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Abstract

In this note we prove the complex counterpart of the S-inequality for
complete Reinhardt sets. In particular, this result implies that the com-
plex S-inequality holds for unconditional convex sets. As a by-product we
also obtain the S-inequality for the exponential measure in the uncondi-
tional case.

2010 Mathematics Subject Classification. Primary 60G15; Secondary
60E15.
Key words and phrases. S-inequality, Gaussian measure, Exponential mea-
sure, Dilation, Complete Reinhardt set, Unconditional complex norm, Entropy.

1 Introduction

Studying various aspects of a Gaussian measure in a Banach space one often
needs precise estimates on measures of balls and their dilations. This gives raise
to the question how the function (0,∞) 3 t 7→ µ(tB) behaves. Here B is a con-
vex and symmetric subset of some Banach space, i.e. an unit ball with respect
to some norm, and µ is a Gaussian measure. Thanks to certain approximation
arguments we may only deal with the simplest spaces, namely Rn or Cn. In the
former case the issue is well understood due to R. Lata la and K. Oleszkiewicz.
Denote by γn the standard Gaussian measure on Rn, i.e. the measure with
the density at a point (x1, . . . , xn) equal to 1√

2π
n exp

(
−x21/2− . . .− x2n/2

)
. In

[LO1] it is shown that for a symmetric convex body K ⊂ Rn and the strip
P = {x ∈ Rn | |x1| ≤ p}, where p is chosen so that γn(K) = γn(P ), we have

γn(tK) ≥ γn(tP ), t ≥ 1.

This result is called S-inequality. The interested reader is also referred to the
concise survey [Lat].

In the present note we would like to focus on S-inequality for sets which
correspond to unit balls with respect to unconditional norms on Cn. Some
partial results concerning the general case has been recently obtained in [Tko].

Definitions and preliminary statements are provided in Section 2. Section
3 is devoted to the main result. It also contains a proof of a one-dimensional
inequality, which bounds entropy, and seems to be the heart of the proof of our
main theorem.
∗Research partially supported by NCN Grant no. 2011/01/N/ST1/01839.
†Research partially supported by NCN Grant no. 2011/01/N/ST1/05960.
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2 Preliminaries

We define the standard Gaussian measure νn on the space Cn via the formula

νn(A) = γ2n (τ(A)) , for any Borel set A ⊂ Cn,

where Cn τ7−→ R2n is the bijection given by

τ(z1, . . . , zn) = (Rez1, Imz1, . . . ,Rezn, Imzn).

We adopt the notation R+ = [0,+∞). Later on we will also extensively use the
notion of the entropy of a function f : X −→ R+ with respect to a probability
measure µ on a measurable space X

Entµ f =

∫
X

f(x) ln f(x)dµ(x)−
(∫

X

f(x)dµ(x)

)
ln

(∫
X

f(x)dµ(x)

)
. (1)

We say that a closed subset K of Cn supports the complex S-inequality,
SC-inequality for short, if any its dilation L = sK, s > 0, and any cylinder
C = {z ∈ Cn | |z1| ≤ R} satisfy

νn(L) = νn(C) =⇒ νn(tL) ≥ νn(tC), for t ≥ 1. (2)

Note that the natural counterpart of S-inequality in the complex case is the fol-
lowing conjecture due to Prof. A. Pe lczyński, which has already been discussed
in [Tko].

Conjecture. All closed subsets K of Cn which are rotationally symmetric, that
is eiθK = K for any θ ∈ R, support SC-inequality.

In the present paper we are interested in the class R of all closed sets in
Cn which are Reinhardt complete, i.e. along with each point (z1, . . . , zn) such a
set contains all points (w1, . . . , wn) for which |wk| ≤ |zk|, k = 1, . . . , n (consult
for instance the textbook [Sh, I.1.2, pp. 8–9]). The key point is that this class
contains all unit balls with respect to unconditional norms on Cn. Recall that
a norm ‖ · ‖ is said to be unconditional if ‖(eiθ1z1, . . . , eiθnzn)‖ = ‖z‖ for all
z ∈ Cn and θ1, . . . , θn ∈ R.

The goal is to prove that all sets from the class R support SC-inequality.
Now we establish some general yet simple observations which allow us to reduce
the problem to a one-dimensional entropy inequality.

Proposition 1. A closed subset K of Cn supports SC-inequality if and only if
for any its dilation L and any cylinder C we have

νn(L) = νn(C) =⇒ d

dt
νn(tL)

∣∣∣∣
t=1

≥ d

dt
νn(tC)

∣∣∣∣
t=1

. (3)

Proof. We are only to show the interesting part that (3) implies (2) following
the proof of [KS, Lemma 1]. Fix a dilation L of K and a cylinder C such that
νn(L) = νn(C). Let a function h be given by νn(tL) = νn(h(t)C), t ≥ 1. Then,
by the assumption, we find

h(t)
d

ds
νn(sC)

∣∣∣∣
s=h(t)

=
d

ds
νn(sh(t)C)

∣∣∣∣
s=1

≤ d

ds
νn(stL)

∣∣∣∣
s=1

= t
d

ds
νn(sL)

∣∣∣∣
s=t

.
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Yet, differentiating the equation which defines the function h we get d
dsνn(sL)

∣∣
s=t

=

h′(t) d
dsνn(sC)

∣∣
s=h(t)

, thus h(t) ≤ th′(t). It means that the function h(t)/t is

nondecreasing, so 1 = h(1) ≤ h(t)/t for t ≥ 1.

For any closed set A the derivative of the function t 7→ νn(tA) is easy to
compute. Indeed,

d

dt
νn(tA)

∣∣∣∣
t=1

=
d

dt

∫
tA

e−|z|
2/2dz

∣∣∣∣
t=1

=
d

dt

∫
A

t2ne−t
2|w|2/2dw

∣∣∣∣
t=1

= 2nνn(A)−
∫
A

|z|2dνn(z).

Moreover, the integral of |z|2 over a cylinder C may be expressed explicitly in
terms of the measure νn(C). Namely,∫

C

|z|2dνn(z) = 2(1− νn(C)) ln (1− νn(C)) + 2nνn(C).

Combining these two remarks with the preceding proposition we obtain an
equivalent formulation of the problem.

Proposition 2. A closed subset K of Cn supports SC-inequality if and only if
for any its dilation L∫

L

|z|2dνn(z) ≤ 2nνn(L) + 2(1− νn(L)) ln (1− νn(L)) . (4)

3 Main result

We aim at proving the aforementioned main result, which reads as follows

Theorem 1. Any set from the class R supports SC-inequality.

We begin with a one-dimensional entropy inequality.

Lemma 1. Let µ be a Borel probability measure on R+ and suppose f : R+ −→
R+ is a bounded and non-decreasing function. Then

Entµ f ≤ −
∫
R+

f(x)

(
1 + lnµ ((x,∞))

)
dµ(x). (5)

Proof. Using homogeneity of both sides of (5), without loss of generality, we
can assume that

∫
R+
fdµ = 1. Then we may rewrite the assertion of the lemma

as follows ∫
R+

ln

(
f(x)

∫
(x,∞)

dµ(t)

)
f(x)dµ(x) ≤ −1.

Introduce the probability measure ν on R+ with the density f with respect to
µ. Thanks to the monotonicity of f we can bound the left hand side of the last
inequality by∫

R+

ln

(
ν ((x,∞))

)
dν(x) = −

∫ ∞
0

∫ 1

0

du

u
1{u≥ν((x,∞))}(u, x)dν(x).
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Define the function

H(y) := inf {t | ν ((t,∞)) ≤ y} ,

which is the inverse tail function, and observe that

{(u, x) | u ≥ ν ((x,∞))} ⊃ {(u, x) | H(u) ≤ x},

as u ≥ ν ((H(u),∞)) ≥ ν ((x,∞)). This leads to

−
∫ ∞
0

∫ 1

0

du

u
1{u≥ν((x,∞))}(u, x)dν(x) ≤ −

∫ ∞
0

∫ 1

0

du

u
1{H(u)≤x}(u, x)dν(x)

= −
∫ 1

0

ν ([H(u),∞))
du

u
.

Since u ≤ ν ([H(u),∞)), we finally get the desired estimation.

Now, for a certain class of functions, we establish the multidimensional ver-
sion of inequality (5). For the simplicity, we formulate this result for the Gaus-
sian measure.

Lemma 2. Let g : Cn −→ R+ be a bounded function satisfying

1) g((eiθ1z1, . . . , e
iθnzn)) = g(z) for any z ∈ Cn and θ1, . . . , θn ∈ R,

2) for any w, z ∈ Cn the condition |wk| ≤ |zk|, k = 1, . . . , n implies g(w) ≤ g(z).

Then

Entνn g ≤
∫
Cn

g(z)

(
|z|2

2
− n

)
dνn(z). (6)

Proof. One piece of notation: for a fixed vector r = (r1, . . . , rn) ∈ (R+)n we de-
note rk = (r1, . . . , rk−1, rk+1, . . . , rn) ∈ (R+)n−1, and then define the functions

gr
k

k (x) = g(r1, . . . , rk−1, x, rk+1, . . . , rn), k = 1, . . . , n.

Notice that for a function h : C −→ R+ obeying the property 1) we get∫
C
h(z)dν1(z) =

1

2π

∫ 2π

0

∫ ∞
0

h(reiθ)e−r
2/2rdrdθ =

∫ ∞
0

h(r)dµ(r),

where µ denotes the probability measure on R+ with the density at r given by

re−r
2/2. Therefore∫

Cn

g(z)

(
|z|2

2
− n

)
dνn(z) =

∫
(R+)n

g(r)

(∑n
k=1 r

2
k

2
− n

)
dµ⊗n(r)

=

∫
(R+)n

n∑
k=1

[∫
R+

gr
j

j (x)

(
x2

2
− 1

)
dµ(x)

]
dµ⊗n(r).

Applying Lemma 1 for the function gr
j

j and the measure µ we obtain the esti-
mation ∫

Cn

g(z)

(
|z|2

2
− n

)
dνn(z) ≥

∫
(R+)n

n∑
k=1

Entµ g
rj

j dµ⊗n(r)

≥ Entµ⊗n g = Entνn g,

where the last inequality follows from subadditivity of entropy (for example see
[Led, Proposition 5.6]).
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Proof of Theorem 1. Fix K ∈ R. In order to show (4) we introduce the function
g(z) = 1− 1K(z). We adopt the standard convention that 0 ln 0 = 0, hence the
desired inequality is equivalent to (6). Thus the application of Lemma 2 for the
function g finishes the proof.

Theorem 1 immediately implies that the Cartesian products of cylinders sup-
port SC-inequality. As a consequence, SC-inequality possesses a tensorization
property.

Corollary 1. Assume sets K1 ⊂ Cn1 , . . . ,K` ⊂ Cn` support SC-inequality.
Then the set K1 × . . .×K` also supports SC-inequality.

Another consequence of the main theorem concerns the standard exponential
measure λn on Rn, i.e.

dλn(x) =
1

2n
e−|x|1dx, x ∈ Rn,

where we denote |(x1, . . . , xn)|1 =
∑n
i=1 |xi|. It turns out that certain subsets of

Rn support the S-inequality for λn with strips as the optimal sets. To state the
result a few definitions will be useful. We say that a set K ⊂ (R+)n is an ideal
if along with any its point x ∈ K it contains the cube [0, x1]× . . .× [0, xn]. A set
K ⊂ Rn is called unconditional if (ε1x1, . . . , εnxn) ∈ K whenever (x1, . . . , xn) ∈
K and ε1, . . . , εn ∈ {−1, 1}. By an unconditional ideal K in Rn we mean the
unconditional set K such that the set K ∩ (R+)n is an ideal. For instance, any
unconditional convex set is also an unconditional ideal.

Theorem 2. For any closed unconditional ideal K ⊂ Rn and for any strip
P = {x ∈ Rn | |x1| ≤ p}, p ≥ 0, we have

λn(K) = λn(P ) =⇒ ∀t ≥ 1 λn(tK) ≥ λn(tP ), (7)

and, equivalently,

λn(K) = λn(P ) =⇒ ∀t ≤ 1 λn(tK) ≤ λn(tP ). (8)

Proof. The equivalence between (7) and (8) is straightforward. For instance,
assume the latter does not hold. Then, there is t0 < 1 such that λn(t0K) >
λn(t0P ). We can find s0 < 1 for which λn(s0t0K) = λn(t0P ). Using (7) we get
a contradiction

λn(K) > λn(s0K) = λn

(
1

t0
(s0t0K)

)
≥ λn

(
1

t0
(t0P )

)
= λn(P ) = λn(K).

Consider the mapping F : Cn −→ (R+)n given by the formula

F (z1, . . . , zn) = (|z1|, . . . , |zn|).

Observe that for an ideal A ⊂ (R+)n, the set F−1(A) is Reinhardt complete
and integrating using the polar coordinates we find that

νn
(
F−1(A)

)
=

∫
A

n∏
i=1

rie
−r2i /2dr1 . . . drn.
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Now, let us change the variables according to the mapping G : (R+)n −→ (R+)n,

G(x1, . . . , xn) =
1

2
(x21, . . . , x

2
n).

We obtain

νn
(
F−1(A)

)
=

∫
G(A)

e−
∑n

i=1 xidx.

Since G(A) is an ideal iff so is A, we infer that for any unconditional ideal
K ⊂ Rn

λn(K) = νn(K̃), where K̃ := G−1F−1 (K ∩ (R+)n) .

Moreover, for a strip P = {x ∈ Rn | |x1| ≤ p}, the set P̃ ⊂ Cn is a cylinder.

Note also that t̃K =
√
tK̃. These observations combined with Theorem 1 yield

the assertion.

Following the method of [LO1, Corollary 3] we obtain the result concerning
the comparison of moments.

Corollary 2. Let ‖ · ‖ be a norm on Rn which is unconditional, i.e.

‖(ε1x1, . . . , εnxn)‖ = ‖(x1, . . . , xn)‖,

for any xj ∈ R and εj ∈ {−1, 1}. Then for p ≥ q > 0(∫
Rn

‖x‖pdλn(x)

)1/p

≤ Cp,q
(∫

Rn

‖x‖qdλn(x)

)1/q

, (9)

where the constant

Cp,q =

(∫
R |x|

pdλ1(x)
)1/p(∫

R |x|qdλ1(x)
)1/q =

(Γ(p+ 1))1/p

(Γ(q + 1))1/q

is the best possible.

Proof. The proof hinges on the fact that a ball K = {x ∈ Rn ‖x‖ ≤ t} with
respect to the norm ‖ · ‖ is a closed convex unconditional set, so that Theorem
2 can be applied.
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