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1. We have

d− λn = max
x 6=0

xT (dI − A)x

xTx

and

xT (dI − A)x =
∑
{u,v}∈E

(xu − xv)2 = d|x|2 − 2
∑
{u,v}∈E

xuxv = 2d|x|2 −
∑
{u,v}∈E

(xu + xv)
2.

Thus,

d− λn = max
x 6=0

(
2d−

∑
{u,v}∈E(xu + xv)

2

xTx

)
≤ 2d.

We get λn ≥ −d. Moreover, if λn = −d then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0.

Let v0 be a vertex with xv0 = a 6= 0. Define

A = {v : xv = a}, B = {v : xv = −a}, R = {v : |xv| 6= a}.

We see that A ∪ B is disconnected from the rest of the graph R. Otherwise any edge {u, v}
from R to A ∪ B would give (xu + xv)

2 > 0. Moreover, for the same reason if v ∈ A and
{u, v} ∈ E then u ∈ B. Thus, A and B gives a bipartition of A ∪ B, which is a sum of
connected bipartite components of G.



2. We will use induction. It is trivial for k = 0. Let us now assume that our thesis is true for
k − 1 and we will prove it for k. We know that (Mk)u,v =

∑n
w=1(M

k−1)u,wMw,v. We can
observe that (Mk−1)u,wMw,v is exactly the number of walks from u to v such that w is the
second to last vertex on this walk and from that we conclude the thesis.



3. We show by induction that A2
n = nI. This is clearly true for n = 1. Assume A2

n−1 = (n−1)I.
Then

A2
n =

[
An−1 I
I −An−1

]
·
[
An−1 I
I −An−1

]
=

[
A2
n−1 + I 0

0 A2
n−1 + I

]
=

[
nI 0
0 nI

]
= nI.

Let λ1, . . . , λ2n be the eigenvalues of An. Then λ21, . . . , . . . λ
2
2n are the eigenvalues of A2

n = nI
and thus λ2i = n for all i = 1, . . . , 2n. Thus λi ∈ {−

√
n,
√
n} for all i = 1, . . . , 2n. The fact

that we have precisely 2n−1 eigenvalues equal
√
n follows from the fact that tr(An) = 0.



4. Solution 1.

Suppose G has n vertices. Let v be the eigenvector corresponding to the eigenvalue λ. Without
loss of generality we assume that v 6= 0. Without loss of generality we assume that v1 (the
first coordinate of v) is the largest in absolute value among all coordinates of v. We therefore
get

|λv1| = |(Av)1| =

∣∣∣∣∣
n∑
j=1

A1jvj

∣∣∣∣∣ ≤∑
j∼1

|vj| ≤ ∆(G)|v1|.

Thus |λ| ≤ ∆(G).

Solution 2.

We know that for any eigenvalue λ of A we have λ ≤ maxx 6=0
〈Ax,x〉
〈x,x〉 . Hence, if we show that

〈Ax,x〉
〈x,x〉 ≤ ∆(G) then we will show that λ ≤ ∆(G) (proof that −λ ≤ ∆(G) will be very similar

and the thesis will follow). However,

〈Ax, x〉
〈x, x〉

≤ ∆(G)⇔ 〈Ax, x〉 ≤ ∆(G)〈x, x〉 ⇔ 〈Ax, x〉 ≤ 〈(∆(G)I)x, x〉 ⇔ 0 ≤ 〈(∆(G)I−A)x, x〉

But if we will expand 〈(∆(G)I − A)x, x〉 then we will get

n∑
i=1

∆(G)x2i − 2
∑

1≤u<v≤n

Auvxuxv.

Second sum will not change if we sum over only such pairs (u, v) that u < v and uv ∈ E. We
can now express this as a sum of squares. Let us define p(x, y, s) as x2 + y2− 2sxy. p(x, y, s)
is nonnegative for s ∈ {−1, 0, 1} as p(x, y, 1) = (x − y)2, p(x, y, 0) = x2 + y2, p(x, y,−1) =
(x+ y)2.

We can now express above sum as

n∑
i=1

(∆(G)− deg(vi))x
2
i +

∑
u<v,uv∈E

p(xu, xv, Auv),

where deg(vi) denotes degree of i-th vertex. Since ∆(G) was maximum degree, we know that
∆(G)− deg(vi) ≥ 0 and we can conclude that this sum is nonnegative. As mentioned before,
we can create a very similar proof that −λ ≤ ∆(G) and the thesis follows.



5. Let An be the matrix from Exercise 3. We claim that if in An we replace all the entries −1
with 1 we get the adjacency matrix Bn of G. To see this just divide the cube into two subcubes
{x1 = 0} and {x1 = 1} and observe that the adjacency matrix Bn of Gn has upper left and
lower right 2n−1× 2n−1 submatrices corresponding to the left and right subcube an therefore
equal to Bn−1 and the upper right and lower left 2n−1 × 2n−1 submatrices corresponding to

the matching between both subcubes and therefore equal to I. Thus Bn =

[
Bn−1 I
I Bn−1

]
and the claim follows.

Thus the matrix An satisfies assumptions of Exercise 4. Let H be a subgraph induced by
2n−1 + 1 vertices. Let AH be the corresponding submatrix of An. The matrix AH also satis-
fies assumptions of Exercise 4. Thus ∆(H) ≥ λ1(AH). By the Cauchy interlacing principle
λ1(AH) ≥ λ2n−(2n−1+1)+1(An) = λ2n−1(An) =

√
n, where the last equality follows from Exer-

cise 3.



6. Let M be its adjacency matrix. We can see that mentioned conditions mean exactly the
fact that M2 + 2M = 3I + 2J (where J is a matrix consisting of all ones). We know that
if λ1, . . . , λn is a multiset of eigenvalues of M then λ21 + 2λ1, . . . , λ

2
n + 2λn is a multiset of

eigenvalues of M2 + 2M , so getting to know eigenvalues of M2 + 2M may be helpful.

We can now focus on determining characteristic polynomial of M2 + 2M as multiset of its
roots is multiset of its eigenvalues. det(M2 + 2M − xI) = det(2J + (3 − x)I). If we now
subtract last row of 2J + (3 − x)I from all its other rows, then we will get a very sparse
matrix whose determinant will be easy to compute. This matrix A fulfills:

Aij =



3− x, if i = j < n

5− x, if i = j = n

2, if i = n, j < n

x− 3, if j = n, i < n

0, otherwise

where n = 16. Using permutation formula for determinant it is easy to compute that its
determinant is (5− x)(3− x)n−1 − (n− 1) · 2 · (x− 3) · (3− x)n−2 = (3− x)15(35− x)

Hence, eigenvalues of matrix A are one times 35 and fifteen times 3 and the same goes
for M2 + 2M . Because of that, one eigenvalue λ of M fulfills λ2 + 2λ = 35 and fifteen of
them fulfill λ2 + 2λ = 3. We know that since Clebsch graph is 5-regular then 5 is one of its
eigenvalues and that is the one fulfilling λ2+2λ = 35. All other eigenvalues come from the set
{−3, 1} as there are the only real values that satisfy λ2 + 2λ = 3. Because of that it suffices
to determine their multiplicities. However 0 = tr(M) = λ1 + λ2 + . . .+ λ16 = 5 + c1 − 3c−3,
where c1 and c−3 denote multiplicities of 1 and −3. Moreover c1 + c−3 = 15. We deduce that
c1 = 10 and c−3 = 5.



7. Let M be a binary matrix with all its eigenvalues real and positive and let λ1 ≥ λ2 ≥ . . . ≥
λn > 0 be these eigenvalues. We know that 0 ≤

∑n
i=1 λi ≤ n since

∑n
i=1 λi = tr(M) and that∏n

i=1 λi = det(M). We know that
∏n

i=1 λi is positive and that det(M) is integer,
so
∏n

i=1 λi ≥ 1. However, based on inequality between arithmetic and geometric mean we
can conclude that 1 ≥

∑n
i=1 λi
n
≥ n
√∏n

i=1 λi ≥ 1. Because of that we conclude that λ1 = . . . =
λn = 1. In particular tr(M) = n, so m1,1 = . . . = mn,n = 1.

λk1, . . . , λ
k
n are eigenvalues of Mk, so we can deduce that n =

∑n
i=1 λ

k
i = tr(Mk). Since

mi,i = 1 we know that all diagonal entries of Mk are at least 1, but their sum is equal to n,
so in fact all of them need to be exactly 1.

Let G be a directed graph such that for all (i, j) we put an edge from i to j if and only if
Mi,j = 1 (in particular this graph contains n loops). Based on exercise 2 (Mk)i,j is equal to
the number of walks of length k from i to j. In particular (Mk)i,i is equal to the number of
closed walks (i.e. not necessarily simple cycles) from i to i of length k. One such walk consists
of using k times loop in i-th vertex and we know that wi,i = 1, so there are no other closed
walks from i to i of length k. Hence, if we remove loops from G then G becomes acyclic.

We shall now prove that all matrices corresponding to acyclic directed graphs (with ones on
diagonal) have n eigenvalues equal to 1. Directed acyclic graphs admit topological order, i.e.
there exists a permutation of their vertices, so that edges go only from vertices that are earlier
in this order to vertices that are later. That means that if we apply that permutation to both
rows and columns, we will get upper-triangular matrix with ones on diagonal (and applying
such permutation doesn’t change the multiset of eigenvalues). Characteristic polynomial of
such matrix is (1 − x)n what means that such matrix has n eigenvalues which are equal to
one.

We obtained a bijection between binary n× n matrices with all their eigenvalues which are
real and positive and directed acyclic graphs on n vertices, hence their numbers are equal.


