Introduction to Combinatorics Spectral graph theory – hints

Wojciech Nadara, class 10, 2020-05-15

1. (a) the proof is similar to that of Lemma 7 in the lecture notes.

(b) Consider the expression $\sum_{\{u,v\}\in E} (x_u+x_v)^2$. What does the Courant-Fisher-Weyl principle for the largest eigenvalue of dI - A tell you?

2. Use induction. Split the path by guessing second to last vertex.

3. Show that $A_n^2 = nI$

4. Consider the eigenvector associated with λ and take its entry with the largest absolute value. Or view this problem as a generalization of facts that $\lambda_1 \leq d$ and $\lambda_n \geq -d$ in *d*-regular graphs and try to adjust their proofs. 5. Use Exercise 3, Exercise 4 and Cauchy interlacing theorem.

6. If M is a matrix in question, what can you say about $M^2 + 2M$? How its eigenvalues relate to the eigenvalues of M?

- 7. You should use known facts about eigenvalues. If M is a matrix and $\lambda_1, \ldots, \lambda_n$ are its eigenvalues (with corresponding multiplicities) then
 - $\lambda_1 + \ldots + \lambda_n = tr(M)$
 - $\lambda_1 \lambda_2 \dots \lambda_n = det(M)$
 - $\lambda_1^k, \dots, \lambda_n^k$ are eigenvalues of M^k

Exercise 2 may be helpful as well.