Introduction to Combinatorics Spectral graph theory

Wojciech Nadara, class 10, 2020-05-15

1. Let G be a d regular graph on n vertices. Let $\lambda_{1} \geq \ldots \geq \lambda_{n}$ be eigenvalues of the adjacency matrix of G.
(a) Show that $\lambda_{n} \geq-d$.
(b) Show that $\lambda_{n}=-d$ if and only if at least one connected component of G is bipartite.
2. Let G be a directed graph on n vertices (possibly with loops), M be its adjacency matrix and let k be a non-negative integer. Prove that $\left(M^{k}\right)_{u, v}$ is the number of walks ("walk" is "marszruta" in Polish) of length k from u to v, where walk of length k from u to v is defined as a sequence of vertices $w_{0}, w_{1}, \ldots, w_{k}$, where $w_{0}=i, w_{k}=j$ and there is an edge from w_{i} to w_{i+1} for all valid i (walks can be thought of as paths with not necessarily distinct vertices and edges). Conclude that $\operatorname{tr}\left(M^{k}\right)$ is the number of closed walks of length k in G.
3. We define a sequence of matrices by taking $A_{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ and $A_{n}=\left[\begin{array}{cc}A_{n-1} & I \\ I & -A_{n-1}\end{array}\right]$ for $n \geq 2$. Show that A_{n} has eigenvalues \sqrt{n} and $-\sqrt{n}$ both with multiplicities 2^{n-1}.
4. Let $G=(V, E)$ be a simple graph and let $\Delta(G)$ be its maximal vertex degree. Suppose that a symmetric matrix A whose rows and columns are indexed by V has the following property: for every $u, v \in V$ we have $A_{u v} \in\{-1,0,1\}$ and moreover $A_{u v}=0$ whenever u, v are non-adjacent. Show that for any eigenvalue λ of A we have $|\lambda| \leq \Delta(G)$.
5. Let $G_{n}=(V, E)$ be the hypercube graph, that is $V=\{0,1\}^{n}$ and $x, y \in E$ if and only if $|x-y|=1$. Let H be a subgraph of G_{n} induced by a set of cardinality $2^{n-1}+1$. Show that the maximal vertex degree of H is at least \sqrt{n}.
Comment: This was a long standing open problem that has been resolved a year ago, but with all the earlier preparation you should be ready to give it a try.
6. Clebsch graph is a unique graph G (up to isomorphism) on 16 vertices, such that it is 5 regular, for every pair of adjacent vertices they have no common neighbours and for every pair of nonadjacent vertices they have exactly 2 common neighbours. Determine the multiset of eigenvalues of its adjacency matrix.

Comment: This is of course a finite problem, where you can take this matrix and use some computation tool to solve it for you, but of course that is not the point. Doing it in a not brute-forced way can teach you some tricks that may be useful in general.
7. Prove that the number of $n \times n$ binary matrices whose all eigenvalues are real and positive is equal to the number of directed acyclic graphs on n vertices.

