Introduction to Combinatorics Combinatorics of convex sets

Wojciech Nadara, class 12, 2020-05-28

1. Let $t(K)=\left\{x \in \mathbb{R}^{d}:(x+C) \cap K \neq \emptyset\right\}$. It is enough to show that the sets $t(K)$ are convex and then apply Helly's theorem.

To show that $t(K)$ is convex suppose that $(x+C) \cap K \neq \emptyset$ and $(y+C) \cap K \neq \emptyset$. We are to show that $(\lambda x+(1-\lambda) y+C) \cap K \neq \emptyset$ for every $\lambda \in[0,1]$. Suppose that $x_{0} \in(x+C) \cap K$ and $y_{0} \in(y+C) \cap K$. We are going to show that $\lambda x_{0}+(1-\lambda) y_{0} \in(\lambda x+(1-\lambda) y+C) \cap K$. To check it we observe that:
(a) since $x_{0}, y_{0} \in K$ by convexity of K we have $\lambda x_{0}+(1-\lambda) y_{0} \in K$.
(b) since $x_{0} \in x+C$ and $y_{0} \in y+C$ then $\lambda x_{0}+(1-\lambda) y_{0} \in \lambda(x+C)+(1-\lambda)(y+C)=$ $(\lambda x+(1-\lambda) y)+\lambda C+(1-\lambda) C=(\lambda x+(1-\lambda) y)+C$. The last equality $\lambda C+(1-\lambda) C$ is just the convexity of C (for general sets only the inclusion $C \subseteq \lambda C+(1-\lambda) C$ is true!).
2. This is the so-called Rado's theorem. It is straightforward to show that the following conditions are equivalent:
(i) x is a centrepoint of X.
(ii) x is in every open half-space H containing more than $\frac{d n}{d+1}$ points of X.

We shall find x satisfying (ii). Consider the family of convex sets

$$
\mathcal{C}=\left\{\operatorname{conv}(X \cap H): H \text { is an open half-space such that } X \cap H>\frac{d n}{d+1}\right\} .
$$

This is clearly a finite family of size at most $2^{|X|}$. The intersection of any $d+1$ sets from \mathcal{C} misses less that $(d+1) \frac{n}{d+1}=n$ points and thus it is non-empty. By Helly's theorem there exists $x \in \bigcap_{C \in \mathcal{C}} C$. Every such x is a desired point.
3. This is called the Kirchberger's theorem. For every $x \in X$ and every $y \in Y$ we consider halfspaces in \mathbb{R}^{d+1} (these are parameters of halfspaces in \mathbb{R}^{d})

$$
G_{x}=\left\{\left(u, u_{d+1}\right) \in \mathbb{R}^{d+1}:\langle u, x\rangle>u_{d+1}\right\}, \quad G_{y}=\left\{\left(u, u_{d+1}\right) \in \mathbb{R}^{d+1}:\langle u, y\rangle<u_{d+1}\right\} .
$$

Note that if, say $\left(u, u_{d+1}\right) \in G_{x} \cap G_{y}$ then the halfspace $\left\{x \in \mathbb{R}^{d}:\langle u, x\rangle>u_{d+1}\right\}$ strictly separates x from y. Our assumption shows that every $d+2$ halfspaces have a point in common. By Helly's theorem all the halfspaces have a point in common, which determines a strictly separating halfspace.
4. Consider all $(d+1)$-element subsets of a finite set X of point in \mathbb{R}^{d} and color them using the following rule: the set S gets the color $\chi(S)=n(S) \bmod d$, where $n(S)$ is the number of points from X in the interior of S. From Ramsey theorem if $|X|$ is sufficiently big, there will be k element subset A of X such that all its $(d+1)$-subsets received the same color χ. We claim that this is the desired subset.
Indeed, suppose by contradiction that there is a point in $a \in A$ such that $a \in \operatorname{int}(\operatorname{conv}(A))$. From Caratheodory's theorem a is a convex combination of $d+1$ points x_{1}, \ldots, x_{d+1} from A. Let $V=\left\{x_{1}, \ldots, x_{d+1}\right\}$ Let $K=\operatorname{conv}\left(\left\{x_{1}, \ldots, x_{d+1}\right\}\right)$. We must have $a \in \operatorname{int}(K)$ since otherwise a would be on a face of the symplex K which implies that a together with this face forms a $(d+1)$-element coplanar set. For every face $F_{i}(i=1, \ldots, d+1)$ of K consider the simplex $S_{i}=\operatorname{conv}\left(F_{i}, a\right)$ and the set $V_{i} \subseteq A$ of its vertices. We have, modulo d, and using the fact that none of the points from $A \cap \operatorname{int}(V)$ lies on $\bigcup_{i=1}^{n+1} \partial S_{i}$ (otherwise contradiction with non-complanarity)

$$
\chi=\chi(V)=1+\sum_{i=1}^{d+1} \chi\left(V_{i}\right)=1+(d+1) \chi=\chi+1
$$

contradiction.
5. Assume that t, s are in the support of f, that is K_{t} and K_{s} are non-empty. We claim that for every $\lambda \in[0,1]$ we have

$$
K_{\lambda t+(1-\lambda) s} \supseteq \lambda K_{t}+(1-\lambda) K_{s}
$$

Take any points $(t, a) \in K_{t}$ and $(s, b) \in K_{s}$. Here $a, b \in \mathbb{R}^{d-1}$. Clearly by convexity of K, we have

$$
\lambda(t, a)+(1-\lambda)(s, b)=(\lambda t+(1-\lambda) s, \lambda a+(1-\lambda) b) \in K
$$

and since the first coordinate of this vector is $\lambda t+(1-\lambda) s$, the above point actually belongs to $K_{\lambda t+(1-\lambda) s}$. Take $\tilde{K}_{t}=K_{t}-(t, 0) \subseteq \mathbb{R}^{d-1} \times\{0\}$. Then $\tilde{K}_{\lambda t+(1-\lambda) s} \supseteq \lambda \tilde{K}_{t}+(1-\lambda) \tilde{K}_{s}$. From Brunn-Minkowski inequality we have,

$$
\begin{aligned}
f(\lambda t+(1-\lambda) s)^{\frac{1}{d-1}} & =\operatorname{vol}_{d-1}\left(\tilde{K}_{\lambda t+(1-\lambda) s}\right)^{\frac{1}{d-1}} \geq \operatorname{vol}_{d-1}\left(\lambda \tilde{K}_{t}+(1-\lambda) \tilde{K}_{s}\right)^{\frac{1}{d-1}} \\
& \geq \operatorname{vol}_{d-1}\left(\lambda \tilde{K}_{t}\right)^{\frac{1}{d-1}}+\left(\operatorname{vol}_{d-1}\left((1-\lambda) \tilde{K}_{s}\right)^{\frac{1}{d-1}}\right. \\
& =\lambda \operatorname{vol}_{d-1}\left(\tilde{K}_{t}\right)^{\frac{1}{d-1}}+(1-\lambda) \operatorname{vol}_{d-1}\left(\tilde{K}_{s}\right)^{\frac{1}{d-1}} \\
& =\lambda f(t)^{\frac{1}{d-1}}+(1-\lambda) f(s)^{\frac{1}{d-1}},
\end{aligned}
$$

as desired. Note that in order to apply the Brunn-Minkowski inequality we have used the assumption that K_{t} and K_{s} are non-empty.

