θ for all i 6= j. Then n ≤

(
d+1

2

)
.

Before we give a prove of this theorem, we shall show the following lemma of independent interest.

Lemma 1 (Sylvester identity). Suppose X is an m× n matrix and Y is an n×m matrix. Then

det(Im +XY ) = det(In + Y X).

Here In stands for the n× n identity matrix.

Proof. Let us �rst observe that we have the identity(
In −Y
X Im

)
·
(
In Y
0 Im

)
=

(
In 0
X XY + Im

)
.

Thus

det

((
In −Y
X Im

)
·
(
In Y
0 Im

))
= det

(
In 0
X XY + Im

)
= det(XY + Im)

Since det(AB) = det(BA), the left hand side is the same as

det

((
In Y
0 Im

)
·
(
In −Y
X Im

))
= det

(
In + Y X 0

X Im

)
= det(In + Y X).

We are now ready to give a proof of Theorem 16.

Proof of Theorem 16. Let us consider d×dmatrices viv
T
i . These matrices belong to a space of symmetric

d× d matrices which is a space of dimension
(
d
2

)
+ d =

(
d+1

2

)
. It is therefore enough to show that these

matrices are linearly independent.
Let us therefore assume that

∑n
i=1 λiviv

T
i = 0. Thus we get

0 = vTk

(
n∑
i=1

λiviv
T
i

)
vk =

n∑
i=1

λiv
T
k viv

T
i vk =

n∑
i=1

λi 〈vi, vk〉2 = λk +
∑
i 6=k

λi cos2 θ.
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Let In denote the n× n identity matrix and let Jn denote the n× n matrix with all entries equal to 1.
The above equation means that the vector λ = (λ1, . . . , λn) satis�es ((1 − cos2 θ)In + Jn cos2 θ)λ = 0.
To deduce that λ = 0 we only need to show that In sin2 θ + Jn cos2 θ is non-singular. Let 1 denote the
vector in Rn with all entries equal to 1. Then Jn = 11T . We now use the Sylvester identity to get that

det(In sin2 θ + Jn cos2 θ) = sin2n(θ) det

(
In +

cos2 θ

sin2 θ
11T

)
= sin2n(θ) det

(
I1 +

cos2 θ

sin2 θ
1T1

)
= sin2n(θ) + n sin2n−2(θ) cos2(θ) 6= 0.

2.2 Two distance problem

Suppose v1, . . . , vm ∈ Rn are such that |vi−vj| = 1 for i 6= j. It is not hard to show that then m ≤ n+1
and the equality is achieved by a standard simplex.

It is much harder to upper bound the cardinality of a set having only two possible distances between
its points. To be more precise, A ⊂ Rn is called a two distance set if there exist two numbers a, b > 0
such that for any distinct u, v ∈ A we have |u− v| ∈ {a, b}.

Theorem 17. Letm(n) be the biggest possible cardinality of a two-distance set in Rn. Then 1
2
n(n+1) ≤

m(n) ≤ 1
2
(n2 + 5n+ 4).

Proof. The lower bound is easy and is left as an exercise. We shall prove the upper bound. Let
A = {v1, . . . , vm} be a two-distance set with distances a, b > 0. De�ne

fi(x) = (|x− vi|2 − a2)(|x− vi|2 − b2).

The functions f1, . . . , fm are multivariate polynomials in x. We �rst claim that these polynomials are
linearly independent over R. To see this suppose that

α1f1(x) + α2f2(x) + . . .+ αmfm(x) = 0, ∀x ∈ Rn.

Taking x = vj one gets fi(vj) = 0 for i 6= j and fj(vj) = a2b2 6= 0. Thus the above equation reduces to
αja

2b2 = 0, which gives αj = 0.
Since we proved that fi are linearly independent, it is enough to show that they belong to a linear

space of dimension at most 1
2
(n2 + 5n+ 4). Note that

fi(x) = |x− vi|4 − (a2 + b2)|x− vi|2 + a2b2.

We have

|x− vi|4 = (|x|2 − 2 〈x, vi〉+ |vi|2)2 = |x|4 + 4 〈x, vi〉2 + |vi|4 − 4|x|2 〈x, vi〉+ 2|x|2|vi|2 − 4 〈x, vi〉 |vi|2.

This belongs to a space spanned by

1, |x|4, |x|2xi, xixj, xi i, j = 1, . . . , n.

The function −(a2 + b2)|x− vi|2 + a2b2 belongs to the space spanned by

xixj, xi, 1 i, j = 1, . . . , n.

Thus every fi is in the span of functions

1, |x|4, |x|2xi, xixj, xi, i, j = 1, . . . , n.

This is a collection of 1 + 1 + n+
((
n
2

)
+ n
)

+ n = 2 + 3n+ 1
2
n(n− 1) = 1

2
(n2 + 5n+ 4) functions.
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2.3 Borsuk's conjecture

The celebrated Borsuk's conjecture was that every set X in Rd of �nite diameter can be partitioned into
d + 1 subsets of smaller diameter. One can check that this is indeed true for an Euclidean ball and for
the standard simplex. A partition with this property will be called a diameter reducing partition. Kahn
and Kalai disproved Borsuks's conjecture. In this section we shall present their construction.

Theorem 18 (Kahn-Kalai). For every prime number p there exists a set X in Rd2 , where d = 4p, with
no diameter reducing partition into fewer than 1.1d parts.

Remark. We have 1.1d > d2 + 1 for d ≥ 96. Thus, we need p ≥ 96
4

= 24 to get a counterexample
to Borsuk's conjecture from the above theorem. Therefore one should choose p = 29, in which case
d = 116. Thus the counterexample is constructed in R13456.

We shall prove yet another lemma concerning extremal combinatorics of set systems. This lemma
will be crucial in the proof of Theorem 18.

Lemma 2. Let p be a prime number and let F be a family of (2p− 1)-element subsets of an n-element
set. Suppose that |A ∩B| 6= p− 1 for A 6= B, A,B ∈ F . Then |F| ≤

(
n
0

)
+
(
n
1

)
+ . . .+

(
n
p−1

)
.

Corollary 1. Let p be a prime number and let F be a family of (2p− 1)-element subsets of an n = 4p
element set. Suppose that |A ∩B| 6= p− 1 for A 6= B, A,B ∈ F . Then |F| ≤ 1

1.1n

(
n

2p−1

)
.

Remark. The number of (2p − 1)-element subsets of an n-element set is
(

n
2p−1

)
. For each two distinct

(2p− 1)-element subsets of an n-element set one has |A ∩ B| ∈ {0, 1, 2, . . . , 2p− 2}. Note that p− 1 is
the middle point of this set of numbers. The corollary says that for n = 4p forbidding this middle size
intersection forces the family to have much fewer than

(
n

2p−1

)
elements.

Proof of Corollary 1. If n ≥ 4k, k ≥ 1 then(
n

k − 1

)
=

n!

(n− k + 1)!(k − 1)!
=

k

n− k + 1
· n!

(n− k)!k!
=

k

n− k + 1

(
n

k

)
≤ k

4k − k + 1

(
n

k

)
≤ 1

3

(
n

k

)
.

Thus for k = 0, 1, . . . , p− 1 we have
(
n
k

)
≤ 1

3p−k

(
n
p

)
. Applying Lemma 2 leads therefore to

|F| ≤
(

1

3p
+

1

3p−1
+ . . .+

1

3

)(
n

p

)
<

1

3
· 1

1− 1
3

(
n

p

)
=

1

2

(
n

p

)
.

We get (
n

2p−1

)
|F|

≥ 2

(
n

2p−1

)(
n
p

) = 2 · p!

(2p− 1)!
· (n− p)!

(n− 2p+ 1)!
= 2 · p!

(2p− 1)!
· (3p)!

(2p+ 1)!

= 2 · 3p(3p− 1) . . . (2p+ 2)

(2p− 1)(2p− 2) . . . (p+ 1)
= 2 · 3p

2p− 1
· 3p− 1

2p− 2
· . . . · 2p+ 2

p+ 1
.

Since 3p−k
2p−1−k ≥

3
2
for k = 0, 1, . . . , p− 2, we get(

n
2p−1

)
|F|

≥ 2 ·
(

3

2

)p−1

=
4

3
·
(

3

2

)p
=

4

3
·
(

3

2

)n/4
>

(
3

2

)n/4
=

(
4

√
3

2

)n

> 1.1n.
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Proof of Lemma 2. We can assume that the underlying set in {1, . . . , n}. We shall work over the �eld
Zp. For A ∈ F let 1A ∈ {0, 1}n be its incidence vector, that is the vector whose ith coordinate is 1 if
and only if i ∈ A. Consider fA : {0, 1}n → Zp given by

fA(x) =

p−2∏
k=0

((∑
i∈A

xi

)
− k

)
,

where the values are taken modulo p. Let V = {f : {0, 1}n → Zp} be the space of all functions on {0, 1}n
having values in Zp. We treat V as a vector space over Zp (for arbitrary X the space {f : X → Zp} can
be treated as a vector space over Zp). Let VF = span{fA, A ∈ F}. It is enough to prove the following
two claims.

Claim 1. The vectors fA for A ∈ F are linearly independent. Thus dim(VF) = |F|.

Claim 2. We have dim(VF) ≤
(
n
0

)
+
(
n
1

)
+ . . .+

(
n
p−1

)
.

Proof of Claim 1. Note that

fA(1A) =

p−2∏
k=0

(|A| − k) =

p−2∏
k=0

(2p− 1− k) =

p−2∏
k=0

(2p− 1− k) = (−1)p−1

p−2∏
k=0

(k + 1) = (−1)p−1(p− 1)! 6= 0,

where the last but one equality follows from the fact that we work in Zp. If now A 6= B then fA(1B) =∏p−2
k=0(|A∩B| − k) = 0 as |A∩B| mod p ∈ {0, 1, 2, . . . , p− 2} since |A∩B| 6= p− 1 by our assumption.

If we now evaluate the equality
∑

B∈F λBfB = 0 on 1A we shall get λA(p − 1)! = 0 and thus λA = 0.
This proves the desired independence of the elements fA.

Proof of Claim 2. The function fA is clearly a linear combination of monomials xj11 . . . x
jn
n with j1 +

. . . jn ≤ p− 1 (as it is a product of p− 1 linear function). But since for ji 6= 0 and xi ∈ {0, 1} we have
xjii = xi we actually see that fA is a linear combination of monomials xj11 . . . x

jn
n with j1, . . . , jn ∈ {0, 1}

and j1 + . . .+ jn ≤ p− 1. There are exactly
(
n
0

)
+
(
n
1

)
+ . . .+

(
n
p−1

)
such monomials. Let V ′ be the space

spanned by these monomials. We have VF ⊆ V ′ and thus dim(VF) ≤ dim(V ′) ≤
(
n
0

)
+
(
n
1

)
+. . .+

(
n
p−1

)
.

The proof of Lemma 2 is completed.

We are now ready to prove Theorem 18.

Proof of Theorem 18. Let p be a prime number, d = 4p and let A be the family of all (2p− 1)-element
subsets of {1, . . . , d}. For A ∈ A w de�ne uA ∈ Rd via uA = 21A−1, where 1A is the usual incidence vec-
tor of A and 1 = 1{1,...,d} is the vector with all entries equal 1. We will show that X = {uA⊗uA : A ∈ A}
is the desired set in Rd2 . Recall that for u ∈ Rd1 and v ∈ Rd2 , u ⊗ v is the d1 × d2 matrix with entries
(uivj)i≤d1,j≤d2 . Of course every d1 × d2 matrix can be treated, in a natural way, as an element of Rd1d2 .

Fact. For any x1, y1 ∈ Rd1 and x2, y2 ∈ Rd2 we have x1⊗x2 ∈ Rd1d2 , y1⊗y2 ∈ Rd1d2 and 〈x1 ⊗ x2, y1 ⊗ y2〉 =
〈x1, y1〉 〈x2, y2〉, where the scalar product 〈·, ·〉 is the standard scalar product in Rd1d2 .

Proof of the Fact. For x ∈ Rd let x(i) be the ith coordinate of x. We have

〈x1 ⊗ x2, y1 ⊗ y2〉 =
∑

i≤d1,j≤d2

x
(i)
1 x

(j)
2 y

(i)
1 y

(j)
2 =

(∑
i≤d1

x
(i)
1 y

(i)
1

)(∑
j≤d1

x
(j)
2 y

(j)
2

)
= 〈x1, y1〉 〈x2, y2〉 .
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We continue the proof of Theorem 18. Note that

〈uA, uB〉 = 〈21A − 1, 21B − 1〉 = 4|A ∩B| − 2|A| − 2|B|+ d

= 4|A ∩B| − 4(2p− 1) + 4p = 4|A ∩B| − 4p+ 4 = 4(|A ∩B| − p+ 1).

In particular, 〈uA, uA〉 = 4(2p−1−p+2) = 4p = d. Moreover, 〈uA, uB〉 = 0 if and only of |A∩B| = p−1.
Let qA = uA ⊗ uA. Then by the Fact

|qA − qB|2 = 〈qA, qA〉+ 〈qB, qB〉 − 2 〈qA, qB〉 = 〈uA, uA〉2 + 〈uB, uB〉2 − 2 〈uA, uB〉2 = 2d2 − 2 〈uA, uB〉2 .

Since 〈uA, uB〉2 ≥ 0 with equality if and only if |A ∩ B| = p − 1. Thus, the diameter of X is 2d2 and
any subset X ′ of X has diameter 2d2 as long as it contains two points qA, qB such that |A∩B| = p− 1.

Suppose now we partition X into fewer than 1.1d parts. Then one of the parts X ′ of X is of size
greater than 1

1.1d
|A| = 1

1.1d

(
d

2p−1

)
. Then by Corollary 1 X ′ is too big to satisfy |A∩B| 6= p− 1 for all its

distinct members A,B. So X ′ has two elements A,B satisfying |A ∩ B| = p− 1. Thus the diameter of
X ′ equals the diameter of X. As a consequence our partition is not diameter reducing.

3 The polynomial method

3.1 Combinatorial Nullstellensatz

Theorem 19 (N. Alon). Let F be an arbitrary �eld and let P (x1, . . . , xn) be a polynomial in F[x1, . . . , xn].
Suppose that the degree of P is

∑n
i=1 ki, where each ki is a non-negative integer and suppose that the

coe�cient of xk11 · . . . · xknn is non-zero. Then for any subsets A1, . . . , An of F satisfying |Ai| ≥ ki + 1 for
all i = 1, . . . , n, there exist a1 ∈ A1, . . . , an ∈ An such that P (a1, . . . , an) 6= 0.

Proof. We present the proof of Michaªek, see [M]. We proceed by induction on deg(P ). If deg(P ) = 0
then our assertion is trivial (P is a non-zero constant). Suppose that deg(P ) > 1 and P satis�es the
assumptions of the theorem but the assertion is false, that is P (x) = 0 for every x ∈ A1 × · · · × An.
Without loss of generality we assume that k1 > 0. Fix a ∈ A1. There exist polynomials Q ∈ F[x1, . . . , xn]
and R ∈ F[x2, . . . , xn] such that

P = (x1 − a)Q+R. (1)

Note that deg(Q) = deg(P )−1 and that Q has a non-vanishing monomial of the form xk1−1
1 xk22 · · · · ·xknn .

Take any x ∈ {a} × A2 × · · · × An. Since P (x) = 0 we obtain R(x) = 0. However, R does not contain
x1, thus R(x) = 0 for all x ∈ (A1\{a}) × A2 × · · · × An. Take such an x and substitute it to (1).
Since x1 − a is non-zero and P (x) = R(x) = 0 we obtain Q(x) = 0. So, deg(Q) = deg(P ) − 1, Q
contains a monomial xk1−1

1 xk22 · · · · · xknn and Q vanishes on the set (A1\{a}) × A2 × · · · × An, where
|A1\{a}| ≥ k1, |A2| ≥ k2 + 1, . . . , |An| ≥ kn + 1. This contradicts the inductive assumption.

Theorem 20 (N. Alon, Z. Füredi, [AF, A]). Suppose that the hyperplanes H1, . . . , Hm ⊂ Rn cover the
set {0, 1}n\{0} and that 0 /∈

⋃m
i=1 Hi. Prove that m ≥ n.

Proof. Suppose that the hyperplane Hi is given by the equation 〈ai, x〉 = bi. We have bi 6= 0 since
Hi does not cover the origin. Assume that our assertion is false and m < n. De�ne the following
polynomial,

P (x) = (−1)n+m+1

(
m∏
j=1

bj

)
n∏
i=1

(xi − 1) +
m∏
i=1

(〈ai, x〉 − bi) .
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The degree of this polynomial is n and the coe�cient of
∏n

i=1 xi is (−1)n+m+1
∏m

j=1 bj 6= 0. Therefore,
from part a) there exists x0 ∈ {0, 1}n such that P (x0) 6= 0. This point is not the origin since clearly
P (0) = 0. Therefore, in x0 the polynomial

∏n
j=1(xi − 1) vanishes and thus

P (x0) =
m∏
i=1

(〈ai, x0〉 − bi) 6= 0.

It means that 〈ai, x0〉 6= bi for all i = 1, . . . ,m and therefore x0 /∈
⋃m
i=1 Hi. This is a contradiction.

3.2 Chevalley-Warning theorem

Theorem 21. Let p be a prime number. Suppose P1, . . . , Pm ∈ Zp[x1, . . . , xn] and assume that n >∑m
i=1 deg(Pi). Assume also that P1, . . . , Pm have a common zero (c1, . . . , cn). Then these polynomials

have another common zero.

Proof. Proof by N. Alon, [A]. Assume that the assertion is not true. De�ne

Q(x1, . . . , xn) =
m∏
i=1

(
1− Pi(x1, . . . , xn)p−1

)
− δ

n∏
j=1

∏
c∈Zp,c 6=cj

(xj − c),

where δ is chosen so that Q(c1, . . . , cn) = 0, that is, δ =
(∏

c∈Zp,c 6=cj(cj − c)
)−1

6= 0 (recall that Pi

vanish in (c1, . . . , cn)). We claim that Q ≡ 0. We already know that Q(c1, . . . , cn) = 0. If (x1, . . . , xn) 6=
(c1, . . . , cn) then from the fact that Pi do not have a common zero other than (c1, . . . , cn) we get that
there exists i such that Pi(x1, . . . , xn) 6= 0 and thus Pi(x1, . . . , xn)p−1 = 1 (Fermat's little theorem �
recall that we work in Zp). Thus the �rst product in the de�nition of Q vanishes. The other product
also vanishes since there exists xj such that xj 6= cj and so for this j we have

∏
c∈Zp,c 6=cj(xj − c) = 0

(since c = xj is allowed in this product as xj 6= cj). We have proved the claim that Q ≡ 0.
Now, observe that the degree of

∏m
i=1 (1− Pi(x1, . . . , xn)p−1) is (p − 1)

∑m
i=1 deg(Pi) < (p − 1)n.

Moreover the degree of δ
∏n

j=1

∏
c∈Zp,c 6=cj(xj− c) is precisely (p−1)n (recall that δ 6= 0) and the highest

degree monomial is δ ·xp−1
1 . . . xp−1

n . Since |Zp| = p, from Theorem 19 we get that Q cannot be identically
zero, contradiction.

We now use the Chevalley-Warning theorem to prove the following combinatorial fact.

Theorem 22. Suppose p is a prime number and G = (V,E) is a (2p − 1)-regular graph. Then there
exists a p-regular subgraph G′ = (V ′, E ′) of G (a graph obtained by deleting certain vertices from V
together with adjacent edges, and certain edges from E).

Proof. To every edge {i, j} ∈ E we associate a variable xij ∈ Zp. Once the numbers xij are chosen, we
can de�ne a subgraph G′ = (V,E ′) by taking {i, j} ∈ E ′ if and only if xij 6= 0. Let deg(i, G′) be the
degree of the vertex i in G′. Note that in Zp we have

deg(i, G′) =
∑

j: {i,j}∈E

xp−1
ij ,

since if xij = 0 then {i, j} /∈ E ′ and the contribution to the above sum is zero, and if xij 6= 0 then
{i, j} ∈ E ′ and by Fermat's little theorem we have xp−1

ij = 1 in Zp, so the contribution to the above sum
is one.

Note that Pi = deg(i, G′) is a polynomial in the variables xij. The system of equations det(i, G′) = 0
has a trivial solution (Pi have a trivial common zero), that is, xij = 0 for all {i, j} ∈ E. We claim that
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it is enough to �nd a non-trivial solution to this system of equations (non-trivial common zero of Pi).
Indeed, suppose in Zp we have deg(i, G′) = 0 for all i ∈ V and that at least one of the variables xij is
non-zero. This means that for all i we have p| deg(i, G′), so in Z we have deg(i, G′) = 0 or deg(i, G′) = p
(note that deg(i, G′) ≤ 2p − 1). If for some i we have deg(i, G′) = 0 then the vertex i is isolated in
G′. In this case we delete it from G′. We are left with a connected graph whose vertices have degree
p. This graph is non-empty, since at least one of the variables xij was non-zero, which corresponds to a
non-isolated vertex in G′.

To �nd a non-trivial common root of Pi it su�ces to use the Chevalley-Warning theorem with
(c1, . . . cn) = (0, . . . , 0). The number of variables xij (call it n) is precisely 1

2
(2p − 1)|G| since every

vertex in G has degree 2p− 1. We have

n =
1

2
(2p− 1)|G| > (p− 1)|G| =

∑
i

deg(Pi),

so the assumptions of the Chevalley-Warning theorem are satis�ed.

3.3 Graham Pollak theorem

We now want to answer the following question: what is the smallest m such that the clique on n vertices
Kn can be decomposed into m edge-disjoint complete bipartite graphs? A graph is complete bipartite
if its set of vertices is A ∪ B with A ∩ B = ∅ and the edges is the set A × B (all possible edges going
from A to B).

Clearly m ≤ n− 1, since we can always decompose Kn = {1, . . . , n} into complete bipartite graphs
(A1, B1), . . . (An−1, Bn−1) where Ai = {i} and Bi = {i+1, . . . , n}. Graham and Pollak showed 1971 that
this is the best possible. We present a beautiful proof of Tverberg from 1982.

Theorem 23. (Graham-Pollak) Suppose the clique Kn is decomposed into m edge-disjoint bipartite
graphs. Then m ≥ n− 1.

Proof. To every vertex i of Kn let us associate a real variable xi. Let us consider the polynomial S(x) =∑
1≤i<j≤n xixj. Suppose we have decomposed Kn into complete bipartite graphs (A1, B1), . . . (Am, Bm).

Let ai(x) =
∑

j∈Ai xj and bi(x) =
∑

j∈Bj xj. Every product xixj corresponds to an edge of Kn. Clearly

S(x) =
m∑
i=1

∑
j∈Ai,k∈Bi

xjxk =
m∑
i=1

(∑
j∈Ai

xj

)∑
j∈Bj

xj

 =
m∑
i=1

ai(x)bi(x).

Thus
n∑
i=1

x2
i =

(
n∑
i=1

xi

)2

− 2S(x) =

(
n∑
i=1

xi

)2

− 2
m∑
i=1

ai(x)bi(x). (2)

Consider the system of m+ 1 linear equations a1(x) = 0, . . . , am(x) = 0, x1 + . . .+xn = 0. Assume that
m ≤ n− 2. Then the number of equations is at most n− 1 and thus (basic linear algebra) this system
has a solution x 6= 0, x ∈ Rn. Plugging this x into (2) gives a contradiction, since the left hand side is
positive whereas the right hand side vanishes.

4 Elements of graph theory

4.1 Eulerian graphs

We say that a graph G is Eulerian if it contains an Eulerian cycle, that is, a cycle v1 → v2 → . . . →
vn → v1 that visits every edge exactly once. We prove the following well-known theorem.
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Theorem 24. A connected graph G is Eulerian if and only of the degree of every vertex is even.

We �rst prove the following simple lemma.

Lemma 3. Suppose that the degree of every vertex in graph G is at least 2. Then G contains a cycle
(with non-repeated edges and vertices).

Proof. We can assume that G has no loops and no multiple edges, since otherwise the result is trivial.
Now, start with any vertex v0 of G and in the �rst step go to one of the neighbors v1 of v0. Then from v1

we go to a vertex v2 6= v0, which is possible since the degree of v1 is at least 2. For i ≥ 2 in the ith step we
go from vi−1 to vi 6= vv−2. Since G has �nitely many vertices, at some point we will choose a vertex that
has been chosen before. In this way we construct a path v0 → v1 → . . .→ vk → vk+1 → . . .→ vn → vk,
where vi are di�erent. Then vk → vk+1 → . . .→ vn → vk is the desired cycle.

Proof of Theorem 24. If G has an Eulerian cycle then clearly every vertex has an even degree (whenever
we enter a vertex we have to leave it).

The proof of the harder implication goes via the induction on the number of edges, with a trivial base
case. Suppose G is a connected graph. Since every vertex has even degree, it follows that every vertex
has degree at least 2 and thus from Lemma 3 the graph G contains a cycle C. If G = C then we are done.
Otherwise remove edges (keep vertices) of C from G. The resulting graph H may have several connected
components H1, . . . , Hn. Each component Hi has at least one vertex in common with C (otherwise G
would not be connected). Moreover, the degree of every vertex in each connected component is still even
(we have only changed the degrees of vertices on C and these degree decreased by 2). From induction
hypothesis each Hi has an Eulerian cycle. The Eulerian cycle in G is constructed as follows. Take any
vertex of v in C. Follow the edges of C until we reach the �rst non-isolated connected component Hi1

and vertex v1. We then follow the Eulerian cycle in Hi1 which returns to v1. We then continue tracing
C until we reach the second connected component Hi2 at a vertex v2. We then follow the Eulerian cycle
in Hi2 . If we continue this procedure we shall �nally reach v and close the cycle.

4.2 Hamiltonian graphs

We say that G is Hamiltonian if G contains a cycle that visits every vertex exactly once. Note that in
such a cycle the edges are also not repeated.

It turns out that not much is known about Hamiltonian graphs. In particular, no simple description
(similar to the one presented for Eulerian graphs) is known. Here we give a simple su�cient condition
for a graph to have a Hamiltonian cycle.

Theorem 25 (Ore, 1960). Suppose a simple graph (no loops, no multiple edges) with n ≥ 3 vertices
satis�es deg(u)+deg(v) ≥ n for every pair of non-adjacent vertices u, v in G. Then G has a Hamiltonian
cycle.

Proof. Suppose, by contradiction, that G has no Hamiltonian cycle. Then by adding edges to G (which
will not violate the assumptions of the lemma), we can assume that G is almost Hamiltonian, that is,
that adding any further vertex will create a Hamiltonian graph.

It follows that there is a path v1 → v2, . . .→ vn visiting all the vertices of G. This path is constructed
from the Hamiltonian cycle v1 → . . . vn → v1 that would occur if we add an arbitrary edge (here the
edge vn → v1) to G. The above path is obtained by removing the edge vn → v1 from the cycle and thus
existed in G before adding vn → v1.

Since G is not Hamiltonian, the vertices v1, vn are non-adjacent and thus deg(v1, vn) ≥ n. We now
claim that there is a pair of vertices vi−1, vi such that in G there is an edge connecting v1 and vi and
an edge connecting vn and vi−1. Indeed suppose this is not true and that there are, precisely k vertices
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vi1 , . . . , vik from the set {v3, . . . , vn−1} adjacent to v1. Then vi1−1, . . . , vik−1 ⊆ {v2, . . . , vn−2} cannot be
neighbors of vn. Thus there are only n− 3− k possible neighbors of vn in {v2, . . . , vn−2}. Together with
vn−1 the vertex vn can have at most n−2+k neighbors. The vertex v1 has k+1 neighbors (note that v2 is
a neighbor of v1 and vn is not). Altogether we have n ≤ deg(v1)+deg(vn) ≤ (n−2+k)+(k+1) = n−1.
This is a contradiction.

One we proved our claim it is now straightforward to construct the desired Hamiltonian cycle. This
is the cycle v1 → v2 → . . . vi−1 → vn → vn−1 → . . .→ vi → v1.

Corollary 2 (Dirac, 1952). Suppose a simple graph (no loops, no multiple edges) with n ≥ 3 vertices
satis�es deg(v) ≥ n/2 for every vertex v in G. Then G has a Hamiltonian cycle.

4.3 Trees

4.4 Planar graphs

Planar graphs are graphs that can be drawn on the plane with no edge intersections. Of course a planar
graph can have many di�erent drawings, see Figure 1. On the other hand there are graphs that are
non-planar. Two most basic examples of such graphs in the clique K5 and the complete bipartite graph
K3,3, see Figure 1.

Figure 1: On the left: K4 and its two di�erent drawings. On the right: K3,3 and K5 that are not planar.

In fact, in some sense every non-planar graph has to contain a copy of either K5 or K3,3. To make
it more precise, we say that two graphs are homeomorphic if they can be obtained from a certain graph
by adding vertices of degree 2 on the edges of this graph, see Figure 2

Figure 2: Two homeomorphic graphs obtained from K4.

Note that a subgraph of a planar graph must also be planar. The following famous theorem gives a
characterization of planarity. We shall not prove this theorem in these notes.

Theorem 26 (Kuratowski, 1930). A graph G is planar if and only if it does not have a subgraph
homeomorphic to K5 or K3,3.

For every drawing of a planar graph we get a set of vertices, edges and faces, see Figure 3.
Note that every drawing of a �nite graph has an ini�nite "outer" face. In fact by using the inverse of
the stereographic projection we can think of a drawing of a planar graph on a surface of a sphere. The
in�nite face corresponds to the face that contains the "north pole" of the sphere. If we rotate the sphere
and project the graph again onto the plane, we shall see that every face can be chosen as the outer face.

We shall now prove the famous Euler's formula.
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f1

f2

f3

f4

Figure 3: A drawing of a planar graph with 4 faces. The face f4 is in�nite.

Theorem 27. Suppose that in a drawing of a planar connected graph G there are v vertices, e edges
and f faces. Then v − e+ f = 2.

Proof sketch. Induction on e. If e = 0 then v = 1 and f = 1 (we only have the outer face), so the formula
holds true. Suppose now that we are give a graph G with e edges. If G has no cycle, then it is a tree and
thus e = v−1 and f = 1, so the formula is valid. Let us therefore assume that G has a cycle. Removing
an edge from this cycle creates a graph G′ with v′ = v vertices, e′ = e − 1 edges and f ′ = f − 1 faces
(this operation joins two faces together). Note also that since the edge was removed from a cycle, the
resulting graph G′ is still connected (if the removed edge E was a part of a path joining two vertices, then
we still create a path by using the rest of the cycle whenever the original path uses E). The assertion
follows from the induction hypothesis, since v − e+ f = v′ − (e′ + 1) + (f ′ + 1) = v′ − e′ + f ′ = 2.

By projecting a convex polytope onto the sphere S2 and then onto the plane using stereographic
projection we get the following corollary.

Corollary 3. Suppose that a convex polytope in R3 has v vertices, e edges and f faces. Then we have
v − e+ f = 2.

Corollary 4. Suppose G is a simple connected planar graph with v ≥ 3 vertices and e edges. Then

(i) e ≤ 3v − 6

(ii) if additionally G has no triangles, then e ≤ 2v − 4.

Proof. (i) If G has no cycles then it is a tree and thus e = v − 1 and so v − 1 ≤ 3v − 6 is equivalent
to v ≥ 3. If G has at least one �nite face, then the boundary of every face (including the outer face)
consists of at least 3 edges (note that for a tree with v = 2, 3 vertices this is not true for the outer
face). Since every edge belongs to the boundary of at most 2 faces, we deduce that 3f ≤ 2e (every
face uses 3 edges and the total number of "uses" is at most 2e). From the Euler's formula we get
3e = 3(v + f − 2) = 3v + 3f − 6 ≤ 3v + 2e− 6. Rearranging gives e ≤ 3v − 6.

(ii) The assertion for trees is equivalent to v−1 ≤ 2v−4 which holds true for v ≥ 3. If G has at least
one cycle, then the boundary of every face (including the outer face) consists of at least 4 edges and
thus 4f ≤ 2e. Thus 4e = 4(v + f − 2) = 4v + 4f − 8 ≤ 4v + 2e− 8. Rearranging yields e ≤ 2v − 4.

Corollary 5. The graphs K5 and K3,3 are non-planar.

Proof. If K5 was planar, from Corollary 4(i) we would get 10 = e ≤ 3v − 6 = 9, contradiction. If K3,3

was planar, from Corollary 4(ii) we would get 9 = e ≤ 2v−4 = 8, contradiction (note that K3,3 contains
no triangle).

Corollary 6. Every simple planar graph G contains a vertex of degree at most 5.

17



Proof. We can assume that G is connected (otherwise, pass to a connected component). We can clearly
assume that the number of vertices is at least 3 (otherwise the assertion is trivial). Suppose that every
vertex has degree at least 6. Then 2e =

∑
v∈G deg(v) ≥ 6v. Thus e ≥ 3v. On the other hand from

Corollary 4(i) we get e ≤ 3v − 6, contradiction.

We conclude this chapter by proving the so-called 5-color theorem. The same result holds true with
5 replaced with 4, but has a very complicated proof.

Theorem 28. Let G be a simple planar graph. Then the vertices of G can be colored using 5 colors in
such a way that no two adjacent vertices receive the same color.

Proof sketch. Induction on the number of vertices. If the number of vertices is at most 5, the assertion
is trivial. To do the induction step note that from Corollary 6 there exists a vertex v of degree at most
5. Remove this vertex together with adjacent edges and color G′ = G \ {v} using induction hypothesis.
If v had less that 5 neighbors then one of the colors is still available for v and we are done. Thus we
can assume that there are 5 neighbors v1, . . . , v5 of v (drawn is a clockwise order around v) in G and
that they all received di�erent colors (say, vi received color i).

v

v4

v3

v2

v1

v5

v′

Figure 4: The red-green path have to intersect the blue-yellow path.

Now, let Gij be the subgraph of G′ induced by the vertices with colors i and j. Let C be the
connected component of G13 containing v1. Note that we can exchange colors in C and still get a valid
coloring of G′. If C does not contain v3 then after applying this operation the color 1 is available for v
and we are done. Otherwise there is a path P13 from v1 to v3 with alternating colors 1 and 3. We repeat
the same reasoning for the pair of colors 2 and 4 and we succeed whenever there is no path P24 from
v2 to v4 with alternating colors 2 and 4. Otherwise we get a contradiction, since the paths P13 and P24

have to intersect in a vertex v′ (the graph is planar, no edge intersections are allowed), which then has
to have a color from the set {1, 3} ∩ {2, 4} = ∅ (see Figure 4).

4.5 Networks

We introduce the following de�nitions an notation.

• A pair (V,E), where V is a �nite set and E ⊆ V × V , is called a directed graph. An element
(x, y) ∈ E will be called a directed edge from x to y.

• We shall say that y is reachable from x if there is a path from x to y following directed edges.
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• A triple (V,E, c) is called a network if (V,E) is a directed graph and c : E → [0,∞) is some
non-negative function on edges. The quantity c(x, y) (we shall write like this instead of c((x, y))
for simplicity) will be called the capacity of the edge (x, y).

• Let (V,E, c) be a network. Take two distinct points s, t ∈ V . For a function f : E → [0,∞)
and x ∈ V we de�ne f+(x) =

∑
y:(x,y)∈E f(x, y) and f−(x) =

∑
y:(y,x)∈E f(y, x). A function

f : E → [0,∞) is called a �ow from s to t if

(i) f(e) ≤ c(e) for every e ∈ E,
(ii) for every x /∈ {s, t} we have f+(x) = f−(x) (Kirchho�'s law),

(iii) we have f+(s)− f−(s) > 0 and f+(t)− f−(t) < 0. The vertex s is called the source and t is
called the sink. Note that there might be some ingoing edges to s and some outgoing edges
from t. The quantity f+(s)− f−(s) will be called the value of f and will be denoted by |f |.

• For a �ow f and subsets A,B ⊆ V we de�ne f(A,B) =
∑

(a,b)∈(A×B)∩E f(a, b).

• A �ow f is called maximum if |f | = maxf ′ |f ′| where the maximum is taking over all �ows. Note
that the maximum is attained due to an easy compactness argument.

• For a network (V,E, c) and a pair of vertices s, t ∈ V a cut is a subset Π ⊆ E such that removing
edges E ′ from E gives a directed graph in which t is not reachable from t. The capacity of the cut
Π is C(Π) =

∑
e∈Π c(e). The cut is called minimum if it has the minimal value of C(Π) among

all cuts.

s t

5 (4) 3 (3)

6 (5)

4 (2)

1 (1)4 (0)

1 (1)

Figure 5: A network with source s, and sink t. Black numbers indicate edge capacities, red numbers
indicate values of a maximum �ow. In blue � minimum cut.

We are ready to prove the �rst easy lemma.

Lemma 4. Let (V,E, c) be a network and let f be a �ow from s to t. Suppose A ⊆ V is such that
s ∈ A and t /∈ A. Then f(A, V \ A)− f(V \ A,A) = |f |.

Proof. Since f+(x) = f−(x) for x 6= s, t, we have

|f | = f+(s)− f−(s) =
∑
x∈A

(f+(x)− f−(x)) =
∑
x∈A

f+(x)−
∑
x∈A

f−(x) = f(A, V )− f(V,A)

= (f(A,A) + f(A, V \ A))− (f(A,A) + f(V \ A,A)) = f(A, V \ A)− f(V \ A,A).

We can now show that the value of any �ow is upper bounded by the capacity of any cut.
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Lemma 5. Let (V,E, c) be a network with source s and sink t. Then for any �ow f and for any cut Π
we have |f | ≤ C(Π).

Proof. Suppose that we are given a �ow f and a cut Π separating s from t. Let A be the set of all the
points reachable from s after deleting from the network all the edges belonging to Π. Then since t /∈ A,
from Lemma 4 we get

|f | = f(A, V \ A)− f(V \ A,A) ≤ f(A, V \ A)

=
∑

(a,b)∈A×(V \A)

f(a, b) ≤
∑

(a,b)∈A×(V \A)

c(a, b) ≤
∑

(a,b)∈Π

c(a, b) = C(Π),

where the last but one inequality follows from the fact that every edge (a, b) from A to V \ A must
belong to the cut (otherwise b would be reachable and thus would be a member of A).

The above lemma shows that maxf |f | ≤ minΠC(Π). The celebrated Max-�ow min-cut theorem of
Ford and Fulkerson shows that this is in fact equality.

Theorem 29 (Ford-Fulkerson, 1962). Let (V,E, c) be a network with source s and sink t. Then
maxf |f | = minΠC(Π).

Proof. We can assume that t is reachable from s. Let f be the maximum �ow (it exists due to
an easy compactness argument). From Lemma 5 it su�ces to show that there exist Π such that
|f | = C(Π). A sequence x0, x1, . . . , xn with x0 = s of vertices is called an augmentable path if for
any pair xi, xi+1, i = 0, . . . , n − 1 we either have (xi, xi+1) ∈ E with f(xi, xi+1) < c(xi, xi+1) (forward
edge) or (xi+1, xi) ∈ E with c(xi, xi+1) > 0 (backward edge).

Claim. Let A be the set of vertices a for which there exists an augmentable path x0, x1, . . . , xn such
that xn = a. Then t /∈ A.

Proof. Suppose t ∈ A. Then there exists an augmentable path x0, x1, . . . , xn with x0 = s and xn = t.
Call this path P . Let

ε = min {min{c(e)− f(e), e - forward edge in P}, min{f(e), e - backward edge in P}} .

Clearly ε > 0 from the de�nition of the augmentable path. If we now modify the �ow f be taking
f(e) + ε instead of f(e) for every forward edge in P and f(e)− ε for every backward edge is P , we shall
get a valid �ow, whose value is |f | + ε (recall that (x0, x1) = (s, x1) is a forward edge). Contradiction
with maximality of f .

Let us now de�ne Π to be the set of all the edges from the set A (de�ned in the above claim) to its
complement V \ A. If e = (a, b) ∈ A × (V \ A) then f(e) = c(e) since otherwise b would be in A. If
e = (b, a) ∈ (V \ A)× A then f(e) = 0 since otherwise b would also be in A. By Lemma 4 we get

|f | = f(A, V \ A)− f(V \ A,A) = f(A, V \ A) =
∑

(a,b)∈A×(V \A)

c(a, b) = C(Π).

The proof is completed.

Remark. If all the capacities are integers, then from the above proof one gets that there exists a maximum
�ow with f(e) ∈ Z for any e ∈ E. Indeed the above argument works if we consider only integer-valued
�ows (note that in this case we have ε ∈ Z).
Remark. The above argument, with obvious adjustments, works also for networks with multiple edges.
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The rest of this subsection is devoted to applications of the Max-�ow min-cut theorem.

Theorem 30 (Hall's theorem). Let G = (V,E) be a bipartite graph with parts A and B with |A| ≤ |B|.
Then G has a set of |A| vertex disjoint edges (a matching of cardinality |A|) if and only if for any
subset A′ ⊆ A the number N(A′) = {b ∈ B : ∃a′ ∈ A′, {a′, b} ∈ E} of the neighbors of A′ satis�es
|N(A′)| ≥ |A′|.

Proof. The condition given in the theorem is clearly necessary for the existence of the matching of
cardinality |A|.

We prove the su�ciency. Let n = |A|. Add vertices s and t to G and all the edges from s to A and
all the edges from B to t. Create a network as follows:

(a) take directed edges from s to A and from B to t with capacities 1,

(b) for edges between A and B that already existed in G take directions from A to B and capacities
n+ 1.

In this network there is a cut with capacity n (the cut separating s from A). We claim that the capacity
of any cut is at least n. Indeed it is enough to consider only cuts that do not contain edges between
A and B (if there is such an edge in the cut the claim is obvious as the capacity of such an edge is n).
Suppose that the edges participating in this cut and going from v to A have endpoints in A forming the
set A′. Let B′ ⊆ B be the set of endpoints in B of the edges from A \A′ to B. From our assumption we
have |B′| ≥ |A \A′| = n− |A′|. We can see that the points from B′ have to be separated from t, which
means that among the edges in the cut there are at least |B′| ≥ n− |A′| edges from B to t. Altogether
we have at least |A′|+ (n− |A′|) = n edges in the cut.

s t

1

1 1

1

5

1

1

1

1

5

5

5

5

5

5

Figure 6: The blue cut is the minimum cut. The alternative purple cut generates the yellow set A′ and
the green set B′) . In red - a set of |A| vertex disjoint edges.

We have proved that the minimum cut has capacity n. Thus from the Max-�ow min-cut theorem
the maximum �ow must have value n. From the second remark after the proof of Max-�ow min-cut
theorem there exists a maximum integer valued �ow. So f(s, a) = 1 for all a ∈ A and f(b, t) ∈ {0, 1}
for all b ∈ B. As a consequence of Kirchho�'s law, the �ow has to send these "units" through vertex
disjoint edges between A and B. This set of edges is clearly a perfect matching.

Theorem 31 (Menger's theorem). Let G be an undirected graph and let s, t be two di�erent vertices
in G. Then the minimum number of edges that one has to remove to separate s from t is equal to the
maximal number of edges disjoint paths connecting s and t.
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Proof. We create a network on G = (V,E) by taking both directed edges (x, y) and (y, x) whenever
{x, y} ∈ E. We give capacities 1 to those edges.

Claim 1. The capacity C of the minimum cut is equal to the minimum number m of edges that one has
to remove to separate s and t.

Proof. For a minimum set of edges E ′ that separate s and t (in the undirected graph) let A be the
connected component of s in G′ = (V,E \E ′) (in the undirected graph). Then for every e ∈ E ′ we must
have e ∈ A× (V \A) (otherwise such an edge is redundant and thus the cut is not minimum). If we now
take the cut in our network consisting of edges E ′ taken with direction outgoing from A, we get a cut
in the network (every directed path in the network from s to t must cross one of these directed edges).
Thus C ≤ m.

On the other hand, if we are given a minimum cut in the network, then removing all the corresponding
undirected edges from G separates s from t (if not, there is a path in G connecting s and t and thus
directed edges in the network following this path give a connection of s and t in the network). Thus
m ≤ C.

Claim 2. The value F of the maximum �ow equals the number P of edge disjoint paths from s to t.

Proof. We clearly have F ≥ P since we can always create a �ow f with value |f | = F by taking the
edges of the P edge disjoint paths from s to t and creating the �ow by putting f(e) = 1 for every such
edge, where e is taken with direction of the path from s to t.

It su�ces to show that F ≤ P . Observe that there exists a maximum �ow with f(e) ∈ {0, 1} (see
the �rst remark after the proof of Max-�ow min-cut theorem). We construct a directed graph G′ on
the vertices of G by taking e to be an edge if and only if the corresponding value of the �ow is 1. The
di�erence between the number of outgoing edges from s and the number of ingoing edges to s is clearly
equal to F . By the Kirchho�'s law, for any vertex x di�erent from s and t the number of edges ingoing
to x equals the number of edges outgoing from x. If there are directed cycles in G′, we remove them
(the above Kirchho�'s law will still be satis�ed and the di�erence between the number of outgoing edges
from s and the number of ingoing edges to s is still equal to F ). Now we construct a paths from s to
t step by step starting from s. Whenever we reach a new vertex di�erent from t, we can always leave
it, as the number of ingoing edges equals the number of outgoing edges. Since our graph has no loops,
we will eventually reach t. Then we remove the edges of the path. We can continue like this creating at
least F paths as there are at least F edges outgoing from s.

The assertions follows by combining Claim 1 and Claim 2, together with Max-�ow min-cut theorem.

Recall that for an undirected graph G = (V,E) a set of edges E ′ ⊆ E is called a matching if no
two elements of E ′ share a common endpoint. A matching is called maximum if no other matching
has bigger cardinality.

A set of vertices V ′ ⊆ V is called a vertex cover if every element of E has at least one endpoint in
V ′. A vertex cover is called minimum if no other vertex cover has smaller cardinality.

Theorem 32 (König, Egerváry, 1931). In a bipartite graph G the cardinality of any maximum matching
is equal to the cardinality of any minimum vertex cover.

Proof. The proof is similar to the proof of Hall's theorem. Let A,B be the two parts of G. Add a source
s and a sink t, connect s to all the vertices in A with directed edges with capacities 1, to all the edges
from A to B give capacities min{|A|, |B|}+1, and �nally connect all the vertices of B to w with directed
edges of capacities 1. There exists a maximum �ow f such that for all e ∈ E we have f(e) ∈ Z (see
the �rst remark after the proof of Max-�ow min-cut theorem). It follows that f(e) ∈ {0, 1} for all E
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(this follows from Kirchho�'s law by observing that f(s, a) ≤ 1 and f(b, t) ≤ 1 for all a ∈ A and b ∈ B;
from the latter we get that for any e ∈ A× B we must also have f(e) ≤ 1). The edges e ∈ A× B such
that f(e) = 1 clearly correspond to a maximum matching. Thus the number of egdes in the maximum
matching is |f |.

We now argue that the cardinality of a minimum vertex cover equals the cardinality of the minimum
cut in our network. The assertion of the theorem will then follow by Max-�ow min-cut theorem. We
observe that cuts that do not use edges from A×B are in one-to-one correspondence with vertex covers.
Indeed for every vertex cover D the corresponding cut is obtained by taking edges (s, a) if a ∈ D and
(b, t) if b ∈ D. The obtained set of edges is a cut since otherwise there would be a path of the form
s → a → b → t, which means that (a, b) has not been covered, contradiction. Similarly, for every cut
the corresponding vertex cover is obtained by taking the endpoints of edges in the cut that belong to
A ∪ B. The set obtained in this way is a vertex cover since otherwise if (a, b) is not covered then none
of the edges (s, a), (b, t) has been removed, which means that s → a → b → t is a path from s to t,
contradiction. Note that in this correspondence the cardinalities of the cuts and vertex covers are the
same (every vertex corresponds to precisely one edge). Now it su�ces to observe the minimum cut does
not use edges from A×B (there is a cut of capacity min{|A|, |B|}) and thus the assertion follows from
the Max-�ow min-cut theorem.

5 The probabilistic method

5.1 Elements of probability theory

We introduce some de�nitions.

1. A pair (Ω, p) is called a discrete probability space if Ω is a �nite set and p : Ω→ [0, 1] is a function
satisfying

∑
ω∈Ω p(ω) = 1. The subsets A ⊆ Ω will be called events. The probability of an event

A is de�ned as P (A) =
∑

ω∈A p(ω).

2. If A1, . . . , An are any events, then P (
⋃n
i=1Ai) ≤

∑n
i=1 P (Ai). This follows immediately from the

de�nition of P. This inequality is called the union bound.

3. A function X : Ω → M , where M is any set, is called a random variable. For a random variable
X and B ⊆M we also write P (X ∈ B) := P (X−1(B)). This is interpreted as the probability that
the random variable X has value in the set B.

4. Random variables X1, . . . , Xn are independent if for all k1, . . . , kn in the range of X1, . . . , Xn

respectively, we have

P (X1 = k1, . . . , Xn = kn) := P

(
n⋂
i=1

X−1
i (ki)

)
=

n∏
i=1

P
(
X−1
i (ki)

)
=

n∏
i=1

P (Xi = ki) .

We observe that if X1, . . . , Xn are independent then for any sets A1, . . . , An we have

P (X1 ∈ A1, . . . Xn ∈ An) = P (X1 ∈ A1) · . . .P (Xn ∈ An) .

Indeed, we have

P (X1 ∈ A1, . . . Xn ∈ An) =
∑

ai∈Ai,i=1,...,n

P (X1 = a1, . . . , Xn = an) =
∑

ai∈Ai,i=1,...,n

n∏
i=1

P (Xi = ai)

=
n∏
i=1

∑
ai∈Ai

P (Xi = ai) =
n∏
i=1

P (Xi ∈ Ai) .
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In also follows that a subset of a set of independent random variables form a set of independent
random variables (take Ai corresponding to random variables not in this set to be equal to Ω).

5. We say that events A1, . . . , An ⊆ Ω are independent if their indicator 1A1 , . . . ,1An are independent
random variables. In other words, if by A0 we denote Ω \ A and by A1 we mean just A, when
independence of A1, . . . , An is equivalent to the following condition: for any ε1, . . . , εn ∈ {0, 1} we
have

P

(
n⋂
i=1

Aεii

)
=

n∏
i=1

P (Aεii ) .

One can show (easy exercise) that this condition is equivalent to the following one: for any sequence
1 ≤ i1 < i2 < . . . < ik ≤ n one has

P (Ai1 ∩ Ai2 ∩ . . . Aik) = P (Ai1)P (Ai2) . . .P (Aik) .

6. Suppose we are give independent random variables X1, . . . , Xn. We split the index set {1, . . . , n}
into sets S1, . . . , Sl. Then we can consider random variables (Xi)i∈S1 , . . ., (Xi)i∈Sl . It turns out
that for any functions f1, . . . , fl (no matter what the range of these functions is!) the random
variables f1((Xi)i∈S1), . . ., fl((Xi)i∈Sl) are independent. This means that independent random
variables can be put in "packages" Sj and each package can be further "processed" by fj and the
resulting random variables will be independent. We will be using this principle frequently. Let us
prove it. We want to show that

P (f1((Xi)i∈S1) = k1, . . . , fl((Xi)i∈Sl) = kl) = P (f1((Xi)i∈S1) = k1) · . . . · P (fl((Xi)i∈Sl) = kl)

In other words, we want to show that

P
(
(Xi)i∈S1 ∈ f−1

1 (k1), . . . , (Xi)i∈Sl ∈ f−1
l (kl)

)
= P

(
(Xi)i∈S1 ∈ f−1

1 (k1)
)
·. . .·P

(
(Xi)i∈S1 ∈ f−1

l (kl)
)
.

Take Ai = f−1
i (ki). Then our goal is to show that

P ((Xi)i∈S1 ∈ A1, . . . , (Xi)i∈Sl ∈ Al) = P ((Xi)i∈S1 ∈ A1) · . . . · P ((Xi)i∈S1 ∈ Al) .

Now, in view of the previous point it is enough to show that (Xi)i∈S1 , . . ., (Xi)i∈Sl are independent.
But this is clear as

P ((Xi)i∈S1 = (ki)i∈S1 , . . . , (Xi)i∈Sl = (ki)i∈Sl) = P (X1 = k1, . . . , Xn = kn) =
n∏
i=1

P (Xi = ki)

= P ((Xi)i∈S1 = (ki)i∈S1) · . . . · P ((Xi)i∈Sl = (ki)i∈Sl) .

7. The expectation of a random variable X : Ω → R is de�ned as E[X] =
∑

ω∈ΩX(ω)p(ω). This
is just the mean value of X. It is extremely important to notice the following obvious fact: if
X, Y : Ω→ R are random variables and a, b ∈ R then

E[aX + bY ] = aE[X] + bE[Y ].

Indeed E[aX + bY ] =
∑

ω(aX(ω) + bY (ω))p(ω) = a
∑

ωX(ω)p(ω) + b
∑

ω Y (ω)p(ω) = aE[X] +
bE[Y ].

8. Suppose X, Y : Ω→ R are independent random variables. Then E[XY ] = E[X]E[Y ]. Indeed,

E[XY ] =
∑

x∈X(Ω),y∈Y (Ω)

xyP (X = x, Y = y) =
∑

x∈X(Ω),y∈Y (Ω)

xyP (X = x)P (Y = y)

=

 ∑
x∈X(Ω)

xP (X = x)

 ∑
y∈Y (Ω)

yP (Y = y)

 = E[X]E[Y ].
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9. Suppose X ≥ 0 is a random variable and f : [0,∞) → [0,∞) be non-decreasing. Then for any
t > 0 we have

P (X ≥ t) ≤ E[f(X)]

f(t)
.

Indeed, we have E[f(X)] ≥ Ef(X)1{X≥t} ≥ f(t)E1{X≥t} = f(t)P (X ≥ t). In particular, by taking
f(t) = t and f(t) = t2 we obtain the following Markov inequalities

P (X ≥ t) ≤ EX
t
, P (X ≥ t) ≤ EX2

t2
.

10. For a random variable X : Ω→ R we de�ne the variance Var(X) = EX2 − (EX)2. Note that

E|X−EX|2 = E[X2−2XEX+(EX)2] = E[X2]−2E[X]E[X]+(E[X])2 = E[X2]−(E[X])2 = Var(X),

so the an alternative equivalent de�nition of the variance is Var(X) = E|X − EX|2. Note that
Var(X) controls how much X deviates from its mean. We also observe that by the second Markov
inequality

P (|X − EX| ≥ t) ≤ Var(X)

t2
, t > 0.

11. If X : Ω→ R then

P (X = 0) ≤ Var(X)

E[X2]
.

To see this observe that by the Cauchy-Schwarz inequality for any two real-valued random variables
X, Y we have (E[XY ])2 ≤ E[X2]E[Y 2] (for the proof just express both sides in terms of sums and
use the usual weighted Cauchy-Schwarz inequality for real numbers). Taking Y = 1{X 6=0} we get
(E[X])2 = (E[X1{X 6=0}])

2 ≤ E[1{X 6=0}]E[X2] = P (X 6= 0)E[X2]. Thus

P (X = 0) = 1− P (X 6= 0) ≤ 1− (E[X])2

E[X2]
=

Var(X)

E[X2]
.

12. For random variables X, Y : Ω→ R we de�ne their covariance by

Cov(X, Y ) = E[XY ]− E[X]E[Y ].

Clearly Cov(X,X) = Var(X). Note that if X, Y are independent then Cov(X, Y ) = 0. If
X1, . . . , Xn : Ω→ R then

Var(X1 + . . .+Xn) = E[(X1 + . . .+Xn)2]− (E[X1 + . . .+Xn])2

=
∑
i,j

(E[XiXj]− E[Xi]E[Xj]) =
∑
i,j

Cov(Xi, Xj).

If X1, . . . , Xn are independent, then only the diagonal terms are non-zero and we get

Var(X1 + . . .+Xn) = Var(X1) + . . .+ Var(Xn).

13. (example of Cherno�'s bound) Suppose ε1, . . . , εn are independent random variables such that
P (εi = 1) = P (εi = −1) = 1/2 for all i = 1, . . . , n. Assume a1, . . . , an are real numbers satisfying∑n

i=1 a
2
i = 1. Then

P

(
n∑
i=1

aiεi ≥ t

)
≤ e−t

2/2, t ≥ 0.
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By using symmetry we also get

P

(∣∣∣∣∣
n∑
i=1

aiεi

∣∣∣∣∣ ≥ t

)
≤ 2e−t

2/2, t ≥ 0.

To prove it we use Markov inequality, namely for any λ > 0 we have

P

(
n∑
i=1

aiεi ≥ t

)
= P

(
eλ

∑n
i=1 aiεi ≥ eλt

)
≤ E[eλ

∑n
i=1 aiεi ]

eλt
=

∏n
i=1 E[eλaiεi ]

eλt
=

∏n
i=1 cosh(λai)

eλt
.

We now use the inequality cosh(x) ≤ ex
2/2 (this is true since coshx =

∑∞
n=0

x2n

(2n)!
≤
∑∞

n=0
x2n

2nn!
=

ex
2/2) to get that

∏n
i=1 cosh(λai) ≤

∏n
i=1 e

1
2
λ2a2i = eλ

2/2. We arrive at

P

(
n∑
i=1

aiεi ≥ t

)
≤ eλ

2/2−λt.

Taking λ = t gives the desired result.

Examples. The idea behind de�ning probability spaces is that they should model certain random
"experiments". It is important to understand that the same random experiment can be modeled is
many di�erent ways.

Example. Suppose we want to model a traditional dice with six sides. For this purpose we can use
any �nite set Ω = {a1, a2, a3, a4, a5, a6}, and de�ne p(ai) = 1/6 for i = 1, 2, 3, 4, 5, 6. Let X : Ω →
{1, 2, 3, 4, 5, 6} be given by X(ai) = i. The random variable X is interpreted as the result of rolling a
dice. Note that P (X = i) = P (X−1(i)) = P ({ai}) = p(ai) = 1/6, as desired. The probability that the
result of rolling a dice is an even number is

P (X is even) = P (X ∈ {2, 4, 6}) = P
(
X−1({2, 4, 6})

)
= P ({a2, a4, a6}) = p(a2) + p(a4) + p(a6) = 1/2.

The expectation of X is EX =
∑6

i=1 ip(ai) = 1
6

∑6
i=1 i = 7

2
.

Example. Now suppose we want to roll two dice, one with six sides and one with four sides, and we
want to do this independently. Here independence means that the probability that the result in the �rst
dice was k ∈ {1, 2, 3, 4, 5, 6} and at the same time the result on the second dice was l ∈ {1, 2, 3, 4} is the
product of the probability that on the �rst dice we get k and the probability that on the second dice we
get l.

To model this experiment it is convenient to use the product space Ω = {a1, a2, a3, a4, a5, a6} ×
{b1, b2, b3, b4} with p(ai, bj) = 1

6
· 1

4
= 1

24
. The random variable X : Ω → R given by X(ai, bj) = i

is interpreted as the result of rolling the �rst dice whereas the random variable Y : Ω → R given
by Y (ai, bj) = j is interpreted as the result of rolling the second dice. Now the random variable
(X, Y ) : Ω → R× R is interpreted as a result of rolling two dice. Instead of writing P ((X, Y ) = (k, l))
we shall write P (X = k, Y = l). Observe that indeed X, Y are independent, since

P (X = k, Y = l) = P
(
(X, Y )−1(k, l)

)
= P (ak, bl) =

1

24
=

1

6
· 1

4

4 · 1

24
· 6 · 1

24
= P

(
X−1(k)

)
· P
(
Y −1(l)

)
= P (X = k) · P (Y = l) .

We can now compute the expectation of the sum of the results on the six-side dice and four-side dice:
E[X + Y ] = E[X] + E[Y ] = 1

6

∑6
i=1 i+ 1

4

∑4
i=1 i = 7

2
+ 5

2
= 6.
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Our next example is the so-called Erdös-Rényi model G(n, p) of a random graph on n vertices.

Example. Suppose we want to model the following random graph. Given a set V of n vertices, for every
pair of vertices {u, v} we want to add this pair to the set of edges with probability p and not add it with
probability 1− p. What is important is that we want to do this independently. What does this mean?
For all

(
n
2

)
"potential" edges e we write f(e) = 1 if e was chosen to be an edge and f(e) = 0 otherwise.

Independence means that for any {0, 1}-valued function g on the set of edges we want to have

P (∀e f(e) = g(e)) =
∏
e

P (f(e) = g(e)) .

For this purpose we introduce a probability space (Ω, p) with Ω = {0, 1}N where N =
(
n
2

)
. The ith

coordinate of Ω corresponds to the ith potential edge. If the ith coordinate is 1 then the interpretation
is that the ith edge is present is our random graph. If the ith coordinate is 0 then the corresponding
edge is not present. For every ω = (ωi)i=1,..., we take p(ω) = p|{i: ωi=1}|(1 − p)|{i: ωi=0}|. Note that
ωi : Ω → {0, 1} (that is, ωi(ω1, . . . , ωN) = ωi) is a random variable indicating whether the ith edge is
present in the graph or not. Note that

P (ωi = 1) = P
(
ω−1
i (1)

)
=

∑
ω: ωi=1

p(ω) =
∑

ω: ωi=1

p|{j: ωj=1}|(1− p)|{j: ωj=0}|

= p
∑

ωj∈{0,1}, j 6=i

p|{j 6=i: ωj=1}|(1− p)|{j 6=i: ωj=0}| = p
N−1∑
k=0

(
N − 1

k

)
pk(1− p)N−1−k

= p(p+ (1− p))N−1 = p.

Clearly we also get P (ωi = 0) = 1− p.
These random variables are independent, that is, for any sequence of signs (si)

N
i=1 we have

P (∀i ωi = si) = p|{i: ωi=1}|(1− p)|{i: ωi=0}| =
∏
i

P (ωi = si) .

5.2 Probabilistic counting

Theorem 33. Let k ≥ 3. The Ramsey number R(k, k) satis�es the inequality R(k, k) > [2k/2]. In other
words, there exists a coloring of edges of the [2k/2]-clique without monochromatic k-clique.

Proof. Let n = [2k/2] and let us color the edges of the clique Kn randomly (red with probability 1/2
and blue with probability 1/2). Let us �x an k-element subset S of vertices of Kn. The probability

that the clique on S is entirely red is 2−(k2), since for each of
(
k
2

)
edges its color has to be red. Similarly

the probability that S is entirely blue is 2−(k2). Thus, the probability of the event AS that the clique on

S is monochromatic is P (AS) = 2 · 2−(k2). The event A that there exists a monochromatic k-clique is⋃
S: |S|=k AS and thus its probability satis�es

P (A) = P

 ⋃
S⊆Kn: |S|=k

AS

 ≤ ∑
S⊆Kn: |S|=k

P (AS) =

(
n

k

)
2 · 2−(k2).

Since
(
n
k

)
= n(n−1)...(n−k+1)

k!
≤ nk

k!
, we get

P (A) ≤ nk

k!
· 2 · 2−(k2) ≤ 2

k2

2

k!
· 21− k(k−1)

2 =
21+ k

2

k!
< 1.

If follows that the complement of A has positive probability and thus there exists a point in the proba-
bility space not belonging to A, which corresponds to a graph with no monochromatic k-clique.
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Theorem 34. A tournament is a competition where every two participants play with each other precisely
once and the is always a winner. Fix a positive integer k. There exists a tournament with the following
property: for every subset of k players there exists a player who won with all these k players.

Proof. Consider a tournament with n players. We think of it as of a clique Kn with directed edges (an
edge goes from u to v if u won with v). We choose directions of edges independently and uniformly
at random (each direction with probability 1/2). For a k-element subset of vertices of Kn (players) let
AS,v be the event that the player v /∈ S did not win with all the players from S. We have P (AS,v) =
1 − 2−k. Thus the even AS that none of the players v /∈ S won with all the players from S satis�es
P (AS) = P

(⋂
v/∈S AS,v

)
=
∏

v/∈S P (AS,v) = (1− 2−k)n−k. Note that the second equality follows from the
fact that the events AS,v for di�erent v depend on pairwise disjoint subsets of edges and thus they are
independent. Let A be the even that there exists S of cardinality k such that none of the players v /∈ S
won with all the players from S. Thus A =

⋃
S: |S|=k AS. We get

P (A) = P

 ⋃
S: |S|=k

AS

 ≤ ∑
S: |S|=k

P (AS) =

(
n

k

)
(1− 2−k)n−k < nk(1− 2−k)n−k.

If k is �xed and n → ∞ then the nk(1 − 2−k)n−k → 0 and thus for big n we get P (A) < 1. Thus the
complement of A has positive probability and so there exists a choice of directions of edges with the
desired property.

5.3 First moment method

In this section we are going to show examples where the following obvious rule is applied: if X : Ω→ R
is a random variable such that EX ≥ a then there exist ω ∈ Ω such that X(ω) ≥ a.

Theorem 35. There exists a tournament on n vertices in which where are at least n!2−(n−1) directed
Hamiltonian paths (paths that follow directed edges and visit all the vertices).

Proof. Consider a random tournament T on v vertices (directions of edges are chosen independently with
probabilities 1/2). Fix a permutation σ = (σ1, . . . , σn) of vertices of T . Let Xσ be a random variable
having value 1 if the sequence σ1 → σ2 → . . .→ σn is a Hamiltonian path and 0 otherwise. Thus E[Xσ]
is equal to the probability that σ1 → σ2 → . . . → σn is a Hamiltonian path and thus E[Xσ] = 2−(n−1)

(we have to choose correct directions of n−1 edges {σi, σi+1}, i = 1, . . . , n−1). Let X =
∑

σXσ, where
the sum runs over all permutations of the set of vertices. Note that the random variable X is precisely
the number of Hamiltonian paths in our random tournament. From linearity of expectation we have
E[X] =

∑
σ E[Xσ] = n!2−(n−1). Thus, there exists at least one point ω of the probability space such that

X(ω) ≥ n!2−(n−1), which gives the desired tournament.

Theorem 36. Suppose v1, . . . , vn are random vectors on Rn with |vi| = 1 for i = 1, . . . , n. Then there
exist ε1, . . . , εn ∈ {−1, 1} such that |ε1v1 + . . .+ εnvn| ≤

√
n.

Proof. Consider independent random signs ε1, . . . , εn (each with probability 1/2). In other words, every
sequence of signs gets probability 2−n. Take X = |ε1v1 + . . .+ εnvn|2. We have

E[X] = E

[
n∑

i,j=1

εiεj 〈vi, vj〉

]
=

n∑
i,j=1

〈vi, vj〉E [εiεj] =
n∑
i

〈vi, vi〉 =
n∑
i=1

|vi|2 = n.

Thus there exists a sequence of signs such that X ≤ n.
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Theorem 37. Let n be a positive integer. Every set {b1, . . . , bn} of non-zero integers contains a sum-free
subsets A with |A| > n

3
, that is, a set such that for all a1, a2, a3 ∈ A we have a1 + a2 6= a3.

Proof. Let p = 3k+ 2 be a prime number satisfying p > 2 maxi |bi|. Take C = {k+ 1, k+ 2, . . . , 2k+ 1}.
Note that C is a sum-free subset of the cyclic group Zp. We choose an integer x uniformly at random
from the set {1, 2, . . . , p − 1}. De�ne di = xbi mod p. Since x runs over all element of {1, . . . , p − 1},
the random variable di runs over all elements of {1, . . . , p − 1} and thus P (di ∈ C) = |C|/(p − 1) =
(k + 1)/(3k + 1) > 1

3
. Let Xi be a random variable having value 1 if di ∈ C and 0 otherwise. Then

X =
∑n

i=1Xi is equal to |{i : di ∈ C}|. We have E[X] =
∑n

i=1 E[Xi] > n/3. It follows that there exists
x such that |{i : di ∈ C}| > n/3. Fix this x. By the assumption assumption that p > 2 maxi |bi| we
know that the numbers di are di�erent. Let A be the set of number bi such that the corresponding di
are in C. Thus |A| > n/3. We claim that A is sum free. Suppose bi1 , bi2 , bi3 ∈ A satisfy bi1 + bi2 = bi3 .
Then bi1x+ bi2x = bi3x and thus di1 + di2 = di3 , which shows that C is not sum-free, contradiction.

In our next example we are going to use the so-called Markov inequality. Suppose X is a nonnegative
random variable. Then for t > 0 we have P (X ≥ t) ≤ E[X]

t
. Indeed, note that E[X] ≥ E[X1X≥t] ≥

tE[1X≥t] = tP (X ≥ t).

The girth g(G) of a graph G is the length of the shortest cycle in G. The chromatic number of G is
denoted by χ(G). The cardinality of the largest independent set of vertice in G is denoted by α(G).

Theorem 38. For any k and l there exists a graph G with g(G) > l and χ(G) > k.

Proof. Let us consider the Erdös-Rényi random graph G(n, p), that is, the probability that a �xed edge
is present is equal p and these events are independent. Take θ < 1/l and take p = nθ−1.The probability
that a (cyclic) sequence of r distinct vertices form a cycle in G is pr. The number of (cyclic) sequences
of vertices of length r is upper bounded by n(n− 1) . . . (n− r + 1) ≤ nr. Let Σ be a (cyclic) sequence
of vertices of G. Let XΣ be 1 if Σ forms a cycle in G and 0 otherwise. Let X be the number of cycles
of length at most r. Then

E[X] =
∑
|Σ|≤r

E[XΣ] =
l∑

r=3

∑
|Σ|=r

E[XΣ] ≤
l∑

r=3

nrpr =
l∑

r=3

nrn(θ−1)r =
l∑

r=3

nrpr =
l∑

r=3

nθr ≤ (l−2)nθl = o(n).

Thus from Markov inequality we get P (X ≥ n/2) ≤ 2
n
E[X] = o(1).

Since every set of vertices with �xed color in a proper coloring of G is an independent set, we get
χ(G)α(G) ≥ n. If S is a set of vertices then the probability of an event AS that there are no edges

between vertices from S is (1− p)(
|S|
2 ). We have

P (α(G) ≥ a) = P

 ⋃
|S|=a

AS

 ≤ ∑
|S|=a

P (AS) =

(
n

a

)
(1− p)(

a
2) ≤ na(1− p)(

a
2) = (n(1− p)

a−1
2 )a.

Let us now take a = d3
p

lnne > 1. From the well known inequality 1 + x ≤ ex we get n(1 − p)a−1
2 ≤

e−
p
2

(a−1) ≤ ne−
3
2

lnne
p
2 = n−

1
2 e

p
2 = n−

1
2 e

1
2
nθ−1

= o(1). Thus also (n(1− p)a−1
2 )a = o(1) as a > 1.

We conclude that for big n with probability close to 1 our graph has at most n/2 cycles of length at
most l and the size of largest independent set smaller than a = d3

p
lnne. Let us pick one realization of

such a graph. It has at most cycles of lengths not exceeding l, so by removing at most n/2 vertices we
can get read of these cycles. The new graph G′ satis�es g(G′) > l and still has at least n/2 vertices and
α(G′) < a. We have χ(G′)α(G′) ≥ n

2
, which leads to

χ(G′) ≥ n

2α(G′)
>

n

2a
=

n

2d3
p

lnne
=

n

2d 3
nθ−1 lnne

>
n

2 + 2 3
nθ−1 lnn

= · nθ

2nθ−1 + 6 lnn
−−−→
n→∞

∞.

Thus, if n is big enough we can also satisfy the desired inequality χ(G′) > k.
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5.4 Second moment method

Here we present examples of combinatorial problems that can be solved using estimates involving second
moment E[X2] of certain random variables, e.g., involving the variance.

Let f(n) be the maximal number k such that there exist numbers x1, . . . , xk ∈ {1, . . . , n} such that
all the sums of the form xi1 + . . . + xil where i1 < . . . < il and 1 ≤ l ≤ k are distinct. Note that
the set 20, 2, 22, . . . , 2blog2 nc has the above property. Indeed, to see this it is enough to show that if
ε1, . . . , εn ∈ {−1, 0, 1} satisfy

∑k
i=0 εi2

i (here k = blog2 nc) then εi = 0 for all i = 0, . . . , k. If k0 is the

index of the last non-zero element in this sum then
∣∣∣∑k

i=0 εi2
i
∣∣∣ ≥ 2k −

∑k−1
i=0 2i = 1 > 0, so the claim

follows.
We just showed that f(n) ≥ 1 + blog2 nc. It is interesting to ask about upped bound on f(n). Let

k = f(n) and consider the numbers x1, . . . , xk ∈ {1, . . . , n} with distinct sums. Each sum cannot exceed
nk (since there are at most k number in the sum and each of the does not exceed n). Since all the 2k

possible sums are di�erent and they occupy the set {0, 1, . . . , nk}, we get 2k ≤ nk + 1 ≤ 2nk. Also,
Thus k ≤ log2(nk + 1). Iterating this and using the obvious bound clearly k ≤ n we obtain for n ≥ 2

k ≤ log2(2nk) = 1 + log2(nk) ≤ 1 + log2(n log2(2nk)) ≤ 1 + log2(nk) ≤ 1 + log2(n log2(2n2))

= 1 + log2 n+ log2(1 + 2 log2 n) ≤ 1 + log2 n+ log2(3 log2 n) = log2 n+ log2 log2 n+ 1 + log2 3.

This shows that f(n) ≤ log2 n + log2 log2 n + 3. By using the second moment method we can get a
slightly better bound

Theorem 39. Let n ≥ 2 and let f(n) be the maximal number k such that there exist numbers
x1, . . . , xk ∈ {1, . . . , n} such that all the sums of the form xi1 + . . . + xil where i1 < . . . < il and
1 ≤ l ≤ k are distinct. Then f(n) ≤ log2 n+ 1

2
log2 log2 n+ 3.

Proof. Let x1, . . . , xk ∈ {1, . . . , n} be such that the sums of xi are distinct. Let ε1, . . . , εn be independent
random variables such that P (εi = 0) = P (εi = 1) = 1/2 for i = 1, . . . , n. De�ne X = ε1x1 + . . .+ εkxk.
We have E[X] = 1

2
(x1 + . . .+ xk) and by independence

Var(X) =
k∑
i=1

Var(εixi) =
k∑
i=1

x2
i Var(εi) =

1

4

k∑
i=1

x2
i ≤

1

4
n2k.

By Markov inequality we get P (|X − EX| ≥ t) ≤ Var(X)
t2
≤ n2k

4t2
. Taking t = n

√
k we get the inequality

P
(
|X − EX| ≥ n

√
k
)
≤ 1

4
and thus P

(
|X − EX| < n

√
k
)
> 3

4
.

On the other hand, since the sums of xi are distinct, each values ofX−EX is achieved with probability
2−k. Moreover, two each two of these values di�er by at least 1, so in the interval [−n

√
k, n
√
k] there

are at most 2n
√
k + 1 such values. Thus, P

(
|X − EX| < n

√
k
)
≤ 2−k(2n

√
k + 1). We arrive at

3
4
≤ 2−k(2n

√
k + 1). Thus, 2k ≤ 4

3
(2n
√
k + 1) ≤ 4n

√
k. Taking the logarithm and then iterating and

using the inequality k ≤ n ≤ n2 we get

k ≤ 2 + log2(n
√
k) = 2 + log2 n+

1

2
log2 k ≤ 2 + log2 n+

1

2
log2 log2(4n

√
k)

≤ 2 + log2 n+
1

2
log2 log2(4n2) ≤ 2 + log2 n+

1

2
log2 log2(n4) = 3 + log2 n+

1

2
log2 log2 n.
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Our next example deals with the Edr�s-Rényi random graph. We say that an event A is monotone
if adding edges to our graph can only help this even to hold. For example, events like being connected,
having Hamiltonian cycles, containing a copy of Kl clique are all monotone.

We say that p0(n) ∈ [0, 1] is a threshold for a monotone event A if for any function p(n) with
p(n)/p0(n) → 0 we have P (G(n, p(n)) ∈ A) → 0 and for any function p(n) with p(n)/p0(n) → ∞ we
have P (G(n, p) ∈ A)→ 1.

Before we prove this theorem, we shall present the proof of the so-called Margulis-Russo lemma.
Suppose Ω = {0, 1}N is equipped with weights

µp1,...,pN (ω1, . . . , ωN) =
∏

i: ωi=1

pi
∏

i: ωi=0

(1− pi).

An event A ⊆ Ω is called monotone if for every ω = (ω1, . . . , ωN) ∈ Ω and ω′ = (ω′1, . . . , ω
′
N) ∈ Ω such

that ωi ≤ ω′i for every i = 1, . . . , N we have that ω ∈ A implies ω′ ∈ A. The probability of A is de�ned
as Pp1,...,pN (A) =

∑
ω∈A µp1,...,pn(ω). The ith in�uence of A is de�ned as

I(i)
p1,...,pN

(A) = Pp1,...,pN ({s ∈ {0, 1}N : (s1, . . . , si−1, 0, si+1, . . . , sN) /∈ A, (s1, . . . , si−1, 1, si+1, . . . , sN) ∈ A}).

This is just the probability that changing the ith bit will in�uence the event A.

Lemma 6 (Margulis-Russo lemma). For every monotone event we have ∂
∂pi

Pp1,...,pn(A) = I
(i)
p1,...,pN (A) ≥ 0.

Proof. We can assume that i = 1. Let B0 = {s ∈ {0, 1}N−1 : (0, s) ∈ A}. Note that {0} × B ⊆ A and
by monotonicity of A we also get {1} × B ⊆ A. Let B = {s ∈ {0, 1}N−1 : (0, s) /∈ A, (1, s) ∈ A}. We
get A = ({0, 1} ×B0) ∪ ({1} ×B). We get

Pp1,...,pn(A) = Pp2,...,pn(B0) + p1Pp2,...,pn(B).

Thus
∂

∂p1

Pp1,...,pn(A) = Pp2,...,pn(B) = Pp1,p2,...,pn({0, 1} ×B) = Ip1,...,pN (A).

Corollary 7. Suppose G(n, p1, . . . , pN) be the generalized Erdös-Rényi graph in which the probability
of the occurrence of the ith edge is pi and and these events are independent. Then probabilities of
monotone event (property) A are non-decreasing functions of pi. In particular, if 0 ≤ p ≤ q ≤ 1 then

P (G(n, p) has property A) ≤ P (G(n, q) has property A) .

Theorem 40. Let us consider the graph G(n, p) and let A be the event that G(n, p) has a cycle. Then
p0(n) = 1

n
is a threshold for this event.

Proof. Suppose �rst that np(n)→ 0. Then we have to show that the probability that G(n, p(n)) has a
cycle tends to 0. For any cyclic permutation of vertices S let XS be a random variable being equal to 1
if S forms a cycle and 0 otherwise. Let p = p(n) (one should remember that p depends on n). We have

P (G(n, p) has a cycle) ≤ E[# cycles is G(n, p)] = E

 n∑
k=3

∑
S: |S|=k

XS

 =
n∑
k=3

∑
S: |S|=k

E[XS]

=
n∑
k=3

∑
S: |S|=k

P (S forms a cycle) =
n∑
k=3

∑
S: |S|=k

pk =
n∑
k=3

(
n

k

)
(k − 1)!

2
pk.
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Now, since
(
n
k

)
≤ nk

k!
, we arrive at

P (G(n, p) has a cycle) ≤
n∑
k=3

(np)k ≤ (np)3 1

1− np
−−−→
n→∞

0.

Now suppose that np(n) → ∞. Then we have to show that the probability that G(n, p(n)) has a
cycle is tends to 1. Let X be the number of edges in G(n, p). It is enough to show that P (X ≥ n)→ 1
as n→∞ since having n edges implies that G contains a cycle (if G has no cycle then it is a forest and
therefore its number of edges is n − k where k is the number of connected components, which follows
from the fact that trees on l vertices have l − 1 edges). Let Xe be 1 if the edge e is present in G and 0
otherwise. Thus X =

∑
eXe. We have E[X] =

∑
e E[Xe] =

(
n
2

)
p. Now, since Xe are independent, we

get

Var

(∑
e

Xe

)
=
∑
e

Var(Xe) =

(
n

2

)
p(1− p) ≤ n2p.

It su�ces to prove our claim for p = 4
n
(the original p will be bigger for su�ciently large n since

np(n) → ∞). For p = 4
n
we have E[X] =

(
n
2

)
p = 2(n − 1). Note that X < n implies |X − E[X]| ≥

E[X]−X > E[X]− n = n− 2. By Markov inequality

P (X < n) ≤ P (|X − EX| ≥ n− 2) ≤ Var(X)

(n− 2)2
≤ n2p

(n− 2)2
=

4n

(n− 2)2
−−−→
n→∞

0.

Thus P (X ≥ n)→ 1 as n→∞.

5.5 Lovász Local Lemma

In probabilistic counting our strategy was the following: in order to construct some combinatorial object
we introduce a random model and show that the family of "bad" events A1, . . . , An (obstacles for our
desired object) does not occupy the whole probability space, that is, P (

⋃n
i=1Ai) < 1, which leads to

P (
⋂n
i=1 A

c
i) > 0. The usual strategy for proving this is to use the union bound P (

⋃n
i=1Ai) ≤

∑n
i=1 P (Ai).

The union bound is very often too weak and the sum
∑n

i=1 P (Ai) exceeds 1.
There is another case when we can easily conclude that P (

⋂n
i=1A

c
i) > 0, namely when A1, . . . , An are

independent and P (Ai) < 1, i = 1, . . . , n, in which case P (
⋂n
i=1 A

c
i) =

∏n
i=1 P (Aci) =

∏n
i=1(1−P (Ai)) >

0. Unfortunately in practice the events Ai are not independent. The Lovász Local Lemma deals with
the case when A1, . . . , An are not "too dependent". In fact, as we will see, it interpolates between the
union bound and the independency bound.

Let A1, . . . , An be events. For S ⊆ [n] \ {i} we say that Ai is mutually independent of the events
{Aj, j ∈ S} if for every S ′ ⊆ S we have

P

(
Ai ∩

⋂
j∈S′

Aj

)
= P (Ai) · P

(⋂
j∈S′

Aj

)
. (3)

Recall that conditional probability is de�ned as P (A|B) = P (A ∩B) /P (B). Thus (3) can be rewritten

as P
(
Ai

∣∣∣ ⋂j∈S′ Aj

)
= P (Ai) . Let us mention that in the condition 3 we can replace some of the Aj's

with their complements. Indeed, to replace Aj with A
c
j it is enough to write (3) for S ′ \ {j} and for S ′

and substract these equations. In particular, if (3) is satis�ed for every S ′ ⊆ S then we also have

P

(
Ai

∣∣∣ ⋂
j∈S′

Acj

)
= P (Ai) . (4)
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We introduce the notion of dependency digraph for the events A1, . . . , An to be any directed graph
with no loops (digraph) G = (V,E) on the set of vertices V = {1, . . . , n} such that for all i the event
Ai is mutually independent of the events {Aj : (i, j) /∈ E}. In other words, a dependency digraph for
A1, . . . , An is a family of subsets S1, . . . , Sn (where Si = {j : (i, j) ∈ E}) of events such that Ai is
mutually independent of the family Si. In practice we know that our events Ai are independent of some
families Si and we construct our dependency graph just by drawing only edges from i to {j : Aj /∈ Si}.
Note that we do not require this graph to encode all the independence structure of our problem (if we,
say, add edges to dependency digraph then it is also a dependency digraph).

Remark. We note that not all independences can be "encoded" in the dependency digraph. Suppose
that Ω = {1, 2, 3, 4} and p(i) = 1/4 for all i = 1, 2, 3, 4. Consider events A = {1, 2}, B = {2, 3}
and C = {1, 3}. Then P (A ∩B) = P (B ∩ C) = P (C ∩ A) = 1/4 and P (A) = P (B) = P (C) = 1/2
and thus A,B,C are pairwise independent. However, the events A,B,C are not independent, since
P (A ∩B ∩ C) = 0 6= 1

8
= P (A)P (B)P (C). The graph on 3 vertices with no edges is the only graph

that encodes pairwise independencies of random variables. But since it is not true that A is mutually
independent of {B,C} (otherwise we would get P (A ∩B ∩ C) = P (A)P (B ∩ C) = pAP (B)P (C)), the
empty graph is not a dependency digraph of our events.

Theorem 41 (Lovász Local Lemma). Let A1, . . . , An be events and let (V,E) be their dependency
digraph. Suppose that there exist real numbers x1, . . . , xn such that 0 ≤ xi < 1 for i = 1, . . . , n and
P (Ai) ≤ xi

∏
(i,j)∈E(1− xj) for all i = 1, . . . , n. Then P (

⋂n
i=1A

c
i) ≥

∏n
i=1(1− xi) > 0.

Remark. Let us consider two extremal cases of Theorem 41. If (V,E) is the complete graph then the
assumption gives P (Ai) ≤ xi

∏
j 6=i(1 − xi). To prove the theorem in this case it su�ces use the union

bound

P

(
n⋂
i=1

Aci

)
≥ 1−

n∑
i=1

P (Ai) ≥ 1−
n∑
i=1

xi
∏
j 6=i

(1− xi).

We now only need to verify the inequality 1 −
∑n

i=1 xi
∏

j 6=i(1 − xi) ≥
∏n

i=1(1 − xi). After dividing by∏n
i=1(1− xi) this reduces to

∏n
i=1

1
1−xi > 1 +

∑n
i=1

xi
1−xi , which follows since

n∏
i=1

1

1− xi
=

n∏
i=1

(
1 +

xi
1− xi

)
≥ 1 +

n∑
i=1

xi
1− xi

.

The other extremal case is E = ∅. In this case it is not hard to deduce that the events A1, . . . , An
are independent and P (Ai) ≤ xi. Thus P (

⋂
Aci) =

∏n
i=1 P (Aci) ≥

∏n
i=1(1− xi) > 0.

In fact one can formulate a more genera version of the lemma, where no notion of mutual independence
is needed.

Theorem 42. Let A1, . . . , An be events and let (V,E) be any directed graph on V = {1, . . . , n} with
no loops. Suppose there exist numbers x1, . . . , xn such that 0 ≤ xi < 1 for i = 1, . . . , n and that for any
i = 1, . . . , n and any S ⊆ {j : (i, j) /∈ E} \ {i} we have

P

(
Ai

∣∣∣ ⋂
j∈S

Acj

)
≤ xi

∏
j:(i,j)∈E

(1− xj). (5)

Then P (
⋂n
i=1A

c
i) ≥

∏n
i=1(1− xi) > 0.

We �rst show how Theorem 42 implies Theorem 41.
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Proof of Theorem 41. We shall use Theorem 42 with (V,E) being the dependency graph of our events.
Take i ∈ {1, . . . , n} and let S ⊆ {j : (i, j) /∈ E} \ {i} By the de�nition of dependency graph and by (4)
we get

P

(
Ai

∣∣∣ ⋂
j∈S

Acj

)
= P (Ai) ≤ xi

∏
j:(i,j)∈E

(1− xj).

Thus the assumption of Theorem 42 is satis�ed.

Before we prove Theorem 42 we recall some simple facts concerning conditional probabilities.

1. For any events B1, . . . , Bn, C we have

P (B1 ∩ . . . ∩Bn|C) = P (B1|C) · P (B2|B1 ∩ C) · . . . · P (Bn|B1 ∩B2 ∩ . . . ∩Bn−1 ∩ C) . (6)

This can be proved easily by using de�nition of conditional probability and observing that the
right hand side is a telescoping product.

2. For any events A,B,C we have

P (A|B ∩ C) =
P (A ∩B|C)

P (B|C)
(7)

This is in fact (6) for n = 2.

Proof of Theorem 42. We shall prove the following claim:

Claim. For any S ⊆ {1, . . . , n} with |S| < n and for any i /∈ S we have

P

(
Ai

∣∣∣ ⋂
j∈S

Acj

)
≤ xi.

Here for S = ∅ we adapt the notation
⋂
j∈∅A

c
j = Ω. We now show how this claim implies our theorem.

By (6) applied with Bi = Aci and C = Ω we get

P (Ac1 ∩ . . . ∩ Acn) = P (Ac1) · P (Ac2|Ac1) · P (Ac3|Ac1 ∩ Ac2) · . . . · P
(
Acn|Ac1 ∩ . . . ∩ Acn−1

)
= (1− P (A1)) · (1− P (A2|Ac1)) · (1− P (A3|Ac1 ∩ Ac2)) · . . . ·

(
1− P

(
An|Ac1 ∩ . . . ∩ Acn−1

))
≥ (1− x1)(1− x2)(1− x3) . . . (1− xn) > 0,

where the claim was applied for the following pairs (i, S):

(1, ∅), (2, {1}), (3, {1, 2}), . . . , (n, {1, 2, . . . , n− 1}).

Proof of the Claim. Induction on s = |S|. If s = 0 then S = ∅ and the claim P (Ai) ≤ xi follows easily
from the assumption. Now, suppose the assertion holds true for s′ < s. We shall show it for s. Take
S ⊆ {1, . . . , n} with |S| = s and i /∈ S. De�ne S1 = {j ∈ S : (i, j) ∈ E} and S2 = S \S1. If S1 = ∅ then
S ⊆ {1, . . . , n} \ ({j : (i, j) ∈ E} ∪ {i}) = {j : (i, j) /∈ E} \ {i}, thus we get

P

(
Ai

∣∣∣ ⋂
j∈S

Acj

)
≤ xi

∏
j:(i,j)∈E

(1− xj) ≤ xi,

by the assumptions of our theorem. Thus, suppose that S1 is nonempty. De�ne

A = Ai, B =
⋂
j∈S1

Acj, C =
⋂
l∈S2

Acl .
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By (7) we get

P

(
Ai

∣∣∣ ⋂
j∈S

Acj

)
= P

(
Ai

∣∣∣ B ∩ C) =
P (Ai ∩B | C)

P (B | C)
.

Let us upper bound the numerator. Since S2 ⊆ {j : (i, j) /∈ E} \ {i}, by the assumptions of the theorem
we have

P (Ai ∩B | C) ≤ P (Ai|C) = P

(
Ai

∣∣∣ ⋂
l∈S2

Acl

)
≤ xi

∏
j:(i,j)∈E

(1− xj). (8)

To lower bound the denominator we shall use induction hypothesis. Suppose S1 = {j1, . . . , jr} with
r ≥ 1. From (6) we get

P (B|C) = P
(
Acj1 ∩ . . . ∩ A

c
jr | C

)
= P

(
Acj1|C

)
· P
(
Acj2|A

c
j1
∩ C

)
· . . . · P

(
Acjr |A

c
j1
∩ . . . ∩ Acjr−1

)
= (1− P (Aj1|C))

(
1− P

(
Aj2|Acj1 ∩ C

))
· . . . ·

(
1− P

(
Ajr |Acj1 ∩ . . . ∩ A

c
jr−1

))
≥ (1− xj1)(1− xj2) . . . (1− xjr) ≥

∏
j:(i,j)∈E

(1− xj).

The assertion follows by combining this inequality with (8),

P

(
Ai

∣∣∣ ⋂
j∈S

Acj

)
=

P (Ai ∩B | C)

P (B | C)
≤
xi
∏

j:(i,j)∈E(1− xj)∏
j:(i,j)∈E(1− xj)

= xi.

The proof of the theorem is completed.

Usually the following symmetric version of the lemma is the most convenient. It easily follows from
Theorem 41.

Theorem 43. Let A1, . . . , An be events. Suppose that for any i the event Ai is mutually independent
of a set of all the other events Aj but at most d. Also, suppose that P (Ai) ≤ p, where 0 ≤ p < 1 satis�es
ep(d+ 1) ≤ 1. Then P (

⋂n
i=1 A

c
i) > 0.

Proof. Let us construct a dependency digraph for our events by taking, for each i, all the edges from
i to {j : j /∈ Si}. Thus, the out-degree of every vertex is at most d. Take xi = 1

d+1
. We can assume

that d ≥ 0 (to make sure that xi 6= 1) since otherwise the events Ai are independent and the claim

follows easily. Then in order to apply Theorem 41 it su�ces to check that p ≤ 1
d+1

(
1− 1

d+1

)d
. This is

true since
(
1− 1

d+1

)d
> 1

e
, which follows by taking logarithm and applying the well known inequality

ln(1 + x) ≥ x
x+1

.

We now present selected applications of the Lovász Local Lemma.

Theorem 44. Suppose k ≥ 10. Then the vertices of every k-regular simple graph can be colored in
such a way that no vertex has a monochromatic neighborhood.

Proof. We can assume that the graph is connected. Let us color the vertices with two colors at ran-
dom (each color with probability 1/2). Let Av the the event that the vertex v has a monochromatic
neighborhood. Let V v

k for k ≥ 1 be the set of vertices having distance k from v. The indicator of
Av is a function of the colors of vertices from the set V v

1 . On the other hand the indicators of Aw for
w ∈

⋃
k≥3 V

v
k is a function of colors of vertices from V v

3 , V
v

4 , . . .. Thus, 1Av is independent of the random
variable (1Aw)w∈⋃k≥3 V

v
k
. Thus, for every vertex v the event Av is mutually independent of all the events

Aw but at most k+ k(k− 1) = k2. Clearly P (Av) = 2−k+1. If e2−k+1(k2 + 1) ≤ 1, then Theorem 43 can
be applied. This holds true when k ≥ 10.
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Theorem 45. Let w(k) be the van der Waerden number, that is, the smallest number with the fol-
lowing property: whenever n ≥ w(k) then in every coloring of {1, . . . , n} with 2 colors there exists a

monochromatic arithmetic progression of length k. Then w(k) ≥ 2k

2ek2
.

Proof. Let us color the numbers from {1, . . . , n} with two colors at random (each color with probability
1/2). Let c be an arithmetic progression (AP) in {1, . . . , n}. Let Ac be the event that c is monochromatic.
Clearly P (Ac) = 2−k+1. Now, if c, c1, c2, . . . , cl are AP's such that c∩

⋃l
i=1 ci = ∅, then Ac is independent

of the family (Aci)
l
i=1 (since Ac depends on the colors of numbers disjoint from the set of numbers forming

the AP ci). Let c be an AP. Then c has a common element with at most k2(n−1) other AP's. Indeed, to
get an AP c′ that intersects c it is enough to choose an element of c that will be contained in c′ (there are
k ways to do this), choose a position of this element in c′ (in k ways) and choose the di�erence between
two consecutive elements in c′ (in at most n− 1 ways). We get that Ac is independent of all but at most
k2(n− 1) ≤ k2n− 1 events Ac′ . Thus applying Theorem 43 with d = k2n− 1 and p = 2−k+1 shows that

if e2−k+1k2n ≤ 1 then there is a coloring with no monochromatic k-AP. Thus w(k) > 2k

2ek2
.

6 Fourier analysis on the hypercube

6.1 Walsh-Fourier system

In this section we shall work with the probability space Ω = {−1, 1}n with the uniform measure
p(ω) = 2−n for all ω ∈ Ω. Note that in f : Ω → R is a random variable, then Ef = 2−n

∑
x∈Ω f(x).

For f, g : Ω → R we shall de�ne 〈f, g〉 = E[fg] = 2−n
∑

x∈Ω f(x)g(x). Since every function on Ω can
we interpreted as a vector in R2n , we see that 〈f, g〉 is just a normalized scalar product of these vectors
corresponding to f and g.

For S ⊆ [n] (here [n] = {1, . . . , n}) consider a function wS : {−1, 1}n → R de�ned by wS(x) =
∏

i∈S xi.
Here we use a convention w∅(x) ≡ 1. Note that

EwS =

{
0 S 6= ∅
1 S = ∅ .

Clearly,

wS(x)wT (x) =
∏
i∈S

xi
∏
j∈T

xj =
∏

i∈S∆T

xi
∏
i∈S∩T

x2
i =

∏
i∈S∆T

xi = wS∆T (x).

Since wSwT = wS∆T , we get

E[wSwT ] =

{
0 S 6= T
1 S = T

, in other words 〈wS, wT 〉 =

{
0 S 6= T
1 S = T

The function wS are therefore linearly independent. Indeed, if
∑

S⊆[n] aSwS ≡ 0 the by taking a scalar
product with wT we get

0 =

〈∑
S⊆[n]

aSwS, wT

〉
=
∑
S⊆[n]

aS 〈wS, wT 〉 = aT .

Since the dimension of {f : Ω → R} is clearly equal to 2n, we get that (wS)S⊂[n] is an orthonormal
basis, that is every function f : Ω → R admits an unique expansion f =

∑
S⊆[n] aSwS. By taking

a scalar product of both sides with wT we get that aT = 〈f, wT 〉. We de�ne the Fourier coe�cient

f̂(S) = 〈f, wT 〉. The set of numbers (f̂(S))S⊆[n] is called the spectrum of f . We get

f =
∑
S⊆[n]

〈f, wS〉wS =
∑
S⊆[n]

f̂(S)wS.
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This can be also seen by an elementary argument. Indeed, the indicator of {x} satis�es

1x(y) =
n∏
i=1

1 + xiyi
2

= 2−n
∑
S⊆[n]

wS(x)wS(y).

Hence,

f(x) =
∑
y∈Ω

f(y)1y(x) =
∑
S⊆[n]

(
2−n

∑
y∈Ω

f(y)wS(y)

)
wS(x) =

∑
S⊆[n]

〈f, wS〉wS(x).

Note that we have Ef = a∅ and by orthogonality

E[f 2] = E

∑
S⊆[n]

aSwS

2 =
∑

S,T⊆[n]

aSaTE[wSwT ] =
∑
S⊆[n]

a2
S.

This is the so-called Parseval's identity. We also note that

Var(f) = E[f 2]− (E[f ])2 =
∑
S 6=∅

a2
S.

We also observe that if f =
∑

S⊆[n] aSwS and g =
∑

S⊆[n] bSwS, then

〈f, g〉 =

〈∑
S

aSwS,
∑
S

bSwS

〉
=
∑
S,T

aSbT 〈wS, wT 〉 =
∑
S

aSbS.

6.2 Poincaré inequality

For f : Ω→ R we de�ne its ith gradient by

(∇if)(x) =
f(x)− f(xi)

2
, where xi = (x1, . . . ,−xi, . . . , xn).

The gradient of f is de�ned as (∇if, . . . ,∇nf) : Ω→ Rn. We also take |∇f | = (
∑n

i=1 |∇if |2)1/2.

Theorem 46. For every f : Ω→ R we have Var(f) ≤ E[|∇f |2].

Proof. To this end consider the Walsh-Fourier expansion of f , namely f =
∑

S⊆[n] aSwS. Recall that

then Var(f) =
∑
|S|≥1 a

2
S. Observe that

∇iwS =

{
wS i ∈ S
0 i /∈ S .

Let us compute the Walsh-Fourier expansion of ∇if ,

(∇if)(x) =
∑
S⊆[n]

aS(∇iwS)(x) =
∑
S:i∈S

aSwS(x).

Thus, Parseval's identity gives E[|∇if |2] =
∑

S:i∈S a
2
S. Therefore,

E[|∇f |2] =
n∑
i=1

E[|∇if |2] =
n∑
i=1

∑
S:i∈S

a2
S =

∑
S

|S|a2
S =

∑
S: |S|≥1

|S|a2
S ≥

∑
|S|≥1

a2
S = Var(f).
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Note that in Ω we can introduce a graph structure by taking x ∼ y if and only if |x − y| = 2 (that
is, x, y di�er on precisely one coordinate). If we now take A ⊆ Ω and

f(x) =

{
1 x ∈ A
−1 x /∈ A ,

then E[f ] = 2−n(|A| − |Ac|) and thus

Var(f) = E[f 2]− (E[f ])2 = 1− (2−n(|A| − |Ac|))2 = (1− 2−n|A|+ 2−n|Ac|)(1 + 2−n|A| − 2−n|Ac|)
= 2−n(2n − |A|+ |Ac|) · 2−n(2n − |Ac|+ |A|) = 4−n · 2|A| · 2|Ac| = 4−n+1|A| · |Ac|

Moreover, we see that

E[|∇if |2] = 2−n · 2#{egdes between A and Ac in the ith direction},

since the endpoints x, y of every such edge satisfy |∇if |(x) = |∇if |(y) = 1 and if x, y both belong to A
or to Ac then |∇if |(x) = |∇if |(y) = 0. De�ne ∂A = {(a, a′) ∈ A× Ac : a ∼ a′}. Then

E[|∇f |2] =
n∑
i=1

E[|∇if |2] = 2−n+1|∂A|.

Thus the Poincaré inequality gives 2−n+1|∂A| ≥ 4−n+1|A| · |Ac|, that is,

|∂A| ≥ 2−n+1|A| · |Ac|.

In particular, if |A| = 2n−1 then we get |∂A| ≥ 2n−1, which is optimal (take A = {1} × {−1, 1}n−1).

6.3 The Blum-Luby-Rubinfeld Test

For x, y ∈ Ω we de�ne x · y = (x1y1, . . . , xnyn). It is easy to see that for f : {−1, 1}n → {−1, 1} the
following two conditions are equivalent:

(1) f(x · y) = f(x)f(y), x, y ∈ {−1, 1}n,

(2) for some S ⊆ [n] we have f = wS.

Suppose now that we want to consider approximately multiplicative functions. We can de�ne this notion
either through point (1) or using (2). The de�nition (2') reads as follows:

(2') f : {−1, 1}n → {−1, 1} is ε close to being multiplicative if there is wS such that Px(f(x) 6=
wS(x)) ≤ ε, where x is uniform on {−1, 1}n.

Here we write Px to remember that the randomness is with respect to x. The de�nition (1) can be
rewritten using the so called Blum-Luby-Rubinfeld test. In BLR test we consider two independent
random inputs x, y ∈ Ω and accept f if f(x · y) = f(x)f(y). Thus, this test uses only three queries.

(1') We say that f is ε BLR-close to being multiplicative if Px,y(f(x ·y) = f(x)f(y)) ≥ 1−ε, where x, y
are independent and uniform in {−1, 1}n. In other words, BLR test excepts f with probability at
least 1− ε.

We show that both de�nitions are equivalent. First, if f is ε close to certain wS then BLR test accepts
f with probability at least 1− 3ε, since

P(f(x · y) 6= f(x)f(y)) ≤ P(f(x) 6= wS(x) or f(x) 6= wS(y) or f(x · y) 6= wS(x · y))

≤ P(f(x) 6= wS(x)) + P(f(y) 6= wS(y)) + P(f(x · y) 6= wS(x · y))

= 3P(f(x) 6= wS(x)) ≤ 3ε.

What is non-trivial is that we have the reverse implication.
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Theorem 47. If BLR test accepts f with probability at least 1− ε then f is ε close to certain wS.

Proof. Take f : {−1, 1}n → {−1, 1}. Let h(x) = Eyf(y)f(x · y). If f =
∑

S aSwS then

h(x) = Ey

(∑
S

aSwS(y)

)(∑
S

aSwS(x · y)

)
= Ey

(∑
S

aSwS(y)

)(∑
S

aSwS(x)wS(y)

)
=
∑
S,T

aSaTwS(x)EywS(y)wT (y) =
∑
S

a2
SwS(x).

using orthogonality of the Walsh system. We have

1

2
+

1

2
f(x)f(y)f(x · y) =

{
1 f(x)f(y) = f(x · y)
0 f(x)f(y) 6= f(x · y)

.

Thus,

1− ε = Px,y(f(x · y) = f(x)f(y)) = E
(

1

2
+

1

2
f(x)f(y)f(x · y)

)
=

1

2
+

1

2
Exf(x)Eyf(y)f(x · y) =

1

2
+

1

2
Exf(x)h(x).

We get

1− 2ε = Exf(x)h(x) =
∑
S

a3
S ≤ (max

S
aS)
∑
S

a2
S = max

S
aS.

Therefore, there exists wS such that 1 − 2ε ≤ EfwS = 1 − 2Px(f(x) 6= wS(x)). Thus, f is ε close to
wS.

6.4 Arrow's theorem

Suppose we have three candidates a, b, c and we want to elect one using some voting procedure. Assume
we have n voters and each voter has his own ranking of candidates. In other words for each pair (a, b),
(b, c), (c, a) a voter gives a number in {−1, 1}, with 1 meaning that he prefers the �rst candidate. Thus,
each voter Vi delivers a triple (xi, yi, zi) ∈ {−1, 1}3. Note that only six triples are allowed. Indeed, the
triples (1, 1, 1) and (−1,−1,−1) are not allowed because a voter can not prefer a than b, b than c and
c than a (nor the opposite cycle). So, for each voter we have the following allowed rankings

(−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,−1).

Now suppose we use some function f : {−1, 1}n → {−1, 1} to decide whether the society prefers a than
b, etc. by considering f(x) = f(x1, . . . , xn), f(y) = f(y1, . . . , yn) and f(z) = f(z1, . . . , zn). For example
f(x1, . . . , xn) = 1 means that the society prefers a than b. In other words, w consider all three pairwise
elections.

We say that there is a Condorcet winner if there is a candidate who wins all the pairwise elections
he participated in. So, there is a Condorcet winner if

(f(x), f(y), f(z)) ∈ {(−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,−1)}.

Here is an example of a voting with Condorcet winner.
However, the following voting shows that there may not be a Condorcet winner. This is called the

Condorcet paradox.
We show that essentially the only voting scheme free from the Condorcet paradox is dictatorship.
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V1 V2 V3 f
a(+) vs. b(−) + + + +
b(+) vs. c(−) − + − −
c(+) vs. a(−) + − − −

Table 1: Voting with n = 3 voters using f(x) = sgn(x1 + x2 + x3). Here we get the ranking (1,−1,−1)
which means c > a > b and thus c is the winner.

V1 V2 V3 f
a(+) vs. b(−) + + − +
b(+) vs. c(−) + − + +
c(+) vs. a(−) − + + +

Table 2: Voting with n = 3 voters using f(x) = sgn(x1 + x2 + x3). Here we get the ranking (1, 1, 1)
which means a > b, b > c and c > a and thus we cannot choose a winner.

Theorem 48 (Arrow's Theorem). Let f : {−1, 1}n → {−1, 1} be the voting rule used in three candidate
Condorcet elections. If there is always a Condorcet winner, then f(x) = ±xk for some k ∈ [n].

Proof. Let us do a random election. Each voter chooses one of the 6 possible rankings uniformly at ran-
dom. We compute the probability of Condorcet winner. For this we need a function σ : {−1, 1}3 → {0, 1}
which is equal to 1 if and only if the argument (x, y, z) does not belong to the set {(−1,−1,−1), (1, 1, 1)}.
It is easy to see that

σ(x, y, z) =
3

4
− 1

4
(xy + yz + zx).

Thus,

P(∃ Condorcet winner) = Eσ(f(x), f(y), f(z))

=
3

4
− 1

4
E[f(x)f(y) + f(y)f(z) + f(z)f(x)] =

3

4
− 3

4
E[f(x)f(y)].

Recall that (xi, yi, zi), i = 1, . . . , n are independent. Moreover, the distribution of each (xi, yi, zi) is
uniform over all 6 admissible rankings. Therefore, it is easy to see that Exi = Eyi = 0 and Exiyi = −1

3
.

Let f =
∑

S aSwS. We get

E[f(x)f(y)] =
∑
S,T

aSaTE[wS(x)wT (y)] =
∑
S

a2
SE[wS(x)wS(y)]

=
∑
S

a2
S(E[x1y1])|S| =

∑
S

a2
S (−1/3)|S| .

We arrive at

P(∃ Condorcet winner) =
3

4
− 3

4

∑
S

a2
S (−1/3)|S| .
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Let Wk[f ] =
∑
|S|=k a

2
S. We have

3

4
− 3

4

∑
S

a2
S (−1/3)|S| =

3

4
− 3

4

n∑
k=0

Wk[f ] (−1/3)k ≤ 3

4
− 3

4

∑
k

W2k+1[f ] (−1/3)2k+1

=
3

4
+

3

4

∑
k

W2k+1[f ] (1/3)2k+1 ≤ 3

4
+

3

4

(
1

3
W1[f ] +

1

27

∑
k>0

W2k+1[f ]

)

≤ 3

4
+

3

4

(
1

3
W1[f ] +

1

27
(1−W1[f ])

)
=

7

9
+

2

9
W1[f ] =

7

9
+

2

9

n∑
k=1

a2
{k}.

Thus,

1 = P(∃ Condorcet winner) ≤ 7

9
+

2

9

n∑
k=1

a2
{k} ≤

7

9
+

2

9

∑
S

a2
S = 1.

Thus
∑n

k=1 a
2
{k} =

∑
S a

2
S = 1 which implies f(x) =

∑n
k=1 a{k}xk. Taking xi = sgn(a{i}) for ai 6= 0 (and

xi = 1 when a{i} = 0) we get
∑

k |a{k}| = 1. Together with
∑n

k=1 a
2
{k} = 1 this gives the existence of l

such that |a{l}| = 1 and a{k} = 0 for all k 6= l. Thus f(x) = ±xk.

7 Spectral graph theory

7.1 Min-max principle & Cauchy interlacing

Recall that if A is a symmetric real n× n matrix, then the matrix A is diagonalizable using orthogonal
matrix, namely there exist an orhogonal matrix U (that is, matrix satisfying UTU = I) and a diagonal
matrix D = diag(λ1, . . . , λn) such that A = UDUT . In other words, the columns u1, . . . , un of U form an
orthonormal basis for Rn and Aui = λiui. To see the latter we observe that the equality A = UDUT is
equivalent to UTA = DUT and by taking transposition of both sides we get AU = UD, which precisely
means that Aui = λiui.

If u1, . . . , un is an orthonormal basis of eigenvectors of A with eigenvalues λ1, . . . , λn, then for every
x written in this basis, that is x =

∑n
i=1 aiui, we have

〈Ax, x〉 =

〈
A

(
n∑
i=1

aiui

)
,

n∑
i=1

aiui

〉
=

〈
n∑
i=1

aiAui,

n∑
i=1

aiui

〉
=

〈
n∑
i=1

λiaiui,

n∑
i=1

aiui

〉

=
n∑

i,j=1

λiaiaj 〈ui, uj〉 =
n∑
i=1

λia
2
i .

Repeating the same computation for A = I gives |x|2 = 〈x, x〉 =
∑n

i=1 a
2
i .

Theorem 49 (Courant�Fischer�Weyl min-max principle). Let A be a symmetric matrix with eigenval-
ues λ1 ≥ λ2 ≥ · · · ≥ λn. Then for every k = 1, 2, . . . , n we have

λk = max
U : dim(U)=k

min
x∈U, x6=0

〈Ax, x〉
〈x, x〉

= min
U : dim(U)=n−k+1

max
x∈U, x6=0

〈Ax, x〉
〈x, x〉

.

In particular

λ1 = max
x 6=0

〈Ax, x〉
〈x, x〉

, λn = min
x 6=0

〈Ax, x〉
〈x, x〉

.
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Proof. Let u1, . . . , un be the orthonormal basis for Rn such that ui is an eigenvector with an eigenvalue
λi, i = 1, . . . , n. Take a subspace U of Rn such that dim(U) = k and take V = span{uk, . . . , un}. Note
that U ∩ V contains a non-zero vector x. Thus, x =

∑n
i=k aiui. Therefore,

〈Ax, x〉
〈x, x〉

=

∑n
i=k λia

2
i∑n

i=k a
2
i

≤ λk.

It follows that

λk ≥ min
x∈U, x6=0

〈Ax, x〉
〈x, x〉

.

and therefore

λk ≥ max
U : dim(U)=k

min
x∈U, x 6=0

〈Ax, x〉
〈x, x〉

.

To see the opposite inequality it su�ces to take U = span{u1, . . . , uk}. Observe that every x ∈ U has
the form x =

∑k
i=1 λiui. We get

〈Ax, x〉
〈x, x〉

=

∑k
i=1 λia

2
i∑k

i=1 a
2
i

≥ λk

Thus,

min
x∈U, x 6=0

〈Ax, x〉
〈x, x〉

≥ λk.

We get

λk ≤ max
U : dim(U)=k

min
x∈U, x 6=0

〈Ax, x〉
〈x, x〉

.

The equality

λk = max
U : dim(U)=n−k+1

min
x∈U, x6=0

〈Ax, x〉
〈x, x〉

can be proved in a similar way.

Theorem 50. Suppose A is an n × n symmetric matrix with eigenvalues λ1 ≥ . . . ≥ λn. Let B be its
principal m×m submatrix and assume that B has eigenvalues µ1 ≥ . . . ≥ µm. Then

λk ≥ µk ≥ λk+n−m, k = 1, . . . ,m.

Proof. By the Courant�Fischer�Weyl min-max principle we have

λk = max
U⊆Rn, dim(U)=k

min
x∈U,x 6=0

〈Ax, x〉
〈x, x〉

, µk = max
U⊆Rm, dim(U)=k

min
x∈U,x 6=0

〈Bx, x〉
〈x, x〉

Without loss of generality we can assume that B = (Aij)1≤i,j≤m. In this case 〈Bx, x〉 = 〈Ay, y〉, where
y = (x, 0) ∈ Rn (here x ∈ Rm and 0 ∈ Rn−m). Thus we have

µk = max
U⊆Rn, dim(U)=k

U⊆{xm+1=...=xn}

min
x∈U,x 6=0

〈Ax, x〉
〈x, x〉

≤ λk.

To prove the second inequality we observe that again by the Courant�Fischer�Weyl min-max principle
we have

µk = min
U : dim(U)=m−k+1

max
x∈U, x6=0

〈Bx, x〉
〈x, x〉

, λk+n−m = min
U : dim(U)=m−k+1

max
x∈U, x6=0

〈Ax, x〉
〈x, x〉
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Thus, again by the same observation as above,

µk = min
U⊆Rn, dim(U)=m−k+1

U⊆{xm+1=...=xn}

max
x∈U,x6=0

〈Ax, x〉
〈x, x〉

≥ λk+n−m.

7.2 Basic facts in spectral graph theory

For a graph G = (V,E) with n vertices we de�ne its adjacency matrix A = (auv)u,v∈V by taking

auv =

{
1 u ∼ v
0 otherwise

.

The matrix A is symmetric and thus has real eigenvalues λ1 ≥ λ2 . . . ≥ λn.

Lemma 7. Suppose A is an adjacency matrix of a d regular graph G. Then

(a) for any x ∈ Rn we have 〈x, (dI − A)x〉 =
∑
{u,v}∈E(xu − xv)2 ≥ 0,

(b) the larges eigenvalue λ1 of A is equal d and the corresponding eigenvector is 1 = (1, . . . , 1).

Proof. (a) For any vector x ∈ Rn we have

〈x, (dI − A)x〉 = d
∑
v∈V

x2
v − 2

∑
{u,v}∈E

xuxv =
∑
{u,v}∈E

(xu − xv)2 ≥ 0.

Here the notation {u, v} ∈ E means that the edge (u, v) is the same as (v, u) and is counted once.
(b) If 1 = (1, . . . , 1) then A1 = d1 (this is due to the fact that G is d-regular). Thus d is an eigenvalue

of A and thus λ1 ≥ d. In the proof of point (a) we showed that 〈Ax, x〉 ≤ d|x|2. From Theorem 49 we
get λ1 = maxx 6=0 〈Ax, x〉 /|x|2 ≤ d.

We also introduce the notation

e(S, T ) = {(u, v) | u ∈ S, v ∈ T}.

Note that if S ∩ T = ∅, then e(S, T ) ≤ |S| · |T |. Our next fact provides a reverse bound in terms of
second largest eigenvalue of the adjacency matrix.

Fact 1. Let G = (V,E) be a d-regular graph on n vertices. Let λ2 be the second largest eigenvalue of
its adjacency matrix A. Then for every partition V = S ∪ T we have

e(S, T ) ≥ d− λ2

n
· |S| · |T |.

Proof. For any x ⊥ 1 we have xTAx ≤ λ2|x|2. Indeed, if ui is the eigenvector corresponding to the
eigenvalue λi then x can be written as x =

∑n
i=1 aiui, but since 〈x, u1〉 = 〈x,1〉 = 0 we get a1 = 0 and

thus
∑n

i=2 aiui. It follows that 〈Ax, x〉 =
∑n

i=2 λia
2
i ≤ λ2

∑n
i=2 a

2
i = λ2|x|2.

Take x = 1S − |S|n 1, where 1S is the incidence vector of the set S (the position corresponding to the
vertex v ∈ V is 1 if and only if v ∈ S). Clearly x ⊥ 1. We therefore have

(d− λ2)|x|2 ≤ 〈x, (dI − A)x〉 =
∑
{u,v}∈E

(xu − xv)2 = e(S, V \ S).
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To �nish the proof it su�ces to observe that

|x|2 = 〈x, x〉 =

〈
1S −

|S|
n

1,1S −
|S|
n

1

〉
= |S| − 2

|S|2

n
+
|S|2

n
=

1

n
|S|(n− |S|).

De�nition 2. Let G = (V,E) be a d-regular graph. We say that G is an (n, d, φ)-edge expander when
|V | = n, G is d-regular and for any S ⊂ V with |S| ≤ n/2 we have |e(S, Sc)| ≥ φ · d|S|.

Fact 2. Let λ2 be the second eigenvalue of the adjacency matrix A of a d regular graph G on n vertices.
Then G is a

(
n, d, d−λ2

2d

)
-expander.

Proof. From the previous lemma, for |S| ≤ n/2 we have

|e(S, Sc)| ≥ d− λ2

n
|S|(n− |S|) ≥ d− λ2

2
|S|.

Remark. The quantity ∆(G) = d−λ2
d

is called the spectral gap of G (more precisely, of the Laplace

operator L = I − 1
d
A). The quantity φ(G) = min0<|S|≤n/2

|e(S,Sc)|
d|S| is called the conductance of the

graph G. We showed the inequality 1
2
∆(G) ≤ φ(G). The reverse inequality is also true. This is known

as Cheeger inequality, namely φ(G) ≤
√

2∆(G).

Consider a random d-regular graph on n vertices (we consider all d regular graphs and take each of
them with equal probability). What is the expected number of edges going between two disjoint sets
S and T? Well, there are |S| · |T | potential edges and each of them will appear with probability d/n.
Thus, the answer is d

n
|S| · |T |. Our next lemma shows that if the quantity λ = max{|λ2|, |λn|} is small,

then G behaves like a random graph.

Theorem 51 (Expander mixing lemma). Let G = (V,E) be a d-regular graph on n vertices. Suppose
its adjacency matrix has eigenvalues λ1 ≥ λ2 ≥ . . . λn. De�ne λ = max{ |λ2|, |λn|}. Then for S, T ⊆ V
we have ∣∣∣∣e(S, T )− d

n
· |S| · |T |

∣∣∣∣ ≤ λ
√
|S| · |T |,

where in e(S, T ) we count edges contained in the intersection S ∩ T twice.

Proof. Let ui be the eigenvector of A corresponding to λi. Recall that we can take u1 = 1. Let J be
the all 1's matrix. The vectors ui are eigenvectors of J . Indeed u1 is an eigenvector with eigenvalue
n. Since ui for orthogonal basis, we get that 〈1, ui〉 = 〈u1, ui〉 = 0 for all i ≥ 2 and thus for i ≥ 2 we
have Jui = (〈u1, , ui〉 , . . . , 〈u1, ui〉)T = 0. Thus, if we take M = A− d

n
J , then the eigenvalues of M are

equal to 0, λ2, . . . , λn (and the corresponding eigenvector are u1, . . . , un). Let 1S and 1T be characteristic
vectors of S and T . We observe that 〈1S, A1T 〉 =

∑
(u,v)∈S×T Auv = |e(S, T )|. Thus,∣∣∣∣e(S, T )− d

n

∣∣∣∣ =

∣∣∣∣〈1S,(A− d

n
J

)
1T

〉∣∣∣∣ = | 〈1S,M1T 〉 | ≤ |1S| · |M1T | =
√
|S| · |M1T |.

To �nish the proof we observe that the eigenvalues λ2
2, . . . , λ

2
n of M

2 are positive and upper bounded by
λ2 and thus |M1T |2 = 〈M1T ,M1T 〉 = 〈1T ,M21T 〉 ≤ λ2 〈1T ,1T 〉 = λ2|T |. Thus |M1T | ≤ λ

√
|T |, which

�nishes the proof.
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7.3 Cheeger inequality.

Let λ2 be the second largest eigenvalue of of the adjacency matrix of a d-regular graph G. De�ne
∆ = d−λ2

d
. Recall that

∆ = min
x 6=0, x⊥1

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

.

For x ⊥ 1 we have

∑
u,v∈V

(xu − xv)2 = 2n
∑
v

x2
v − 2

∑
u,v

xuxv = 2n
∑
v

x2
v − 2

(∑
v

xv

)2

= 2n
∑
v

x2
v.

Thus,

∆ = min
x 6=0, x⊥1

∑
{u,v}∈E(xu − xv)2

d
2n

∑
u,v∈V (xu − xv)2

= min
x−non-constant

∑
{u,v}∈E(xu − xv)2

d
2n

∑
u,v∈V (xu − xv)2

= min
x−non-constant

1
nd/2

∑
{u,v}∈E(xu − xv)2

1
n2

∑
u,v∈V (xu − xv)2

= min
x−non-constant

E{u,v}∈E(xu − xv)2

Eu,v∈V (xu − xv)2
,

where E{u,v}∈E is the expectation with respect to the uniform distribution on E and Eu,v refers to
independent uniform choice of u and v. The above minimization problem is a relaxation of uniform
sparsest cut problem,

USC(G) =
n

d
min
S⊆V

|e(S, V \ S)|
|S| · |V \ S|

= min
x− non-constant
x ∈ {−1, 1}n

E{u,v}∈E(xu − xv)2

Eu,v∈V (xu − xv)2
.

Clearly we have USC(G) ≥ ∆.

De�nition 3. Let S ⊆ V . We de�ne the conductance of S and the conductance of graph G,

φ(S) =
|e(S, V \ S)|

d|S|
, φ(G) = min

0<|S|≤|V |/2
φ(S).

Let us observe that USC(G) ≤ 2φ(G). Indeed,

USC(G) =
n

d
min
S⊆V

|e(S, V \ S)|
|S| · |V \ S|

≤ n

d
min

0<|S|≤|V |/2

|e(S, V \ S)|
|S| · |V \ S|

≤ 2 min
0<|S|≤|V |/2

|e(S, V \ S)|
d|S|

= 2φ(G).

Theorem 52. We have ∆ ≤ USC(G) ≤ 2φ(G) ≤
√

8∆.

Proof. The only non-trivial inequality is φ(G) ≤
√

2∆. Given a solution x of the minimization problem
for ∆ we are to �nd a good Boolean approximation (set S). We do this in several steps.

Step 1. Given a solution x with x ⊥ 1 it is enough to construct a vector y ∈ Rn such that yv ≥ 0,
|{v : yv > 0}| ≤ n/2, maxv yv = 1 and∑

{u,v}∈E |yu − yv|
d
∑

v |yv|
≤ 2

√∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

= 2
√
λ2.
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Indeed, having such a vector y we construct the set S ⊆ V (in fact we will �nd S ⊆ {v : yv > 0}
and thus we will get |S| ≤ |V |/2) as follows. Take a random threshold t ∼ Unif[0,maxv yv] and de�ne
S = {v : yv ≥ t}. We have

E|e(S, V \ S)|
dE|S|

=

∑
{u,v}∈E P(|{u, v} ∩ S| = 1)

d
∑

v P(v ∈ S)
=

∑
{u,v}∈E |yu − yv|
d
∑

v |yv|
.

Now it su�ces to observe that

min
0<|S|≤|V |/2

|e(S, V \ S)|
d|S|

≤ E|e(S, V \ S)|
dE|S|

.

This is due to the general and easy inequality min
(
X
Y

)
≤ EX

EY valid for any positive real random variable
X, Y . Indeed, the inequality X

Y
> EX

EY leads to XEY > Y EX which is, after taking expectation of both
sides, a contradiction.

Step 2a. Take zv = x−Med(x). Observe that∑
{u,v}∈E(zu − zv)2

d
∑

v z
2
v

≤
∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

.

This follows from the fact that

|z|2 = |x−Med(x)1|2 = |x|2 −Med(X) 〈x,1〉+ nMed(X)2 = |x|2 + nMed(X)2 ≥ |x|2.

Step 2b. De�ne

z+
v =

{
0 zv < 0
zv zv ≥ 0

, z−v =

{
0 zv < 0
−zv zv < 0

.

Thus, z = z+ − z− and z+ ⊥ z−. Note that |zu − zv|2 ≥ |z+
u − z+

v |2 + |z−u − z−v |2 Therefore,

λ2 ≥
∑
{u,v}∈E(zu − zv)2

d
∑

v z
2
v

≥
∑
{u,v}∈E(z+

u − z+
v )2 +

∑
{u,v}∈E(z−u − z−v )2

d
∑

v(z
+
v )2 + d

∑
v(z
−
v )2

.

We get that

λ2 ≥
∑
{u,v}∈E(z+

u − z+
v )2

d
∑

v(z
+
v )2

or λ2 ≥
∑
{u,v}∈E(

∑
{u,v}∈E(z−u − z−v )2

d
∑

v(z
−
v )2

.

Note that since z has median 0, we have |{v : z+
v > 0}| ≤ n/2 and |{v : z−v > 0}| ≤ n/2. Moreover

z±v ≥ 0.
Step 2c. We have constructed a vector w such that wv ≥ 0, |v : wv > 0| ≤ n/2 and

λ2 ≥
∑
{u,v}∈E(wu − wv)2

d
∑

v w
2
v

Take yv = w2
v. Clearly yv ≥ 0, |v : yv > 0| ≤ n/2. We have∑

{u,v}∈E

|w2
u − w2

v| =
∑
{u,v}∈E

|wu − wv||wu + wv|

≤

 ∑
{u,v}∈E

|wu − wv|2
1/2 ∑

{u,v}∈E

|wu + wv|2
1/2

.
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Moreover, ∑
{u,v}∈E

|wu + wv|2 ≤ 2
∑
{u,v}∈E

(w2
u + w2

v) = 2d
∑
v

w2
v.

We arrive at ∑
{u,v}∈E |yu − yv|
d
∑

v |yv|
=

∑
{u,v}∈E |w2

u − w2
v|

d
∑

v w
2
v

≤

√∑
{u,v}∈E |wu − wv|2

d
∑

v w
2
v

≤ λ2.

7.4 Harper's theorem

Recall that on the discrete cube we have a natural graph structure with the set of edges given by
E = {(x, y) : dH(x, y) = 1}, where dH(x, y) = |{i : xi 6= yi}|. Also, for a set S ⊆ {0, 1}d we de�ne its
boundary ∂S = {(x, y) ∈ E : x ∈ S, y /∈ S}. On {0, 1}d we can de�ne the lexicographical order induced
by 1 > 0. Let Ld[n] be the set of �rst n vertices according to this order.

Theorem 53 (Harper's theorem). We have |∂S| ≥ |∂Ld[|S|]|, i.e., the set of size n minimizing the edge
boundary is Ld[n].

Proof. We proceed by induction on d. For d = 1 the assertion is trivial. Suppose d ≥ 2 and the theorem
holds for d− 1.

We now de�ne the compression of a subset of {−1, 1}d. For every coordinate i ∈ [d] we can decompose
T into two subsets Ti=0, Ti=1 ⊆ {0, 1}d−1 according to the value of ith coordinate. Formally

Ti=ε = {x ∈ {0, 1}d−1 : (x1, . . . , xi−1, ε, xi+1, . . . , xn) ∈ T}, ε ∈ {0, 1}.

Let Ci(T ) be the set obtained by replacing Ti=0 with Ld−1[|Ti=0|] and Ti=1 with Ld−1[|Ti=1|]. Of course
|Ci(T )| = |T |.

Claim. We have |∂Ci(T )| ≤ |∂T |.

Proof. Note that

|∂Ci(T )| = |∂Ld−1[|Ti=0|]|+ |∂Ld−1[|Ti=1|]|+ |Ld−1[|Ti=0|] ∆ Ld−1[|Ti=1|]|
= |∂Ld−1[|Ti=0|]|+ |∂Ld−1[|Ti=1|]|+ ||Ti=0| − |Ti=1||
≤ |∂Ti=0|+ |∂Ti=1|+ |Ti=0 ∆ Ti=1| = |∂T |.

Here the inequalities
|∂Ld−1[|Ti=0|] ≤ |∂Ti=0|, |∂Ld−1[|Ti=1|] ≤ |∂Ti=1|

follow from the induction assumption and the inequality ||Ti=0| − |Ti=1|| ≤ |Ti=0 ∆ Ti=1| is a general
bound |A∆B| ≥ ||A| − |B|| valid for any �nite sets A,B.

Let us apply C1, . . . , Cn in a cyclic fashion,

S → C1(S)→ C2C1(S)→ . . .→ CdCd−1 . . . C1(S)→ C1CdCd−1 . . . C1(S)→ . . .

We shall show that this sequence eventually stabilizes, that is, we reach a subsets invariant under
all the operations Ci. Such subsets will be called compressed. Since along the sequence of compression
the cardinality of the boundary is non-increasing and the cardinalities of the sets stay constant, it will
be therefore enough to prove the statement only for compressed sets.

Let us �rst introduce an order on the set of subsets of {0, 1}d. Each such subset can be identi�ed
with a vector in {0, 1}2d (since there are 2d subsets of {0, 1}d). Here the order of coordinates corresponds
to the lexicographical order on {0, 1}d.
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Example. For d = 3 we have the following order on {0, 1}d,

(000) < (001) < (010) < (011) < (100) < (101) < (110) < (111).

Thus, e.g., the vector (01101001) ∈ {0, 1}23 corresponds to the following subset of {0, 1}3.

{(001), (010), (100), (111)}.

The order ≺ on {0, 1}2d (and thus the order on subsets of {0, 1}d) is de�ned to be the reverse
lexicographical order. It is the usual order (where 1 > 0) but the order of reading the coordinates is
reversed.

By the construction we have the following obvious fact.

Fact. If x, y ∈ {0, 1}d, y ∈ T ⊆ {0, 1}d and x < y then ((T \{y})∪{x}) ≺ T . In particular, if Ci(T ) 6= T
for some i then Ci(T ) ≺ T . It follows that the sequence of compressions eventually stabilizes.

It is now enough to describe all possible compressed sets and prove that the satisfy the inequality. Let
us de�ne a new order � on {0, 1}d (compressibility order). If all compressed sets containing y ∈ {0, 1}d
also contain x ∈ {0, 1}d then we write x� y.

Fact. We have x < y implies x� y unless x = 01...1 and y = 10...0.

Proof. We �rst consider the case when xi = yi = ε for some i = 1, . . . , d, ε ∈ {0, 1}. Let T be
compressed. Suppose y ∈ T and x < y. We are to show that x ∈ T . We have Ci(T ) = T . Clearly x is
in T since Ti=ε = Ld−1[|Ti=ε|].

We now consider the case when xi 6= yi for all i = 1, . . . , d. Since x < y we get x1 = 0 and y1 = 1.
Assume that x, y are not equal to x = 01...1 and y = 10...0. Thus, there is i > 1 such that xi = 0 and
yi = 1. Therefore, x, y have the form x = (0a0b) and y = (1ā1b̄), where ā = 1 − a. Take z = (0a1b).
We have x < z and x1 = z1. Thus, from the previous case, x� z. Moreover, z < y and zi = yi. Thus,
z � y. We get x� z � y and therefore x� y.

Let L = {x : x < 01...1} and H = {x : x > 10...0}. On L and H the orders < and � are the
same. The only non-comparable points are x = 01...1 and y = 10...0. To see that they are indeed
non-comparable, we take T = {(0a) : a ∈ {0, 1}d−1} ∪ (10...0) \ (01...1). Then T is compressed and
contains y but it does not contain x. On the other hand T = {0a : a ∈ {0, 1}d−1} is compressed and it
contains x but does not contain y. Thus x and y are not comparable in �.

Take our compressed set T . If T ∩H 6= ∅ then there is a unique maximal point z in T . Since z ∈ T
we get that x < z implies x ∈ T for any x. Thus, in this case T is a pre�x in <.

Let us now assume that T ∩H = ∅. If T ∩ {(01...1), (10...0)} = ∅ then in the same way we get the
same conclusion. If T ∩ {(01...1), (10...0)} 6= ∅ then we proceed similarly if the cases

T ∩ {(01...1), (10...0)} = {(01...1), (10...0)}, T ∩ {(01...1), (10...0)} = {(01...1)}.

The only non-trivial case is T = L ∪ {(10...0)}. In this case we compute the size of edge boundary
explicitly,

|∂T | = 2d−1 − 2 + 2(d− 1) ≥ 2d−1 = |∂Ld−1[|T |]|.
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8 Enumerative combinatorics

8.1 Generating functions

The function

φ[(an)n≥0](x) =
∞∑
n=0

anx
n (9)

is called the generating function of the sequence of complex numbers (an)n≥0. Sometimes we shall treat
this expression as a formal sum, sometimes as a Taylor series of an actual function. Whenever we treat
the function φ as a Taylor series, we have the expression for its nth coe�cient,

an =
1

n!
φ(n)(0).

To use this expression we have to make sure that the series converges in some neighborhood of 0, which
happens if and only if lim supn→∞

n
√
|an| <∞ (AM.1.2). We will however not always bother to discusses

this convergence issues in great details here, as it is both not hard and not the most exciting part of our
study.

Here are some basic facts and general rules for computing generating functions (GF):

1. We have the obvious expression for the GF of the truncated sequence

φ[(an+k)n≥0](x) =
φ[(an)n≥0]−

∑k−1
i=0 aix

i

xk
.

2. By di�erentiating (9) k times we �nd out that φ(k)[(an)n≥0](x) =
∑

n≥0 n(n−1) . . . (n−k+1)anx
n−k,

which leads to
φ[(n(n− 1) . . . (n− k + 1)an)n≥0](x) = φ(k)[(an)n≥0](x) · xk.

3. If α, β are some complex numbers then

φ[(αan + βbn)n≥0](x) = αφ[(an)n≥0](x) + βφ[(bn)n≥0](x), φ[(anβ
n)n≥0](x) = φ[(an)n≥0](βx).

4. The function φ(x) = (1− x)−k generates the sequence an =
(
k+n−1
k−1

)
.

Proof. We have an = 1
n!
φ(n)(0) and thus it su�ces to compute φ(n)(0), which is very easy as

φ(n)(x) = k(k + 1) . . . (k + n − 1)(1 − x)−(k+n). We obtain an = 1
n!
k(k + 1) . . . (k + n − 1) =

(k+n−1)!
n!(k−1)!

=
(
k+n−1
k−1

)
.

Remark. Note that φ(x) = (
∑∞

n=0 x
n)
k
and thus an =

(
k+n−1
k−1

)
is the number of solutions in

{0, 1, 2, . . .} to the equation y1 + . . . yk = n (to compute the coe�cient in front of xn we have to
pick some term xni from the ith bracket is such a way that the sum of the exponents equals n).
An alternative way of deriving this equality is to observe that the above representations of n as a
sum of k non-negative numbers can be obtained by considering n+ k− 1 cells placed one after the
other and putting k − 1 bars into these cells, one bar in one cell. Clearly there are

(
n+k−1
k−1

)
ways

to do this. The lengths of "intervals" of empty cells correspond to the numbers n1, . . . , nk. This
is called the stars and bars method.
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5. For sequences (an)n≥0 and (bn)n≥0 let us de�ne cn =
∑n

i=0 aibn−i. The sequence (cn)n≥0 is called
the convolution of (an)n≥0 and (bn)n≥0, or their Cauchy product. We note that the generating
function of the Cauchy product is equal to the product of generating function, since

φ[(an)n≥0](x) · φ[(bn)n≥0](x) =

(
∞∑
n=0

anx
n

)(
∞∑
n=0

bnx
n

)
=
∞∑
n=0

(
n∑
i=0

aibn−i

)
xn,

provided that these series converge absolutely (say, use Merten's theorem).

Binet formula. We will �nd the explicit formula for the Fibonacci sequence, F0 = 0, F1 = 1, Fn+2 =
Fn+1 + Fn, n ≥ 0. Let φ(x) =

∑∞
n=0 Fnx

n be the generating function of (Fn)n≥0. Multiplying the
recurrence relation by xn+2 and summing over n we get

∞∑
n=0

Fn+2x
n+2 =

∞∑
n=0

Fn+1x
n+2 +

∞∑
n=0

Fnx
n+2.

This means that
φ(x)− F0 − F1x = x(φ(x)− F0) + x2φ(x).

Using the initial conditions F0 = 0 and F1 = 1 we get φ(x)−x = (x+x2)φ(x), which yields φ(x) = x
1−x−x2 .

To �nd Fn it is enough to �nd the Taylor expansion of φ. Let x− < x+ be the roots of the equation
x2+x−1 = 0. We shall apply the usual technique of writing the rational function as a sum of elementary
function. For some constants a, b we have

φ(x) =
x

1− x− x2
=

−x
(x− x+)(x− x−)

=
a

x− x+

+
b

x− x−
.

Multiplying the last equality by x − x+ and then taking x = x+ we get a = −x+
x+−x− . Multiplying it by

x− x− and then taking x = x− we get b = −x−
x−−x+ . We arrive at

φ(x) =
a

x− x+

+
b

x− x−
=

x+

x+ − x−
· 1

x+ − x
− x−
x+ − x−

· 1

x− − x
=

1

x+ − x−

(
1

1− x
x+

− 1

1− x
x−

)

=
∞∑
n=0

1

x+ − x−

(
1

xn+
− 1

xn−

)
xn.

We arrive at Fn = 1
x+−x−

(
1
xn+
− 1

xn−

)
. If we now use the fact that x± = −1±

√
5

2
, we get x+ − x− =

√
5.

Moreover from Vieta's formulas we get x+x− = −1, which give x−1
+ = −x− and x−1

− = −x+. Thus,

Fn =
1√
5

((
1 +
√

5

2

)n

−

(
1−
√

5

2

)n)
.

General linear recurrence with constant coe�cients. Suppose now that we have a recurrence
βkan+k + βk−1an+k−1 + . . . + β1an+1 + β0an = 0 for k ≥ 0. Let us assume that β0, βk 6= 0. In order to
de�ne this sequence uniquely we need to know the values of a0, . . . , ak−1. Take Pl(x) =

∑l
i=0 aix

i (these
are known polynomials). Multiplying the recurrence relations by xn+k and summing over n we get

βk

∞∑
n=0

an+kx
n+k + βk−1

∞∑
n=0

an+k−1x
n+k + . . .+ β1

∞∑
n=0

an+1x
n+k + β0

∞∑
n=0

anx
n+k = 0.
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This can be written as

βk(φ(x)− Pk−1(x)) + βk−1x(φ(x)− Pk−2(x)) + . . .+ β1x
k−1(φ(x)− P0(x)) + β0x

kφ(x) = 0.

From this we get

φ(x) =
βkPk−1(x) + βk−1xPk−2(x) + . . .+ β1x

k−1P0(x)

βk + βk−1x+ . . .+ β1xk−1 + β0xk
=
P (x)

Q(x)
.

This is a rational function and the degree of the numerator is smaller than the degree of the denominator.
From the standard theorem (AM.I.2) it is possible to write φ(x) in the form

φ(x) =
l∑

i=1

ki∑
j=1

cij
(x− λi)j

,

where λ1, . . . , λl are the roots of Q(x) with multiplicities k1, . . . , kl. Note that λi might be complex.
Thus from Point 4 we get

φ(x) =
l∑

i=1

ki∑
j=1

cij

(−1)jλji
· 1(

1− x
λi

)j =
l∑

i=1

ki∑
j=1

cij

(−1)jλji

∞∑
n=0

(
j + n− 1

j − 1

)(
x

λi

)n
.

Thus

an =
l∑

i=1

ki∑
j=1

cij(−1)jλ
−(j+n)
i

(
j + n− 1

j − 1

)
.

Catalan numbers. The Catalan numbers are the number Cn = 1
n+1

(
2n
n

)
. These numbers appear in

various combinatorial structures. As an example let us consider triangulations of a convex n-gon. We a
triangulation means cutting of the polygon into triangles by connecting vertices with non-crossing line
segments. We claim that the number of triangulations of a convex (n+ 2)-gon is precisely Cn.

e

T

P1

P2

Consider an (n+ 3)-gon P . Let us �x some edge e. Choosing the position of the triangle T to which
e belongs divides the polygon into two smaller polygons P1 and P2, say, (k+ 2)-gon and (n−k+ 2)-gon.
These polygons can be further triangulated. We therefore get the following recurrence relation for the
number an of triangulations of the (n+ 2)-gon

an+1 = an + a1an−1 + a2an−2 + . . .+ an−1a1 + an.

Let us put a0 = 1. We then get the equation

an+1 =
n∑
i=0

aian−i, a0 = 1.
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Let us observe that the right hand side is the Cauchy product of (an) with itself. Let φ e the generating

function of (an)n≥0. By Points 1 and 5 we get φ(x)2 = φ(x)−c0
x

= φ(x)−1
x

. This gives the equation
xφ(x)2 − φ(x) + 1 = 0. We are looking for an analytic function that satis�es this equation, at least in
some small neighborhood of 0. We get

xφ(x)2 − φ(x) + 1 = 0 =⇒ φ(x)2 − 1

x
φ(x) +

1

x
= 0 =⇒

(
φ(x)− 1

2x

)2

=
1

4x2
− 1

x
.

Thus we get two solutions

φ±(x) =
1

2x
±
√

1

4x2
− 1

x
.

We have to choose one of these functions (note that choosing φ+(x) for some values of x and φ−(x) for
other values makes no sense since we need our function to be analytic, in particular continuous). If we
choose φ(x) = φ+(x) for x > 0 then limx→0+ φ(x) =∞ and so our function in not analytic. If we choose
φ(x) = φ−(x) for x < 0 then limx→0+ φ(x) = −∞ and again our function in not analytic. We therefore
have to choose

φ(x) =
1

2x
− sgn(x)

√
1

4x2
− 1

x
=

1

2x
− 1

2x

√
1− 4x =

1−
√

1− 4x

2x
, x 6= 0

If we manage to prove that this function is analytic in some neighborhood of 0 by extending it to 0
taking φ(0) = 1 (which corresponds to the initial condition a0 = 1), then φ(x) is the generating function
of (an)n≥0 since by the equation for φ(x) this function generates a sequence that satis�es the recurrence
relation and the initial condition.

Let us take f(x) =
√

1− 4x. It is easy to observe that f (n)(x) = bn(1 − 4x)
1
2
−n for some numbers

bn. We have f (n+1)(x) = bn(−4)(1
2
− n)(1− 4x)

1
2
−n−1, which leads to bn+1 = 2(2n− 1)bn, b0 = 1. Thus

f (n)(0) = bn = −2n(2n− 3)!! for n ≥ 2 and b1 = −2. We get

1−
√

1− 4x = 1−

(
1− 2x+

∞∑
n=2

−2n(2n− 3)!!

n!
xn

)
= 2x+

∞∑
n=2

2n(2n− 3)!!

n!
xn.

Thus,

φ(x) =
1−
√

1− 4x

2x
= 1 +

∞∑
n=2

2n−1(2n− 3)!!

n!
xn−1 = 1 +

∞∑
n=1

2n(2n− 1)!!

(n+ 1)!
xn = 1 +

∞∑
n=1

(2n)!

(n+ 1)!n!
xn

We arrive at

φ(x) =
∞∑
n=0

1

n+ 1

(
2n

n

)
xn, an =

1

n+ 1

(
2n

n

)
, n ≥ 0.

Thus an = Cn.

Motzkin numbers. Let us consider the following recurrence relation

M0 = M1 = 1, Mn+1 =
2n+ 3

n+ 3
Mn +

3n

n+ 3
Mn−1.

Would it be possible to give a formula for Mn? Interestingly, the numbers Mn turn out to be integers!
We shall provide a combinatorial description later. Now we show a technique allowing us to prove this
using generating functions.
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Let φ be the generating function of (Mn)n≥0 (below we write φ ∼ Mn for "φ generates (Mn)n≥0").
We have

φ ∼Mn, xφ′(x) ∼ nMn, φ′(x) ∼ (n+1)Mn+1,
φ(x)− 1

x
∼Mn+1,

φ′(x)− 1

x
∼ (n+2)Mn+2,

φ(x)− 1− x
x2

∼Mn+2.

The recurrence
(n+ 4)Mn+2 = (2n+ 5)Mn+1 + 3(n+ 1)Mn

gives us therefore

φ′(x)− 1

x
+ 2

φ(x)− 1− x
x2

= 2φ′(x) + 3 · φ(x)− 1

x
+ 3xφ′(x) + 3φ(x),

equivalently

x(φ′(x)− 1) + 2(φ(x)− 1− x) = 2x2φ′(x) + 3x(φ(x)− 1) + 3x3φ′(x) + 3x2φ(x).

This is
φ′(x)(x− 2x2 − 3x3) = φ(x)(−2 + 3x+ 3x2) + 2.

We get

φ′(x) =
−2 + 3x+ 3x2

x(1 + x)(1− 3x)
φ(x) +

2

x(1 + x)(1− 3x)
.

Let us consider this type of di�erential equation in more general form

φ′(x) = R(x)φ(x) + S(x). (10)

In order to �nd the solution we can �rst solve the equation φ′0(x) = R(x)φ0(x). This equation is
equivalent to (ln |φ0|)′ = R(x), which leads to ln |φ0| =

∫
R(x)dx and thus φ0(x) = exp(

∫
R(x)dx) is a

positive solution to this equation. We now try to �nd the solution to (10) in the form φ(x) = φ0(x)C(x).
We get the equation

φ′0(x)C(x) + φ0(x)C ′(x) = R(x)φ0(x)C(x) + S(x).

We therefore get C ′(x) = S(x)
φ0(x)

. We can therefore take C(x) =
∫ S(x)

φ0(x)
dx.

In our case this procedure gives (using standard integration techniques)

(ln |φ0(x)|)′ =
∫
−2 + 3x+ 3x2

x(1 + x)(1− 3x)
dx =

∫ (
−2

x
+

1

·
1

1 + x
− 3

2
· 1

1− 3x

)
dx

= −2 ln |x|+ 1

2
ln |1 + x|+ 1

2
ln |1− 3x|.

Taking the exponent and neglecting the absolute value we get that

φ0(x) =

√
(1 + x)(1− 3x)

x2

satis�es

φ′0(x) =
−2 + 3x+ 3x2

x(1 + x)(1− 3x)
φ0(x).

We remark here that in general the above integration gives a unique function only up to some absolute
constant C, but this constant would only multiply φ0, which we will anyway do in the next step.

Next we take φ(x) = φ0(x)C(x) and we get (after evaluating the integral using standard techniques)

C(x) =

∫
2x

((1 + x)(1− 3x))
dx =

1− x
2
√

(1 + x)(1− 3x)
+ C.
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We arrive at

φ(x) =

√
(1 + x)(1− 3x)

x2

(
1− x

2
√

(1 + x)(1− 3x)
+ C

)
.

We want to have φ(0) = M0 = 1. In order to get this (and actually avoid blow ups near zero), we have
to take C = −1

2
. We arrive at

φ(x) =
1− x−

√
1− 2x− 3x2

2x2
=

1− x−
√

(1− x)2 − 4x2

2x2
.

We see right away that φ solves the equation aφ2 + φ+ c with a = x2, b = x− 1 and c = 1. Thus

x2φ(x)2 + (x− 1)φ(x) + 1 = 0.

Comparing the coe�cients in front of xn we get

Mn = Mn+1 +
n−2∑
k=0

MkMn−k−2, n ≥ 2, M0 = M1 = 0

Thus, we got another recurrence relation from which we easily see that Mn are integers.

8.2 Characteristic polynomials

In this chapter we describe an e�cient method to deal with linear recurrences with constant coe�cients.
In out �rst theorem we show how to construct sequences satisfying a givie equation.

Theorem 54. Suppose c0, c1, . . . , ck are complex numbers and c0, ck 6= 0. Let λ1, . . . , λp be the complex

roots of the polynomial S(z) =
∑k

j=0 cjz
j with multiplicities l1, . . . , lp, that is

ckz
k + ck−1z

k−1 + . . .+ c1z + c0 = ck(z − λ1)l1(z − λ2)l2 . . . (z − λp)lp .

Then for any polynomials Q1, . . . , Qp, such that deg(Qi) ≤ li − 1 for i = 1, . . . , p, the sequence

an = Q1(n)λn1 + . . .+Qp(n)λnp

satis�es the equation
∑k

i=0 cian+i = 0, for n ≥ 0.

Proof. The crucial observation is that our equation is linear and thus if two sequences satisfy this
equation then their linear combination will also satisfy it. Thus it is enough to prove that the equation
is satis�ed by the sequences

λni , , nλni , n2λni , . . . , nli−1λni , i = 1, . . . , p,

since any sequence of the form Qi(n)λni where deg(Qi) ≤ li−1 is a linear combination of these sequences.
It will actually be more convenient to consider another basis, namely

λni , , nλn−1
i , n(n− 1)λn−2

i , . . . , n(n− 1) . . . (n− li + 1)λn−li+1
i , i = 1, . . . , p,

Again any sequence of the form Qi(n)λni where deg(Qi) ≤ li−1 is a linear combination of these sequences.
In other words we have to check that our equation is satis�ed for the following sequences

an =
n!

(n− j)!
· λn−j, j = 0, 1, . . . , l − 1,
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where λ is a root of S with multiplicity l. Thus, we have to check that

k∑
i=0

ci
(n+ i)!

(n+ i− j)!
λn+i−j = 0, n ≥ 0.

De�ne T (z) = znS(z) =
∑k

i=0 ciz
n+i. The above equality is equivalent to T (j)(λ) = 0 for j = 0, 1, . . . , l−

1. This immediately follows from the fact that λ is a root of T with multiplicity l.

The space of solutions to a linear equation is a linear space over C. In order to prescribe our sequence
we need to provide the values of (a0, . . . , ak−1) (initial conditions). The map (a0, . . . , ak−1) 7→ (an)n≥0

is linear. Since the sequences of initial conditions (1, 0, . . . , 0), . . . , (0, . . . , 0, 1) form a basis of initial
conditions, the space of solutions has dimension k. In the above theorem we have presented a family of
l1 + . . .+ lp = deg(S) = k solutions

λni , , nλni , n2λni , . . . , nli−1λni , i = 1, . . . , p,

To show that these sequence form a basis of solutions it is enough to show that these sequences are
linearly independent. This will be done during the classes.

8.3 Random walk and re�ection principle

Consider a particle that moves on Z with the following rule: at a current point x the particle moves to
x + 1 with probability p and to x − 1 with probability 1 − p. If p = 1

2
then the random walk is called

symmetric.
Suppose out random walk stars from 0. In order to get to the point k after n steps we need to make

precisely 1
2
(n + k) steps to the right (note that if n and k have the same parity then it is not possible

to get from 0 to k in n steps). This means that the probability of reaching k from 0 after n steps is

Pn(0→ k; p) =

(
n

1
2
(n+ k)

)
p

1
2

(n+k)(1− p)
1
2

(n−k).

If p = 1
2
then we simply have

Pn(0→ k) =
1

2n

(
n

1
2
(n+ k)

)
.

The trajectory of a random walk can be visualize in a form of time-space diagram. One can see that the

event that a random walk starting from 0 reaches 0 after 2n steps and never goes below zero is precisely

P≥0
2n (0→ 0; p) = Cnp

n(1− p)n =
1

n+ 1

(
2n

n

)
pn(1− p)n,

where Cn is the n-th Catalan number (Dyck path interpretation of Catalan numbers). Let S0, S1, . . . , S2n

be the trajectory of the random walk. The above equality can be rewritten as

P0(S1 ≥ 0, . . . , S2n−1 ≥ 0 | S2n = 0) =
P≥0

2n (0→ 0; p)

P2n(0→ 0; p)
=

1
n+1

(
2n
n

)
pn(1− p)n(

2n
n

)
pn(1− p)n

=
1

n+ 1
.
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where the subscript 0 in P0 indicates that the random walk starts from 0.

We now introduce a trick called the re�ection principle.

Theorem 55. Let P0
n(k → l) be the probability that a symmetric random walk goes from k to l in n

steps and hits 0 at some time 0 ≤ t ≤ n. Then for k, l ≥ 1 we have P0
n(k → l) = Pn(−k, l).

k

−k
t0

Proof. It is enough to show that the number of paths from k to l hitting 0 is equal to the number of
paths from −k to l. Consider the time-space graphs of our paths. For any path from k to l that hits
0 we consider the �rst time t0 when this happens and we re�ect the path from time 0 to time t0 with
respect to the X axis. We get a path from −k to l. It is clear that this actually gives a one-to-one
correspondence since every path from −k to l has to intersect X axis (due to the fact that k > 0) and
by taking the �rst time t0 of intersection and re�ecting the path from time 0 to time t0 with respect to
the X axis we get the inverse bijection.

Our next theorem answers the following question: in an election where candidate A receives P votes
and candidate B receives Q votes with P > Q, what is the probability that A will be strictly ahead of
B throughout the count of the votes. We assume that we count the votes in a random way. The answer
is P−Q

P+Q
.

Theorem 56 (Bertrand's ballot theorem). Let m > 0. The probability that the random walk starting
form 0 stays positive, conditioned on the event that it �nally reaches m in n steps is m

n
.

Proof. For any �xed p all the paths from 0 to m of length n have the same probability and therefore
in our computations we shall omit the probabilistic factor and just focus on the number of paths. We
introduce the following notation for paths of length n:

1. N↗,0n (m) � # of paths from 0 to m starting with step +1 and hitting 0 before reaching m.

2. N↗,+n (m) � # of paths from 0 to m starting with step +1 and staying positive.

3. N↘n (m) � # of paths from 0 to m starting with step −1.

4. Nn(m) � # of all paths from 0 to m.

We have Nn(m) =
(

n
1
2

(n−m)

)
and N↘n (m) =

(
n−1

1
2

(n−m)−1

)
. Thus N↘n (m)

Nn(m)
= n−m

2n
. A re�ection similar to the

one presented in the last theorem gives N↗,0n (m) = N↘n (m).
Our probability is therefore equal to

N↗,+n (m)

Nn(m)
=
Nn(m)−N↗,0n (m)−N↘n (m)

Nn(m)
=
Nn(m)− 2N↘n (m)

Nn(m)
= 1− n−m

n
=
m

n
.
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8.4 Young tableaux

For a sequence of positive integers λ1 ≥ λ2 ≥ . . . ≥ λm we consider the Young diagram (Ferrers diagram)
of row lengths λi as shown in the Figure 7 below. If in the cells of this diagram we put numbers 1, . . . , n,
where n is the total number of cells in the diagram, in such a way that in every row and every column
the sequence of numbers is increasing, the we get a Young tableaux.

1

2

3

4

5

6

7

8

9 10

11

Figure 7: Ferrers diagram and Young tableaux built on it.

The hook length formula. We shall give a proof of the famous hook length formula for the number
of standard Young tableaux of a given shape. Suppose λ is a shape (Ferrers diagram). The hook at cell
(i, j) in λ is the set of cells in λ of the form (i′, j) where i′ ≥ i or (i, j′) where j′ ≥ j (see Figure 8).

(i, j)

Figure 8: A hook of length at (i, j) = (2, 3) and length 14.

The hook length hλ(i, j) is simply the number of cells in the hook at (i, j) in λ.

Theorem 57. The number of standard Young tableaux of shape λ and n cells is equal to n!∏
(i,j)∈λ hλ(i,j)

.

Proof (C. Greene, A. Nijenhuis, H.S. Wilf, 1979). The shape λ can be described by the lengths λ1, . . . , λm
of its rows. Let us de�ne

F (λ1, . . . , λm) =

{
n!∏

(i,j) hλ(i,j)
λ1 ≥ . . . ≥ λm

0 otherwise

Moreover, let f(λ1, . . . , λm) be the number of standard Young tableaux of shape λ. Our goal is to show
that f(λ1, . . . , λm) = F (λ1, . . . , λm).
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Our �rst observation is that in every standard Young tableaux the number n must appear at the
corner namely cell being last in its row and column. Thus removing it gives the following recurrence
relation

f(λ1, . . . , λm) =
∑
k

f(λ1, . . . , λk−1, λk − 1, λk+1, . . . , λm),

where we use the convention that f(λ1, . . . , λm) = 0 if there exists i such that λi < λi+1 (which is
consistent with the de�nition of F ). It is therefore enough to show that F satis�es the same recurrence
relations (the initial values coincide as F (1, 0, . . . , 0) = f(1, 0, . . . , 0) = 1). We note that in these
relations some of the rows may be empty and thus it may happen that λi = 0 for some numbers i.

We now introduce the following random process. With probability 1
n
we choose a cell (a, b) = (a1, b1).

If the chosen cell was a corner we stop the process. If not with uniform probability 1
ha1b1−1

we choose a

cell (a2, b2) in the hook Ha1,b1 at (a1, b1) (it is forbidden to take the cell (a1, b1)). If (a2, b2) is a corner, we
stop the process, if not we choose uniformly with probability 1

ha2b2−1
a cell in the hook Ha2,b2 at (a2, b2).

We continue like this until we reach a corner.
Let p(α, β) be the probability that the process terminates at (α, β). The sequence

(a, b) = (a1, b1)→ (a2, b2)→ (a3, b3)→ . . .→ (al, bl) = (α, β) (11)

will be called a trajectory of our process. The sets

A = {a1, . . . , al}, B = {b1, . . . , bl} (12)

will be called the horizontal and vertical projections of our trajectory. Let p(A,B|a, b) be the probability
that a random trajectory has projection A and B given that the �rst cell is (a, b). Note that this is
non-zero only if a = minA and b = minB. We observe that many di�erent trajectories may have the
same projections, for example for n = 2, λ1 = λ2 = 2 the trajectory (1, 1)→ (1, 2)→ (2, 2) has the the
same projections as (1, 1)→ (2, 1)→ (2, 2) (here A = B = {1, 2}).

Lemma 8. For any corner (α, β) and any (a, b) and A,B with a = minA, b = minB, α = maxA,
β = maxB we have

p(A,B | a, b) =
∏

i∈A,i 6=α

1

hiβ − 1
·
∏

j∈B,j 6=β

1

hαj − 1
.

Proof. Let us denote the product on the right hand side by Π. We shall proceed by induction on the
length of the path l. We adapt the convention that the empty product equals 1. Consider again the
random trajectory (11) and the projections (12). Let us proceed by the induction on |A|+ |B|. Suppose
A = {a = a1 < a2 < . . .} and B = {b = b1 < b2 < . . .}. We have (depending on whether the process
goes down or right from (a, b)

p(A,B | a, b) =
1

hab − 1

(
p(A \ {a1 = a}, B | a2, b1) + p(A,B \ {b1 = b} | a1, b2)

)
.

By the induction hypothesis we have

p(A \ {a1 = a}, B | a2, b1) = (haβ − 1)Π, p(A,B \ {b1 = b} | a1, b2)
)

= (hαb − 1)Π.

The assertion follows from the fact that hab − 1 = (haβ − 1) + (hαb − 1). Indeed, we have (with the
notation introduced in Figure 9) Indeed, we have

(haβ − 1) + (hαb − 1) = (α− a+ v − β + 1− 1) + (u− α + β − b+ 1− 1)

= v − a+ u− b = ha,b − 1.
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(a, b)

(α, β)
(u, b)

(a, v)

(a, β)

(α, b)

Figure 9: De�nition of u and v.

From Lemma 8 we get

p(α, β) =
1

n

∑
a,b

∑
A⊆{1,...,α}, B⊆{1,...,β}

minA=a,minB=b

maxA=α,maxB=β

p(A,B | a, b)

=
1

n

∑
a,b

∑
A⊆{1,...,α}, B⊆{1,...,β}

minA=a,minB=b

maxA=α,maxB=β

∏
i∈A,i 6=α

1

hiβ − 1
·
∏

j∈B,j 6=β

1

hαj − 1

=
1

n

∑
A⊆{1,...,α}, B⊆{1,...,β}

maxA=α,maxB=β

∏
i∈A,i 6=α

1

hiβ − 1
·
∏

j∈B,j 6=β

1

hαj − 1
.

Lemma 9. We have

p(α, β) =
Fα
F

:=
F (λ1, . . . , λα−1, λα − 1, λα+1 . . . , λm)

F (λ1, . . . , λm)
.

Proof. We �rst observe that if λα+1 > λα − 1 then the right hand side is zero which corresponds to the
case when (α, β) is not corner. Thus is this case our claim is true.

Now assume that (α, β) is a corner. Using the de�nition of F we see that removing the cell (α, β)
results in shortening of the hooks Hiβ and Hαj by 1. Also n drops down to n− 1. We therefore get

Fα
F

=
1

n

∏
1≤i<α

hiβ
hiβ − 1

∏
1≤j<β

hαj
hαj − 1

=
1

n

∏
1≤i<α

(
1 +

1

hiβ − 1

) ∏
1≤j<β

(
1 +

1

hαj − 1

)
=

1

n

∑
A⊆{1,...,α−1}, B⊆{1,...,β−1}

∏
i∈A

1

hiβ − 1
·
∏
j∈B

1

hαj − 1

=
1

n

∑
A⊆{1,...,α}, B⊆{1,...,β}

maxA=α,maxB=β

∏
i∈A,i 6=α

1

hiβ − 1
·
∏

j∈B,j 6=β

1

hαj − 1
= p(α, β).

To �nish the proof we observe that for any α the is at most one β such that (α, β) is a corner and
thus ∑

α

Fα
F

=
∑

(α,β) �corner

Fα
F

=
∑

(α,β) �corner

p(α, β) = 1.
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In other words
F (λ1, . . . , λm) =

∑
k

F (λ1, . . . , λk−1, λk − 1, λk+1, . . . , λm),

which was the desired equality.

9 Combinatorics of convex sets

9.1 Helly, Radon and Carathéodory theorems

Theorem 58 (Radon's theorem). Let A be a subset of Rd with n ≥ d+ 2. Then there exists a partition
A = X ∪ Y such that conv(X) ∩ conv(Y ) 6= ∅.

Proof. Without loss of generality we can assume that n = d+2. Suppose A = {x1, . . . , xd+2}. Note that
{x1 − xd+2, . . . xd+1 − xd+2} is the collection of d+ 1 vectors. Thus, these vectors are linear dependent,
i.e. there exists a sequence of real numbers a1, . . . , ad+1 such that

∑d+1
j=1 aj(xj − xd+2) = 0 and aj0 6= 0

for some j0. Take b1 = a1, . . . , bd+1 = ad+1 and bd+2 = −(a1 + · · · + ad+1). It follows that
∑d+2

j=1 bj = 0

and
∑d+2

j=1 bjxj = 0. The sets I+ = {i : bi > 0}, I− = {i : bi < 0} are both nonempty and∑
i∈I+ bi =

∑
i∈I−(−bi). Thus, ∑

i∈I+ bixi∑
i∈I+ bi

=

∑
i∈I−(−bi)xi∑
i∈I−(−bi)

.

The left hand side of the above equality belongs to conv{xi : i ∈ I+} while the right hand side is in
conv{xi : i ∈ I−}.

Theorem 59 (Helly's theorem). Let K1, K2, . . . , Kn be a �nite family of convex subsets of Rd with the
following property: for every I ⊆ [n] with |I| = d+ 1 we have

⋂
i∈I Ki 6= ∅. Then

⋂n
i=1Ki 6= ∅.

Proof. The case n ≤ d + 1 is trivial. We �rst give a solution in the case n = d + 2. Take the sets
Li =

⋂
j 6=iKj. Each of them is nonempty. Take xi ∈ Li, 1 ≤ i ≤ d+ 2. If these points are not distinct,

say xi = xk, i 6= k, we see that xi ∈ Li ∩ Lk =
⋂d+2
i=1 Ki. We can therefore assume that our points are

distinct. From Radon's theorem there exist a partition of {1, . . . , d + 2} into two sets I, J such that
conv{xi : i ∈ I} and conv{xj : j ∈ J} have a nonempty intersection. Let y be a point belonging to this
intersection. We show that y ∈ K1. In the same way we can prove that y ∈ Kj for every 1 ≤ j ≤ d+ 2.
Without loss of generality we can assume that 1 ∈ I. We have {xj : j ∈ J} ⊂ K1, since the only point
which does not belong to K1 is x1. It follows that y ∈ conv{xj : j ∈ J} ⊂ conv(K1) = K1.

Now we use induction on n. Take n > d + 2 and suppose that our assertion is true for n− 1. Take
the sets K1, K2, . . . , Kn−2, Kn−1 ∩Kn. From the case n = d + 2 we see that any d + 1 elements in this
collection have nonempty intersection. Thus, from the induction hypothesis the whole collection has a
nonempty intersection.

Theorem 60 (Carathéodory theorem). Let d ≥ 1 and let X ⊂ Rd. Suppose x ∈ conv(X). Prove that
there exists a set X0 ⊂ X with |X0| ≤ d+ 1 such that x ∈ conv(X0).

Proof. It is easy to see that

conv(X) =

{
n∑
i=1

λixi : xi ∈ X, λi ≥ 0,
n∑
i=1

λi = 1, n ≥ 1

}
.

Thus, we can write x =
∑n

i=1 λixi. If n ≤ d+1 then there is nothing to prove. Assume that n > d+1. As
in the proof of Radon's theorem there exists a sequence b1, . . . , bn such that

∑n
i=1 bi = 0 and

∑n
i=1 bixi = 0
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with bj0 6= 0 for some j0. Thus, x =
∑n

i=1(λi − cbi)xi and
∑n

i=1(λi − cbi) = 1 for every c ∈ R. Take c
such that λi− cbi ≥ 0, 1 ≤ i ≤ n and at least one such value is 0 (the existence of such c can be achieved
by increasing c from 0 and taking the smallest value of c for which one of the number λi − cbi equals
0). We have expressed x as a convex combination of n− 1 elements of X. We can further decrease the
length of this sum as long as the condition n > d+ 1 is satis�ed.

Remarks. Radon's theorem generalizes to the following Tverberg's theorem.

Theorem 61. Take d ≥ 1 and r ≥ 2. Given at least (r − 1)(d + 1) + 1 points in Rd, we can always
partition these points into r parts such that the convex hulls of these parts intersect.

9.2 Brunn-Minkowski inequality & isoperimetric problem.

Isoperimetric inequality. The isoperimetric inequality states that among sets of prescribed volume
in Rn the sets minimizing the surface area measure are Euclidean balls. For our purposes the surface
area measure is de�ned as

vol+(∂A) = lim inf
t→0+

vol(At)− vol(A)

t
,

where At = {x ∈ Rn : dist(A, x) ≤ t} is the so-called t-enlargement of A. If t is small then At \ A is
shell of width t above the boundary of A, see Figure 10.

t

Figure 10: Set A with its t-enlargement. The red part is At \A. If t→ t+ the red part "approximates"
the boundary ∂A.

In order to prove isoperimetric inequality it is enough to show that vol(A) = vol(B) (where B is a
ball) implies vol(At) ≥ vol(Bt) for t > 0. Indeed the then get

vol+(∂A) = lim inf
t→0+

vol(At)− vol(A)

t
≥ lim inf

t→0+

vol(Bt)− vol(B)

t
= vol+(∂B).

Let us introduce the notion of the Minkowski sum:

A+B = {a+ b : a ∈ A, b ∈ B}.

We now observe that At = A + B(t), where B = B(t) is a closed ball of radius t centered at 0. Let r
be such that |A| = |B(r)|. Since B(r)t = B(r + t), we get

vol(B(r)t)
1
n = vol(B(r + t))

1
n = (r + t) vol(B(1))

1
n = r vol(B(1))

1
n + t vol(B(1))

1
n

= vol(B(r))
1
n + vol(B(t))

1
n = vol(A)

1
n + vol(B(t))

1
n

If we could prove that

vol(A)
1
n + vol(B(t))

1
n ≤ vol(A+B(t))

1
n = vol(At)

1
n ,

we would get the desired inequality vol(B(r)t) ≤ vol(At). This will be done in the next paragraph.
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+ =

Figure 11: Minkowski sum of a triangle and a ball.

Brunn-Minkowski inequality. Our goal is to show the following theorem.

Theorem 62. Suppose A,B are measurable non-empty subsets of Rn such that A+B is also measurable.
Then

vol(A+B)
1
n ≥ vol(A)

1
n + vol(B)

1
n .

We �rst prove the Brunn-Minkowski inequality in the case of simple sets being �nite non-empty unions
of disjoint boxes

[c1, d1]× . . .× [cn, dn], ci < di, i = 1, . . . , n.

We proceed by induction on the sum l of the number of boxes in A and the number of boxes in B. The
base case is l = 2, that is A and B consist of only one box. We note that we can always shift our sets
since this does not a�ect our inequality. We can therefore assume that

A = [0, a1]× . . . [0, an], B = [0, b1]× . . .× [0, bn].

In this case we clearly have A+B = [0, a1 + b1]× . . .× [0, an + bn]. Our inequality amounts then to

n
√

(a1 + b1) . . . (an + bn) ≥ n
√
a1 . . . an + n

√
b1 . . . bn.

By the AM-GM inequality we get

1 =
1

n

n∑
i=1

ai
ai + bi

+
1

n

n∑
i=1

bi
ai + bi

≥ n

√
a1

a1 + b1

· . . . · an
an + bn

+ n

√
b1

a1 + b1

· . . . · bn
an + bn

.

Multiplying by n
√

(a1 + b1) . . . (an + bn) yields the desired inequality.

We now proceed to the induction step. Suppose that the sum of the number of boxes in A and the
number of boxes in B is l ≥ 3 and suppose that the assertion is true for all cases in which this number
is less than l. Without loss of generality assume that in A there are at least two boxes I1 and I2. Since
the boxes are disjoint, there is some i ∈ {1, . . . , n} and some h such that I1 lies in the open halfspace
{xi > h} and I2 lies in the open halfspace {xi < h} or vice versa. By shifting A be can assume that
h = 0. Cutting the space with this halfspace is called Hadwiger-Ohman cut and is in fact the crux of
the whole proof.

Denote by A− and A+ the intersections of A with the closed halfspaces {xi ≤ 0} and {xi ≥ 0},
respectively. Then each of A− and A+ is non-empty and is a union of fewer than l pairwise disjoint
boxes. (Perhaps the hyperplane xi = 0 cuts other boxes of A, but we do not pay attention about that.
We are only interested in separating I1 and I2). Since A is the pairwise disjoint union of A+, A− and a
set of volume zero, we have vol(A) = vol(A+) + vol(A−). Let α := vol(A+)/ vol(A) ∈ (0, 1). Now, it is
possible to shift B in such a way the set B+ = B ∩ {xi ≥ 0} "catches" the α proportion of B. We also
de�ne B− = B ∩ {xi ≤ 0} . Thus we get

vol(A+)

vol(A)
=

vol(B+)

vol(B)
= α,

vol(B−)

vol(B)
=

vol(A−)

vol(A)
= 1− α.
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I1

I2

A+

A−

B+

B−

Figure 12: The set A is divided into two parts A+ and A− using the Hadwiger-Ohman cut. The boxes
I1 and I2 has been separated.

The set A+ +B+ is contained in {xi ≥ 0} whereas A− +B− is contained in {xi ≤ 0}. Therefore,

vol((A+ +B+) ∪ (A− +B−)) = vol(A+ +B+) + vol(A− +B−). (13)

Moreover, these two sets are clearly subsets of A+B as A+, A− ⊆ A and B+, B− ⊆ B. This gives

vol(A+B) ≥ vol((A+ +B+) ∪ (A− +B−)) = vol(A+ +B+) + vol(A− +B−). (14)

The sum of the number of boxes in A+ and the number of boxes in B+ is at most l − 1 boxes (since
one of the boxes I1, I2 is not in A+). The same applies to A− and B−. Thus, by induction hypothesis
applied twice (to A+, B+ and A−, B−), we get

vol(A+B) ≥ vol((A+ +B+) + vol(A− +B−) ≥ (vol(A+)
1
n + vol(B+)

1
n )n + (vol(A−)

1
n + vol(B−)

1
n )n

= α(vol(A)
1
n + vol(B)

1
n )n + (1− α)(vol(A)

1
n + vol(B)

1
n )n = (vol(A)

1
n + vol(B)

1
n )n.

The assertion follows.
In the next paragraph w show how Brunn-Minkowski inequality for boxes implies the general case.

From boxes to measurable sets. Suppose that we already ensured about the validity of the Brunn-
Minkowski inequality for some family of simple sets, for example for compact (or open) set or for even
smaller family of �nite unions of closed boxes of the form

[a1, b1]× . . .× [an, bn], ai < bi, i = 1, . . . , n. (15)

Then we would like to deduce the Brunn-Minkowski inequality for general measurable sets. This is
possible due to the following proposition.

Lemma 10. Assume that the Brunn-Minkowski inequality holds true for non-empty sets being �nite
unions of boxes of the form (15). Then it holds true for all pairs of measurable sets whose sum is also
measurable.

Proof. Let A and B be non-empty measurable sets whose sum is also measurable. Assume we know how
to prove the Brunn-Minkowski inequality for compact sets. Let (Ak) and (Bk) be sequences of compact
sets approximating A and B from below, namely Ak ⊆ A, Bk ⊆ B and

lim
k→∞

vol(Ak) = vol(A), lim
k→∞

vol(Bk) = vol(B).

Such approximations exist due to the inner regularity of Lebesgue measure. Indeed, for any measurable
set A in Rn, we have

vol(A) = sup{vol(K) : K ⊆ A, K − compact}.
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Since for any n we have An +Bn ⊆ A+B, we get

vol(A+B)
1
n ≥ vol(Ak +Bk)

1
n ≥ vol(Ak)

1
n + vol(Bk)

1
n .

Taking the limit as k →∞ gives the result.
Now suppose we know how to prove our inequality for non-empty open sets. We shall deduce the

inequality for non-empty compact sets. To this end take non-empty compact sets A and B and consider
the sets Ar = A+rB̃n

2 and Br = B+ B̃n
2 , where B̃

n
2 is the open Euclidean unit ball centred at the origin.

In particular the sets Ar, Br are clearly open. We clearly have

Ar = {x ∈ Rn : dist(A, x) < r},

where the distance is taken in the standard Euclidean metric. Thus, we get

vol(A+B + 2rB̃n
2 )

1
n = vol((A+ rB̃n

2 ) + (B + rB̃n
2 ))

1
n

≥ vol(A+ rB̃n
2 )

1
n + vol(B + rB̃n

2 )
1
n

≥ vol(A)
1
n + vol(B)

1
n .

The set C = A + B is compact as a Minkowski sum of two compact sets. Take rk = 1
2k
, k ≥ 1. Then

A+B + 2rkB̃
n
2 = C + 1

k
B̃n

2 . Let us denote this set by Ck. The Lebesgue measure is continuous, namely
for arbitrary sequence of measurable sets C1 ⊇ C2 ⊇ . . . with vol(C1) < ∞ we have vol(

⋂∞
k=1Ck) =

limk→∞ vol(Ck). Applying this principle to our sets Ck and using the fact that due to the compactness
of C, we have

∞⋂
k=1

Ck =
∞⋂
k=1

(
C +

1

k
Bn

2

)
= {x ∈ Rn : dist(C, x) = 0} = C,

gives limk→∞ vol(A + B + 2rBn
2 ) = limk→∞ vol(Ck) = vol(C) = vol(A + B). The assertion of the

Brunn-Minkowski inequality follows.
Finally, assume that the Brunn-Minkowski inequality holds true for �nite unions of boxes. We shall

deduce it for arbitrary non-empty open sets U and V . There exist sequences (Ck) and (Dk) of sets being
�nite unions of boxes such that Ck ⊆ U , Dk ⊆ V and

lim
k→∞

vol(Ck) = vol(U), lim
k→∞

vol(Dk) = vol(V ).

This is a well known property of Lebesgue measure, which follows for example from the fact that
every open set U is a union of countably many open balls and thus also countably many boxes Bk,
k ≥ 1. Due to the continuity of the Lebesgue measure (for measurable sets S1 ⊆ S2 ⊆ . . . we have
vol(

⋃∞
k=1 Sk) = limk→∞ vol(Sk)), we get

vol(U) = vol

(
∞⋃
k=1

Bk

)
= vol

(
∞⋃
k=1

k⋃
j=1

Bj

)
= lim

k→∞
vol

(
k⋃
j=1

Bj

)
.

Thus setting Ck =
⋃k
j=1 Bj gives the desired approximation. Now it su�ce to observe that

vol(U + V )
1
n ≥ vol(Ck +Dk)

1
n ≥ vol(Ck)

1
n + vol(Dk)

1
n −−−→

k→∞
vol(U)

1
n + vol(V )

1
n .

Remark. The example of a fat Cantor set shows that it is not possible to directly approximate measurable
sets by �nite unions of boxes.
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