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1. (a) We consider the graph of the sequence of partial sums of our sequence (si) (see below).
Consider the last moment k when the graph attains its lowest level −h. Consider the shift
that starts from this moment, that is sk+1, . . . , s2n+1, s1, . . . , sk. From our construction we
have

sk+1 ≥ 1, sk+1 + sk+2 ≥ 1, . . . , sk+1 + . . .+ s2n+1 = h+ 1.

Since
s1 ≥ −h, s1 + s2 ≥ −h, . . . s1 + s2 + . . .+ sk ≥ −h

we get

sk+1 + . . .+ s2n+1 + s1 ≥ 1, . . . , sk+1 + . . .+ s2n+1 + s1 + s2 + . . .+ sk ≥ 1.

To show that every shift of (si) is different just observe that equality of two shifts implies
that the sequence (si) is periodic, which cannot be the case as we have n values −1 and n+1
values +1.

(b) Note that Cn is the number of sequences s1, . . . , s2n+1 ∈ {−1, 1} having all partial sums
strictly positive and satisfying

∑2n+1
i=1 si = 1 (to get bijection with Dyck paths just remove the

first step). We call such sequences ballot sequences. Not consider all sequences a1, . . . , a2n+1

with
∑2n+1

i=1 ai = 1 and no restriction on partial sums. There are
(
2n+1
n

)
such sequences. We

call two such sequences equivalent if one is obtained from the other by shifting. From point
(a) we have 1

2n+1

(
2n+1
n

)
equivalence classes since each equivalence class has precisely 2n + 1

members. Again by point (a) in every equivalence class there is precisely one ballot sequence.



2. Let π be an element of S(132)
n . We write π as π = πLnπR. Any number in πL is bigger than

any number in πR. Thus πR is a permutation of {1, 2, . . . , |πR|} and πL is a permutation
of {|πR| + 1, . . . , n − 1}. Let π′L be the permutation of {1, . . . , |πL|} obtained from πL by
substracting |πR| from each of its letter. We define the map f between S(132)

n and Dyck paths
of length 2n in the following way

f(π) = ↗ f(π′L) ↘ f(πR), f(∅) = ∅.

For example:

f(7564213) =↗↘ f(564213) =↗↘↗ f(1)↘ f(4213) =↗↘↗↗↘↘ f(4213)

=↗↘↗↗↘↘↗↘ f(213) =↗↘↗↗↘↘↗↘↗ f(21)↘
=↗↘↗↗↘↘↗↘↗↗↘ f(1)↘=↗↘↗↗↘↘↗↘↗↗↘↗↘↘

It is not hard to describe the inverse map. We live it to the reader.



3. (a) For k ≥ h the assertion is trivial. We therefore assume k < h. Let t0 be the first time
when the trajectory reaches level h. Reflecting the trajectory for times t0 ≤ t ≤ n gives the
desired equality.

t0

h

(n, k)

(n, 2h− k)

(b) We have

P (Mn ≥ h) =
∑
k

P (Mn ≥ h, Sn = k) =
∑
k≥h

P (Sn = k) +
∑
k<h

P (Sn = 2h− k)

= P (Sn = h) + 2
∑

k≥h+1

P (Sn = k) = P (Sn = h) + 2P (Sn ≥ h+ 1) .

(c) We have

P (Mn = h) = P (Mn ≥ h)− P (Mn ≥ h+ 1)

= P (Sn = h) + 2P (Sn ≥ h+ 1)− P (Sn = h+ 1) + 2P (Sn ≥ h+ 2)

= P (Sn = h) + 2(P (Sn ≥ h+ 1)− P (Sn ≥ h+ 2))− P (Sn = h+ 1)

= P (Sn = h) + 2P (Sn = h+ 1)− P (Sn = h+ 1) = P (Sn = h) + P (Sn = h+ 1) .



4. Let R(x) be the generating function representing the number of ways in which we can write
an integer as a sum of pairwise different numbers, that is R(x) =

∑∞
i=0Rix

i. It is clear that
R(x) = (1 + x)(1 + x2)(1 + x3) . . ..

Let S(x) be the generating function representing the number of ways in which we can write
an integer as a sum of odd numbers, that is S(x) =

∑∞
i=0 Six

i. It is clear that S(x) =
(1 + x+ x2 + . . .)(1 + x3 + x6 + . . .)(1 + x5 + x10 + . . .) . . . = 1

1−x ·
1

1−x3 · 1
1−x5 · . . ..

Now, what is left to prove is that S(x) = R(x). However note that 1
1−x =

∏∞
i=0(1 + x2

i
), and

similarly 1
1−xk =

∏∞
i=0(1 + xk2

i
). That is because if we multiply both sides by 1 − xk then

left side will become 1 and right side will become (1 − xk)(1 + xk)(1 + x2k)(1 + x4k) . . . =
(1 − x2k)(1 + x2k)(1 + x4k) . . . = (1 − x4k)(1 + x4k) . . . which is equal to 1 (well, kinda...).
If we multiply such equalities for all odd values of k then we get that S(x) = R(x), hence
Sn = Rn.

Comment: All operations on these infinite products may look very shaky. However, at their
heart, they are in fact counting finite objects, hence intuitively no weird problems with limits
should be a real obstacle here. A good way to formalize this is to look at these equalities
modulo xn for some particular n. Then all these products become finite and all coefficients
next to xi for i < n stay unchanged.

Bonus:

This problem can be solved as well in combinatorial way, but it may be tricky to spot,
whereas solution from generating functions may be more natural. However this solution in fact
gives basically a whole insight on how combinatorial solution should look like. We may skip
shortening 1+x+x2+. . . as 1

1−x and directly note that 1+x+x2+. . . = (1+x)(1+x2)(1+x4) . . .
since every natural number has a unique binary expansion. Such equality which is a side effect
in solution using generating functions hints us that using numbers c, 2c, 4c, 8c, . . . at most
once for odd c gives the same effect as using c any number of times, what quickly leads to
fully combinatorial solution showing bijection between both types of expressions that changes
k occurences of odd c to powers of two making up binary expansion of k multiplied by c and
the other way around.



5. a) Summing over all positive integer sequences summing up to some specified value should
like like something where generating functions are of great help, since

[xn](c0x
0 + c1x

1 + . . .)k =
∑

i1,...,ik≥0
i1+...+ik=n

ci1ci2 . . . cik

([xn]F (x) stands for a coefficient next to xn in F (x)).
A small difference is that in that formula we sum over nonnegative integers and we
want to sum over positive integers and we will get that if we drop c0x

0 term (what
corresponds to a fact that there are no magnifying glasses costing 0 dollars).
Let F (x) be a generating function for the sequence

(
d+1
2

)
for d = 0, 1, . . ., that is F (x) =

x
(
2
2

)
+ x2

(
3
2

)
+ . . .. We know that 1

(1−x)c =
∑∞

i=0 x
i
(
i+c−1
c−1

)
for positive integers c, so we

conclude that F (x) = x
(1−x)3 . Based on the formula we mentioned on the beginning,

we know that F (x)k will be the generating function for the sequence of answers for all
possible values of n.

F (x)k =
xk

(1− x)3k
=
∞∑
i=0

xi+k

(
i+ 3k − 1

3k − 1

)
=
∞∑
i=k

xi
(
i+ 2k − 1

3k − 1

)
Therefore, if Peter has n dollars then the magnifying ratios summed over all possible
scenarios will be

(
n+2k−1
3k−1

)
.

b) We already know what we can do with
(
d+1
2

)
, so can we use that knowledge to cope

with d2? It seems so, as d2 =
(
d+1
2

)
+
(
d
2

)
. Let us create analogous generating function:

F (x) =
∞∑
i=0

xii2 =
∞∑
i=0

xi
((

i+ 1

2

)
+

(
i

2

))
=

x+ x2

(1− x)3

We continue:

F (x)k =

(
x+ x2

(1− x)3

)k

=
xk(
(
k
0

)
x0 +

(
k
1

)
x1 + . . .+ xk

(
k
k

)
)

(1− x)3k
=

=
k∑

a=0

(
k

a

) ∞∑
i=0

xi+k+a

(
i+ 3k − 1

3k − 1

)
=

k∑
a=0

(
k

a

) ∞∑
i=0

xi
(
i+ 2k − 1− a

3k − 1

)
Hence, answer for n dollars equals

∑k
a=0

(
k
a

)(
n+2k−1−a

3k−1

)
.

Note: You may want to express d2 in a bit different way, for example d2 = 2
(
d+1
2

)
− d

or 2
(
d
2

)
+ d. Such expressions will likely lead you to different but equivalent sums.

Bonus:
If instead of summing MRs we will just count the number of scenarios then this will be
well known problem about putting n indistinguishable balls into k distinguishable bins
(a.k.a. “stars and bars”), where each ball is one dollar and i-th bin collects dollars that
will be devoted to buying i-th magnifying glass. That tells us that it might be a good



idea to put n + k − 1 objects in a sequence and declare that n of them are balls and
k − 1 of them are walls between consecutive bins (in this interpretation we allow bins
with 0 balls as well) and adjust that thinking to the original question.
What does

(
d+1
2

)
stand for? Of course choosing 2 objects out of d+ 1. If this had been(

d
2

)
then we would have been able to say that, in addition to choosing walls, on every

segment of balls between two consecutive walls, we choose two of them as special ones.
Because of that we can view total sum of MRs over all scenarios as a number of scenarios
where we partition sequence of n + k − 1 objects into k − 1 walls, 2k special balls and
n− 2k ordinary balls. However we know that if we erase ordinary balls and leave walls
and special balls only, then we will get sequence 2 special balls, 1 wall, 2 special balls, 1
wall, ..., 1 wall, 2 special balls. Because of that it suffices to choose 3k − 1 objects that
are of type “either wall or special ball” and that uniquely determines positions of walls
and special balls. Hence the result will be

(
n+k−1
3k−1

)
in that case.

However we changed
(
d+1
2

)
into

(
d
2

)
. What is the answer for the original version then?

Well, if numbers of balls in bins are respectively i1, . . . , ik and i1 + . . . + ik = n then
(i1 + 1) + . . .+ (ik + 1) = n+ k. Because of that there is a bijection between scenarios
where total number of balls is n and where total number of balls is n + k, but we
require each bin to have at least one ball. However if there is an empty bin then it
adds nothing to the result as we cannot identify two special balls between consecutive
walls. So we can apply previous reasoning for n increased by k and get that result is(
(n+k)+k−1

3k−1

)
=
(
n+2k−1
3k−1

)
.


