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Zadanie 1. Niech ak > −1, (k = 1, . . . , n) b¦d¡ liczbami rzeczywistymi o
tym samym znaku. Udowodnij, »e prawdziwa jest nierówno±¢

(1 + a1)(1 + a2) · . . . · (1 + an) ≥ 1 + a1 + a2 + . . .+ an. (1)

Czy zaªo»enie, »e liczby ak maj¡ ten sam znak i ak > −1 jest potrzebne?

Rozwi¡zanie. Podamy dowód indukcyjny. Dla n = 1 nierówno±¢ (1) ma
posta¢ 1+a1 ≥ 1+a1 i jest oczywista. Przypu±¢my zatem, »e teza jest praw-
dziwa dla pewnego N = n ≥ 1. Korzystaj¡c z tego zaªo»enia, udowodnimy
(1) dla N = n+ 1. Mamy

(1 + a1) · . . . · (1 + an)(1 + an+1) ≥ (1 + a1 + . . .+ an)(1 + an+1)

= 1 + a1 + . . .+ an+1 + (a1 + . . .+ an)an+1

≥ 1 + a1 + . . .+ an + an+1.

W powy»szym rachunku pierwsza nierówno±¢ wynika z zaªo»enia indukcyj-
nego i z faktu, »e 1+an+1 ≥ 0, a druga z faktu, »e liczby ai dla i = 1, . . . , n+1
maj¡ ten sam znak. �

Przypadek n = 2 pokazuje, »e liczby a1, a2 musz¡ mie¢ ten sam znak.
Zaªo»enie ai > −1, i = 1, . . . , n jest równie» potrzebne. Wystarczy rozwa»y¢
liczby a1 = . . . = an = −3 i n ≥ 3 nieparzyste.

Uwaga. W nierówno±ci (1) mamy równo±¢ tylko dla k = 1. Je»eli a1 6= 0,
to zaªo»enie równo±ci w kroku indukcyjnym wymusza an+1 = 0 dla n ≥ 1.

Zadanie 2. (Nierówno±¢ Bernoulliego) Udowodnij, »e dla x > −1 i k ∈ Z
prawdziwa jest nierówno±¢

(1 + x)k ≥ 1 + kx. (2)

Udowodnij równie», »e dla −1 < x < 1
n
i n ∈ N prawdziwe jest oszacowanie

(1 + x)n ≤ 1

1− nx
. (3)
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Rozwi¡zanie. Dla k = 0 teza jest oczywista. Dla k > 0 nierówno±¢ (2)
wynika z nierówno±ci (1), wystarczy przyj¡¢ a1 = . . . = an = x. Udowodnimy
(2) dla k = −n, gdzie n > 0. Je±li 1− nx ≤ 0, to

(1 + x)−n ≥ 0 ≥ 1− nx.

Rozwa»my zatem przypadek, gdy 1− nx > 0. Wówczas nierówno±¢ (2) jest
równowa»na nierówno±ci (3). Udowodnimy nierówno±¢

(1 + x)−n ≥ 1− nx

indukcyjnie dla n ≥ 0. Dla n = 0 teza jest oczywista. Zakªadaj¡c (3) dla
pewnego n ≥ 0 mamy

(1 + x)−(n+1) = (1 + x)−n
1

1 + x
≥ 1− nx

1 + x
≥ (1− nx)(1− x)

= 1− (n+ 1)x+ nx2 ≥ 1− (n+ 1)x.

Uwaga. Analiza dowodu pokazuje, »e równo±¢ w (2) jest jedynie dla k = 0, 1
lub x = 0.

Uwaga. Dla n > 0 nierówno±¢ (2) mo»na udowodni¢ korzystaj¡c z nierówno-
±ci mi¦dzy ±redni¡ arytmetyczn¡ i geometryczn¡ (patrz Zadanie 4). Mo»emy
zakªada¢, »e 1 + nx > 0. Niech a1 = 1 + nx, a2 = . . . = an = 1. Wówczas
mamy

n
√

(1 + nx) · 1 · . . . · 1 ≤ 1 + nx+ n− 1

n
= 1 + x.

Zadanie 3. (Nierówno±¢ Schwarza) Udowodnij, »e dla dowolnych liczb rze-
czywistych a1, . . . , an, b1, . . . , bn prawdziwa jest nierówno±¢

∣∣∣ n∑
k=1

akbk

∣∣∣ ≤ ( n∑
k=1

a2k

) 1
2
(

n∑
k=1

b2k

) 1
2

. (4)

Rozwi¡zanie. Sposób I. Indukcja. Dla n = 1 mamy równo±¢. Korzystaj¡c
z zaªo»enia indukcjnego dla pewnego n > 0 mamy( n+1∑

k=1

akbk

)2
=
( n∑
k=1

akbk

)2
+ 2an+1bn+1

(
n∑
k=1

akbk

)
+ a2n+1b

2
n+1

≤
( n∑
k=1

a2k

)( n∑
k=1

b2k

)
+

(
n∑
k=1

a2kb
2
n+1 + b2ka

2
n+1

)
+ a2n+1b

2
n+1

=
( n+1∑
k=1

a2k

)( n+1∑
k=1

b2k

)
.
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Skorzystali±my równie» z nierówno±ci 2an+1bn+1akbk ≤ a2kb
2
n+1 + b2ka

2
n+1, k =

1, . . . , n, która jest równowa»na

(an+1bk − bn+1ak)
2 ≥ 0.

Sposób II. Mo»emy zakªada¢, »e
∑n

k=1 a
2
k > 0. Rozwa»my funkcj¦

f(t) =
n∑
k=1

(akt+ bk)
2 = At2 +Bt+ C,

gdzie

A =
n∑
k=1

a2k, B = 2
n∑
k=1

akbk, C =
n∑
k=1

b2k

Oczywi±cie f(t) ≥ 0. Zauwa»my, »e

f(t) = A

(
t+

B

2A

)2

− B2 − 4AC

4A
.

Mamy

f

(
− B

2A

)
= −B

2 − 4AC

4A
≥ 0.

Mamy A > 0, zatem B2 − 4AC ≤ 0, co jest równowa»ne (4).

Zadanie 4. (Nierówno±¢ mi¦dzy ±rednimi) Niech a1, an, . . . , an b¦d¡ dodat-
nimi liczbami rzeczywistymi. Udowodnij nierówno±¢√

a21 + . . .+ a2n
n

≥ a1 + . . .+ an
n

≥ n
√
a1 · . . . · an ≥

n
1
a1

+ . . .+ 1
an

.

Rozwi¡zanie. Pierwsza nierówno±¢ wynika z (4). Wystarczy przyj¡c b1 =
. . . = bn = 1/n. Trzecia nierówno±¢ jest równowa»na drugiej poprzez zamian¦
ai na 1/ai dla i = 1, . . . , n. Pozostaje zatem udowodni¢ nierówno±¢

a1 + . . .+ an
n

≥ n
√
a1 · . . . · an. (5)

Sposób I. Niech λ > 0. Zauwa»my, »e (5) dla a1, . . . , an i dla λa1, . . . , λan
s¡ równowa»ne. Przyjmuj¡c λ = (

∏n
i=1 ai)

−1/n mo»emy bez straty ogólno±ci
zakªada¢, »e

∏n
i=1 ai = 1. Innymi sªowy, je±li udowodnimy

b1 + . . .+ bn ≥ n
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dla liczb b1, . . . , bn speªniaj¡cych
∏n

i=1 bi = 1, to bior¡c bi = ai/(
∏n

j=1 aj)
1/n

otrzymamy

a1 + . . .+ an ≥ n(
n∏
j=1

aj)
1/n,

czyli (5). Pozostaje zatem udowodni¢

Lemat. Je±li a1, . . . , an > 0 i a1 · . . . · an = 1, to a1 + . . .+ an ≥ n.

Dowód. Indukcja. Dla n = 1 nierówno±¢ jest oczywista. Przypu±¢my, »e
potra�my udowodni¢ tez¦ dla n − 1, gdzie n ≥ 1. Je±li a1 = . . . = an,
to ai = 1 dla i = 1, . . . , n i nie ma czego dowodzi¢. Niech zatem m =
mini=1,...,n ai, M = maxi=1,...,n ai i przypu±¢my, »e m < M . wówczas m < 1 <
M Zmieniaj¡c numeracj¦ liczb a1, . . . , an mo»emy zakªada¢, »e m = an−1

i M = an. Rozwa»my liczby a1, a2, . . . , an−2, an−1an. Stosuj¡c zaªo»enie
indukcyjne mamy

a1 + . . .+ an = a1 + . . .+ an−2 + an−1an + an−1 + an − an−1an

≥ n− 1 + an−1 + an − an−1an

= n− (1−m)(1−M) ≥ n. �

Sposób II. Udowodnimy najpierw (5) dla n = 2m, m ≥ 0. Dla m = 0 teza
jest oczywista. Przypu±my, »e potra�my pokaza¢ nierówno±¢ dla pewnego m
i rozwa»my liczby a1, . . . , a2m , a2m+1, . . . , a2m+1 . Wówczas

a1 + . . .+ a2m+1

2m+1
=

1

2

(
a1 + . . .+ a2m

2m
+
a2m + . . .+ a2m+1

2m+1

)
≥ 1

2
( 2m
√
a1 . . . a2m + 2m

√
a2m+1 . . . a2m+1)

≥
√

2m
√
a1 . . . a2m · 2m

√
a2m+1 . . . a2m+1

= 2m+1√
a1 . . . a2m+1 ,

gdzie skorzystali±my z nierówno±ci 1
2
(a + b) ≥

√
ab, a, b ≥ 0, równowa»nej

(
√
a−
√
b)2 ≥ 0.

We¹my teraz dowolne n > 0. Wówczas istnieje m ≥ 0 takie, »e n < 2m.
Niech A = (a1 + . . .+ an)/n. Rozwa»my nast¦puj¡ce 2m liczb

a1, a2, . . . , an, A,A, . . . , A,

gdzie A wyst¦puje 2m − n razy. Stosuj¡c nierówno±¢ (5) dla tych liczb,
otrzymujemy

A =
a1 + . . .+ an + (2m − n)A

2m
≥ 2m

√
a1 . . . anA2m−n,
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co jest równowa»ne An ≥ a1 · . . . · an. �

Sposób III. Je±li a1 = . . . = an, bo ±rednia arytmetyczna tych liczb jest
równa ±redniej geometrycznej. Rozwa»my zatem przypadek, w którym nie
wszystkie liczby s¡ równe. Niech A = (a1 + . . . + an)/n. Wówczas istniej¡
1 ≤ i, j ≤ n takie, »e ai < A < aj. Wprowad¹my pomocnicze oznaczenie
a = i = b, aj = c. Niech 0 ≤ ε ≤ c−b. Rozwa»my liczby bε = b+ε i cε = c−ε.
Je±li zamienimy liczby b, c na bε, cε, to suma tych dwóch liczb si¦ nie zmieni,
a zatem równie» ±rednia arytmetyczna wszystkich liczb pozostanie równa
A. Natomiast iloczyn tych dwóch liczb, a zatem równie» iloczyn wszystkich
liczb wzro±nie. Faktycznie, nierówno±¢ bc ≤ (b + ε)(c − ε) jest równowa»na
nierówno±ci 0 ≤ ε ≤ c − b. We¹my teraz ε = A − b. Rówczas 0 ≤ ε, bo
A ≥ b i ε ≤ c − b, bo A ≤ c. Je±li w sytuacji pocz¡tkowej byªo 0 ≤ l < n
liczb równych A, to po opisanej zamianie jest tych liczb co najmniej l + 1
takich liczb (mo»e si¦ zdarzy¢, »e bε = cε = A i wtedy s¡ ju» l + 2 liczby
równe A). Wystarczy zatem powtórzy to rozumowanie najwy»ej n− 1 razy,
aby wszystkie liczby staªy si¦ równe A. Wówczas A jest te» równe ±redniej
geometrycznej liczb. W ka»dym kroku ±rednia arytmetycna jest ustalona, a
±rednia geometryczna ro±nie. Zatem na pocz¡tku musiaªo by¢

A ≥ n
√
a1 · . . . · an. �

Zadanie 5. (Nierówno±¢ Czebyszewa) Udowodnij, »e je±li ci¡gi a1, a2, . . . an
i b1, b2, . . . , bn s¡ niemalej¡ce lub nierosn¡ce, to(

n∑
k=1

ak

)(
n∑
k=1

bk

)
≤ n

n∑
k=1

akbk .

Co mo»na powiedzie¢, je±li jeden z tych ci¡gów jest nierosn¡cy, a drugi nie-
malej¡cy?

Rozwi¡zanie. Zauwa»my, »e dla 1 ≤ i, j ≤ n mamy (ai − aj)(bi − bj) ≥ 0,
zatem ∑

i,j

(ai − aj)(bi − bj) ≥ 0,

czyli

2n
n∑
i=1

aibi ≥ 2
∑
i,j

aibj = 2

(
n∑
k=1

ak

)(
n∑
k=1

bk

)
.

Je±li jeden z ci¡gów jest rosn¡cy, a drugi malej¡cy, to oczywi±cie prawdziwa
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jest nierówno±¢ (
n∑
k=1

ak

)(
n∑
k=1

bk

)
≥ n

n∑
k=1

akbk . �

Zadanie 6. Ustalmy liczby dodatnie x1, x2, . . . , xk. Niech

an = xn1 + xn2 + . . .+ xnk .

a) Udowodnij, »e ci¡g (an)n≥0 jest log-wypukªy, tzn. a
2
i ≤ ai−1ai+1.

b) Udowodnij, »e je±li ci¡g (cn)n≥0 jest log-wypukªy i c0 = 1, to ci¡g
( n
√
cn)n≥0 jest rosn¡cy.

c) Udowodnij, »e ci¡g ( n
√

an
k
)n≥0 jest rosn¡cy, czyli

p

√
xp1 + xp2 + . . .+ xpk

k
≤ q

√
xq1 + xq2 + . . .+ xqk

k

dla 0 ≤ p ≤ q, p, q ∈ N.

d) Udowodnij, »e dla 0 < α ≤ β prawdziwa jest nierówno±¢

β

√
xβ1 + xβ2 + . . .+ xβk ≤ α

√
xα1 + xα2 + . . .+ xαk .

Rozwi¡zanie. a) Wystarczy skorzysta¢ z nierówno±ci Schwarza dla ai =

x
(n−1)/2
i i bi = x

(n+1)/2
i , i = 1, . . . , n.

b) Mno»¡c nierówno±ci c2ii ≤ cii−1c
i
i+1 dla i = 1, . . . , n stronami otrzymu-

jemy

n∏
i=1

c2ii ≤
n∏
i=1

cii−1c
i
i+1 =

n−1∏
i=0

ci+1
i

n+1∏
i=2

ci−1
i = c0c

2
1c
n−1
n cnn+1

n−1∏
i=2

c2ii = cn−1
n cnn+1

n−1∏
i=1

c2ii ,

czyli c2nn ≤ cn−1
n cnn+1. St¡d n

√
cn ≤ n+1

√
cn+1. Zatem ci¡g ( n

√
cn)n≥0 jest

niemalej¡cy.
c) Wynika to faktu, »e ci¡g cn = an/k jest log-wypukªy i c0 = 1.
d) Niech t = β/α ≥ 1 i niech yi = xαi dla i = 1, . . . , n. Przy tych

oznaczeniach nasza nierówno±¢ jest równowa»na nierówno±ci

yt1 + . . .+ ytn ≤ (y1 + . . .+ yn)
t.
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Niech pi = yi/(y1 + . . .+ yn) dla i = 1, . . . , n. Wówczas 0 < pi ≤ 1 i musimy
udowodni¢, »e

∑n
i=1 p

t
i ≤ 1. Wystarczy teraz zauwa»y¢, »e

n∑
i=1

pti ≤
n∑
i=1

pi = 1. �

Zadanie 7. Udowodnij, »e dla dowolnych liczb zespolonych z1, . . . , zn praw-
dziwa jest nierówno±¢

|z1 + . . .+ zn| ≤ |z1|+ . . .+ |zn|.

Rozwi¡zanie. Nierówno±¢ wystarczy udowodni¢ dla n = 2 (pó¹niej induk-
cja). Mo»emy zakªada¢, »e |z1 + z2| > 0. Dla dowolnej liczby zespolonej z
prawdziwa jest nierówno±¢ Re z ≤ |z|. St¡d∣∣∣∣ z1

z1 + z2

∣∣∣∣+ ∣∣∣∣ z2
z1 + z2

∣∣∣∣ ≥ Re

(
z1

z1 + z2

)
+Re

(
z2

z1 + z2

)
= Re

(
z1

z1 + z2
+

zn
z1 + z2

)
= 1. �
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