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1. Let t(K) = {x € R*: (x+C)NK # 0}. It is enough to show that the sets t(K) are convex
and then apply Helly’s theorem.

To show that ¢(K) is convex suppose that (z +C)NK # § and (y + C) N K # (. We are to
show that (Az 4+ (1 — Ay + C) N K #  for every X € [0, 1]. Suppose that zy € (z + C)N K
and yo € (y+ C)N K. We are going to show that Azg+ (1 —A)yg € Az + (1 -Ny+C)NK.
To check it we observe that:

(a) since xg,yo € K by convexity of K we have Azg+ (1 — Ny € K.

(b) since zg € x+ C and yo € y+ C then Axg+ (1 = Nyo e Mz +C)+ (1= N)(y+ C) =
Az +(1=XNy)+AXC+ (1=N)C = (Ax+ (1= N)y)+ C. The last equality A\C' + (1 —\)C
is just the convexity of C' (for general sets only the inclusion C' C AC' + (1 — M\)C' is
true!).



2. This is the so-called Rado’s theorem. It is straightforward to show that the following condi-
tions are equivalent:

(i) x is a centrepoint of X.

ii) z is in every open half-space H containing more than 2% points of X.
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We shall find x satisfying (ii). Consider the family of convex sets

d
C = {conV(X N H): H is an open half-space such that X N H > y —17—11} :

This is clearly a finite family of size at most 2/*!. The intersection of any d + 1 sets from C

misses less that (d + 1)% = n points and thus it is non-empty. By Helly’s theorem there

exists © € (e C. Every such z is a desired point.



3. This is called the Kirchberger’s theorem. For every x € X and every y € Y we consider
halfspaces in R?*! (these are parameters of halfspaces in R¢)

Ge = {(u,ugr1) € R™: (u,2) > ugyy}, Gy = {(u,ugr1) € R (u,y) < ugir}

Note that if, say (u,uqs1) € G» NG, then the halfspace {z € R? : (u,x) > ug1} strictly
separates x from y. Our assumption shows that every d+2 halfspaces have a point in common.
By Helly’s theorem all the halfspaces have a point in common, which determines a strictly
separating halfspace.



4. Consider all (d + 1)-element subsets of a finite set X of point in R? and color them using
the following rule: the set S gets the color x(S) = n(S) mod d, where n(S) is the number of
points from X in the interior of S. From Ramsey theorem if | X| is sufficiently big, there will
be k element subset A of X such that all its (d + 1)-subsets received the same color y. We
claim that this is the desired subset.

Indeed, suppose by contradiction that there is a point in a € A such that a € int(conv(A)).
From Caratheodory’s theorem a is a convex combination of d + 1 points x1,..., 241 from
A. Let V =A{x1,...,2441} Let K = conv({zy,...,24:1}). We must have a € int(K) since
otherwise a would be on a face of the symplex K which implies that a together with this face
forms a (d + 1)-element coplanar set. For every face F; (i = 1,...,d + 1) of K consider the
simplex S; = conv(F;, a) and the set V; C A of its vertices. We have, modulo d, and using
the fact that none of the points from A N int(V) lies on |JI7,' 9S; (otherwise contradiction
with non-complanarity)

d+1
X=x(V)=1+> x(Vi)) =1+ (d+)x =x+1,
i=1

contradiction.



5. Assume that ¢, s are in the support of f, that is K; and K, are non-empty. We claim that
for every A € [0, 1] we have

K)\t+(1—)\)s ) )\Kt + (1 - )\)Ks

Take any points (¢t,a) € K; and (s,b) € K,. Here a,b € R?"!. Clearly by convexity of K, we
have
At a) + (1= A)(s,0) = M+ (1= N)s, da+ (1= \b) € K

and since the first coordinate of this vector is At + (1 — A)s, the above point actually belongs
to K)\t+(1,/\)8. Take Kt = Kt — (t, 0) g Rdil X {O} Then K)\t+(1,)\)5 2 )\Kt+ (1 — A)Ks From
Brunn-Minkowski inequality we have,

1

f()\t + (1 — )\)8)ﬂ = VOldfl( )\t_g_(l_)\)s)%l Z VOldfl()\Kt + (1 - )\)[%s)ﬂ

as desired. Note that in order to apply the Brunn-Minkowski inequality we have used the
assumption that K; and K, are non-empty.



