Introduction to Combinatorics Generating functions

Wojciech Nadara, class 11, 2020-05-21

1. a) Let $s_{1}, \ldots, s_{2 n+1} \in\{-1,1\}$ be such that $\sum_{i=1}^{2 n+1} s_{i}=1$. Let

$$
\sigma_{k}=\left(s_{k}, \ldots, s_{2 n+1}, s_{1}, \ldots, s_{k-1}\right)
$$

Show that all the sequences $\sigma_{1}, \ldots, \sigma_{2 n+1}$ are different and precisely one of them has all its partial sums strictly positive.
b) Use the above fact to show that the nth Catalan number equals $\frac{1}{n+1}\binom{2 n}{n}$.
2. Let $S_{n}^{(132)}$ be the set of permutations $a_{1} a_{2} \ldots a_{n}$ of $\{1,2, \ldots, n\}$ such that there are no indexes $i<j<k$ such that $a_{i}<a_{k}<a_{j}$. Find the cardinality of $S_{n}^{(132)}$.
3. Let $S_{0}=0, S_{1}, \ldots, S_{n}$ be a trajectory of a symmetric ($p=\frac{1}{2}$) random walk starting from the origin. Let $M_{n}=\max _{0 \leq t \leq n} S_{t}$. Prove that
a) for all $h \geq 1$ and all k we have

$$
\mathbb{P}\left(M_{n} \geq h, S_{n}=k\right)= \begin{cases}\mathbb{P}\left(S_{n}=k\right) & k \geq h \\ \mathbb{P}\left(S_{n}=2 h-k\right) & k<h\end{cases}
$$

b) for all $h \geq 1$ we have $\mathbb{P}\left(M_{n} \geq h\right)=\mathbb{P}\left(S_{n}=h\right)+2 \mathbb{P}\left(S_{n} \geq h+1\right)$,
c) for all $h \geq 1$ we have $\mathbb{P}\left(M_{n}=h\right)=\mathbb{P}\left(S_{n}=h\right)+\mathbb{P}\left(S_{n}=h+1\right)$.
4. Let R_{n} be the number of ways to write n as a sum of pairwise different non-negative integers. Let S_{n} be the number of ways to write n as a sum of odd integers (permutation of numbers gives the same division). Using generating functions show that $R_{n}=S_{n}$.
Bonus: Can you show that combinatorially as well?
5. Peter likes magnifying glasses. He has n dollars and decided he will spend them all to buy exactly k magnifying glasses. However magnifying glasses come in different prices and magnifying ratios (abbreviated as MR) - magnifying glass that costs d dollars has MR equal to $\binom{d+1}{2}$ (and there are infinitely many such glasses in stock for every positive integer d). He has not decided yet on how he will exactly spend his money, so he considers a scenario that he will spend d_{1}, \ldots, d_{k} dollars for them respectively for each sequence of positive integers such that $d_{1}+\ldots d_{k}=n$. After buying them, he will stack them up and their MRs will multiply, so if they have MRs r_{1}, \ldots, r_{k}, resulting construction will have MR $r_{1} \cdot r_{2} \cdot \ldots \cdot r_{k}$.
a) Compute the sum of all MRs over all possible scenarios.
b) Compute the sum of all MRs over all possible scenarios if magnifying glass that costs d dollars has magnifying ratio d^{2} instead of $\binom{d+1}{2}$ (it is acceptable to express answer as a sum of length k).

Bonus: Can you solve a) combinatorially?

