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1. Let t(K) = {x ∈ Rd : (x+C)∩K 6= ∅}. It is enough to show that the sets t(K) are convex
and then apply Helly’s theorem.

To show that t(K) is convex suppose that (x+C) ∩K 6= ∅ and (y +C) ∩K 6= ∅. We are to
show that (λx+ (1− λ)y + C) ∩K 6= ∅ for every λ ∈ [0, 1]. Suppose that x0 ∈ (x+ C) ∩K
and y0 ∈ (y+C)∩K. We are going to show that λx0 +(1−λ)y0 ∈ (λx+(1−λ)y+C)∩K.
To check it we observe that:

(a) since x0, y0 ∈ K by convexity of K we have λx0 + (1− λ)y0 ∈ K.

(b) since x0 ∈ x + C and y0 ∈ y + C then λx0 + (1− λ)y0 ∈ λ(x + C) + (1− λ)(y + C) =
(λx+(1−λ)y)+λC+(1−λ)C = (λx+(1−λ)y)+C. The last equality λC+(1−λ)C
is just the convexity of C (for general sets only the inclusion C ⊆ λC + (1 − λ)C is
true!).



2. This is the so-called Rado’s theorem. It is straightforward to show that the following condi-
tions are equivalent:

(i) x is a centrepoint of X.

(ii) x is in every open half-space H containing more than dn
d+1

points of X.

We shall find x satisfying (ii). Consider the family of convex sets

C =
{
conv(X ∩H) : H is an open half-space such that X ∩H >

dn

d+ 1

}
.

This is clearly a finite family of size at most 2|X|. The intersection of any d + 1 sets from C
misses less that (d + 1) n

d+1
= n points and thus it is non-empty. By Helly’s theorem there

exists x ∈
⋂
C∈C C. Every such x is a desired point.



3. This is called the Kirchberger’s theorem. For every x ∈ X and every y ∈ Y we consider
halfspaces in Rd+1 (these are parameters of halfspaces in Rd)

Gx = {(u, ud+1) ∈ Rd+1 : 〈u, x〉 > ud+1}, Gy = {(u, ud+1) ∈ Rd+1 : 〈u, y〉 < ud+1}.

Note that if, say (u, ud+1) ∈ Gx ∩ Gy then the halfspace {x ∈ Rd : 〈u, x〉 > ud+1} strictly
separates x from y. Our assumption shows that every d+2 halfspaces have a point in common.
By Helly’s theorem all the halfspaces have a point in common, which determines a strictly
separating halfspace.



4. Consider all (d + 1)-element subsets of a finite set X of point in Rd and color them using
the following rule: the set S gets the color χ(S) = n(S) mod d, where n(S) is the number of
points from X in the interior of S. From Ramsey theorem if |X| is sufficiently big, there will
be k element subset A of X such that all its (d + 1)-subsets received the same color χ. We
claim that this is the desired subset.

Indeed, suppose by contradiction that there is a point in a ∈ A such that a ∈ int(conv(A)).
From Caratheodory’s theorem a is a convex combination of d + 1 points x1, . . . , xd+1 from
A. Let V = {x1, . . . , xd+1} Let K = conv({x1, . . . , xd+1}). We must have a ∈ int(K) since
otherwise a would be on a face of the symplex K which implies that a together with this face
forms a (d + 1)-element coplanar set. For every face Fi (i = 1, . . . , d + 1) of K consider the
simplex Si = conv(Fi, a) and the set Vi ⊆ A of its vertices. We have, modulo d, and using
the fact that none of the points from A ∩ int(V ) lies on

⋃n+1
i=1 ∂Si (otherwise contradiction

with non-complanarity)

χ = χ(V ) = 1 +
d+1∑
i=1

χ(Vi) = 1 + (d+ 1)χ = χ+ 1,

contradiction.



5. Assume that t, s are in the support of f , that is Kt and Ks are non-empty. We claim that
for every λ ∈ [0, 1] we have

Kλt+(1−λ)s ⊇ λKt + (1− λ)Ks.

Take any points (t, a) ∈ Kt and (s, b) ∈ Ks. Here a, b ∈ Rd−1. Clearly by convexity of K, we
have

λ(t, a) + (1− λ)(s, b) = (λt+ (1− λ)s, λa+ (1− λ)b) ∈ K

and since the first coordinate of this vector is λt+(1−λ)s, the above point actually belongs
to Kλt+(1−λ)s. Take K̃t = Kt− (t, 0) ⊆ Rd−1×{0}. Then K̃λt+(1−λ)s ⊇ λK̃t+(1−λ)K̃s. From
Brunn-Minkowski inequality we have,

f(λt+ (1− λ)s)
1

d−1 = vold−1(K̃λt+(1−λ)s)
1

d−1 ≥ vold−1(λK̃t + (1− λ)K̃s)
1

d−1

≥ vold−1(λK̃t)
1

d−1 + (vold−1((1− λ)K̃s)
1

d−1

= λvold−1(K̃t)
1

d−1 + (1− λ)vold−1(K̃s)
1

d−1

= λf(t)
1

d−1 + (1− λ)f(s)
1

d−1 ,

as desired. Note that in order to apply the Brunn-Minkowski inequality we have used the
assumption that Kt and Ks are non-empty.


