A note on the rational cuspidal curves

Piotr Nayar, Barbara Pilat

Abstract

In this short note we give an elementary combinatorial argument, showing that the conjecture of J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi (see [BL], Conjecture 1.2) follows from Theorem 5.4 in [BL] in the case of rational cuspidal curves with two critical points.

2010 Mathematics Subject Classification. Primary 14H50; Secondary 14B05, 57M25, 57R58.

Key words and phrases. Rational cuspidal curve, Alexander polynomial, infimum convolution.

1 Introduction

In this short note we deal with irreducible algebraic curves $C \subset \mathbb{C}P^2$. Such a curve has a finite set of singular points $\{z_i\}_{i=1}^n$ such that a neighbourhood of each singular point intersects C in a cone on a link $K_i \subset S^3$. We would like to know what possible configurations of links $\{K_i\}_{i=1}^n$ arise in this way. We consider only the case in which each K_i is connected (in this case K_i is a knot), and thus C is a rational curve, meaning that there is a rational surjective map $\mathbb{C}P^1 \to C$. Such a curve is called rational cuspidal. We refer to [M] for a survey on rational cuspidal curves.

Suppose that z is a cuspidal singular point of a curve C and B is a sufficiently small ball around z. Let $\Psi(t) = (x(t), y(t))$ be a local parametrization of $C \cap B$ near z. For any polynomial P(x, y) we look at the order at 0 of the analytic map $t \mapsto P(x(t), y(t)) \in \mathbb{C}$. Let S be the set of integers, which can be realized as the order for some P. Then S is a semigroup of $\mathbb{Z}_{\geq 0}$. We call it the semigroup of the singular point, see [W] for the details and proofs. The gap sequence, $G = \mathbb{Z}_{\geq 0} \backslash S$, has precisely $\mu/2$ elements, where the largest one is $\mu - 1$. Here μ stands for the Milnor number. Assume that K is the link of the singular point z. The Alexander polynomial of K can be written in the form

$$\Delta_K(t) = \sum_{i=0}^{2m} (-1)^i t^{n_i},$$

where $(n_i)_{i=0}^{2m}$ form an increasing sequence with $n_0 = 0$ and $n_{2m} = 2g$, for g = g(K) being the genus of K. Writing $t^{2n_i} - t^{2n_{i-1}} = (t-1)(t^{2n_i-1} + t^{2n_i-2} + \ldots + t^{2n_{i-1}})$ yields the representation

$$\Delta_K(t) = 1 + (t-1) \sum_{j=1}^k t^{g_j},$$
(1)

for some finite sequence $0 < g_1 < g_2 < \ldots < g_k$. We have the following lemma (see [W], Exercise 5.7.7), which relates the Alexander polynomial to the gap sequence of a singular point.

Lemma 1. The sequence g_1, \ldots, g_k in (1) is the gap sequence of the semigroup of the singular point. In particular, $k = |G| = \mu/2$, where μ is the Milnor number, so |G| is the genus.

If we write $t^{g_j} = (t-1)(t^{g_j-1} + t^{g_j-2} + \ldots + 1) + 1$, we obtain

$$\Delta_K(t) = 1 + (t-1)g(K) + (t-1)^2 \sum_{j=0}^{\mu-2} k_j t^j$$

where $k_j = |\{m > j : m \notin S\}|$. This motivates the following definition.

Definition. For any finite increasing sequence of positive integers G we define

$$I_G(m) = |\{k \in G \cup \mathbb{Z}_{<0} : k \ge m\}|,$$

where $\mathbb{Z}_{<0}$ is the set of negative integers. We shall call I_G the gap function, because in most applications G will be a gap sequence of some semigroup.

Clearly, for $j = 0, 1, ..., \mu - 2$ we have $I_G(j + 1) = k_j$.

In [FLMN] the following conjecture was proposed.

Conjecture 1. Suppose that the rational cuspidal curve C of degree d has critical points z_1, \ldots, z_n . Let K_1, \ldots, K_n be the corresponding links of singular points and let $\Delta_1, \ldots, \Delta_n$ be their Alexander polynomials. Let $g = \sum g(K_i)$. Let $\Delta = \Delta_1 \cdot \ldots \cdot \Delta_n$, expanded as

$$\Delta(t) = 1 + \frac{(d-1)(d-2)}{2}(t-1) + (t-1)^2 \sum_{j=0}^{2g-2} k_j t^j$$

Then for any j = 0, ..., d-3 we have $k_{d(d-j-3)} \leq (j+1)(j+2)/2$, with equality for n = 1.

This conjecture was verified in the case n = 1 by Borodzik and Livingston, see [BL].

We define the infimum convolution of n functions.

Definition. Let $I_1, I_2, \ldots, I_n : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$. We define

$$(I_1 \diamond I_2 \dots \diamond I_n)(k) = \min_{\substack{k_1, k_2, \dots, k_n \in \mathbb{Z} \\ k_1 + k_2 + \dots + k_n = k}} (I_1(k_1) + I_2(k_2) + \dots + I_n(k_n)).$$

In [BL] the authors proved the following theorem.

Theorem 1. (see [BL, Theorem 5.4]) Let C be a rational cuspidal curve of degree d. Let I_1, \ldots, I_n be the gap functions associated to each singular point on C. Then for any $j \in \{-1, 0, \ldots, d-2\}$ we have

$$I_1 \diamond I_2 \diamond \ldots \diamond I_n(jd+1) = \frac{1}{2}(j-d+1)(j-d+2).$$

Note that we have $|G_1| + |G_2| + \ldots + |G_n| = \frac{(d-1)(d-2)}{2}$. Therefore, one can give an equivalent reformulation of the Conjecture 1.

Conjecture 2. Suppose that the rational cuspidal curve C of degree d has critical points z_1, \ldots, z_n . Let K_1, \ldots, K_n be the corresponding links of singular points and let $\Delta_1, \ldots, \Delta_n$ be their Alexander polynomials. Moreover, let G_1, G_2, \ldots, G_n be the gap sequences of these points. Let $g = |G_1| + |G_2| + \ldots + |G_n|$ be the genus of K. Let $\Delta = \Delta_1 \cdot \ldots \cdot \Delta_n$, expanded as

$$\Delta(t) = 1 + (t-1)g + (t-1)^2 \sum_{j=0}^{2g-2} k_j t^j$$

and let $I = I_1 \diamond I_2 \diamond \ldots \diamond I_n$. Then for any $j = 0, \ldots, d-3$ we have $k_{d(d-j-3)} \leq I(d(d-j-3)+1)$, with equality for n = 1.

In this note we give an elementary argument, showing that FLMN conjecture follows from Theorem 1 for n = 2. The idea of our proof is to forget about the specific structure of the problem coming from theory of singularities and to prove Conjecture 2 for general sets G_1, G_2 . Namely, we have the following theorem.

Theorem 2. Let G, H be two finite sets of positive integers and let $I_G, I_H : \mathbb{Z} \to \mathbb{Z}_{\geq 0}$ be their gap functions. Let us define the polynomials

$$\Delta_G(t) = 1 + (t-1)|G| + (t-1)^2 \sum_{j\geq 0} k_j^G t^j$$

$$\Delta_H(t) = 1 + (t-1)|H| + (t-1)^2 \sum_{j\geq 0} k_j^H t^j ,$$

where $k_j^G = I_G(j+1), k_j^H = I_H(j+1), j \ge 0$. Take $\Delta = \Delta_G \cdot \Delta_H$ and $I = I_G \diamond I_H$. Then

$$\Delta(t) = 1 + (t-1)(|G| + |H|) + (t-1)^2 \sum_{j \ge 0} k_j t^j,$$

where $k_j \leq I(j+1)$ for $j \geq 0$.

This gives the proof of Conjecture 1 in the case n = 2.

It is natural to ask whether the above theorem is valid for arbitrary $n \ge 2$. Recently, after we found our elementary combinatorial argument for n = 2, J. Bodnár and A. Némethi showed that the Conjecture 1 is false for $n \ge 3$, see [BN]. We provide their example below. They also found yet another proof of Conjecture 1 in the case of two singularities.

Example. Consider semigroups $S_1 = \{6k + 7l : k, l \ge 0\}, S_2 = \{2k + 9l : k, l \ge 0\}, S_3 = \{2k + 5l : k, l \ge 0\}$. The corresponding gap sequences are $G_1 = \{1, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 22, 23, 29\}, G_2 = \{1, 3, 5, 7\}, G_3 = \{1, 3\}$. Then,

$$\Delta_1(t) = 1 + (t-1)(t+t^2+t^3+t^4+t^5+t^8+t^9+t^{10}+t^{11} + t^{15}+t^{16}+t^{17}+t^{22}+t^{23}+t^{29})$$

$$\Delta_2(t) = 1 + (t-1)(t+t^3+t^5+t^7)$$

$$\Delta_3(t) = 1 + (t-1)(t+t^3)$$

We write $\Delta = \Delta_1 \cdot \Delta_2 \cdot \Delta_3$ in the form

$$\Delta(t) = 1 + (|G_1| + |G_2| + |G_3|)(t-1) + (t-1)^2 \sum_{j \ge 0} k_j t^j.$$

One can check that

$$(k_j)_{j=0}^{\infty} = (21, 18, 20, 15, 19, 13, 18, 11, 16, 10, 13, 10, 11, 9, 10, 7, 9, 5, 9, 3, 9, 2, 7, 2, 5, 2, 4, 2, 3, 1, 3, -1, 4, -2, 4, -2, 3, -2, 2, -1, 1, 0, 0, 0, \ldots).$$

We can see that $k_8 = 16$. From Theorem 1 we have I(9) = 15. Thus, $k_8 > I(9)$.

2 Proof of the main result

In this section we give a proof of our main result.

We begin with a simple lemma.

Lemma 2. Take $j \ge 1$. Then the minimum of the function $J(l) = I_G(j - l) + I_H(l)$ is attained for $0 \le l \le j$.

Proof. Let $l \leq 0$. Then $I_H(l) = |H| - l$ and $I_G(j - l) \geq I_G(j) + l$. Thus,

$$J(l) = I_G(j - l) + I_H(l) \ge I_G(j) + |H| = J(0)$$

In the case when $l \ge j$ we can take l' = j - l and use the above inequality, exchanging the roles of G and H, to get $J(l) \ge J(j)$.

Proof. Our goal is to express the numbers k_j in terms of the numbers k_j^G and k_j^H . We have

$$\begin{aligned} \Delta(t) &= \Delta_G(t) \Delta_H(t) = 1 + (t-1)(|G| + |H|) \\ &+ (t-1)^2 \Big[|G| \cdot |H| + \sum_{j \ge 0} (k_j^G + k_j^H) t^j + (t-1) \Big(|G| \sum_{j \ge 0} k_j^H t^j + |H| \sum_{j \ge 0} k_j^G t^j \Big) \\ &+ (t-1)^2 \Big(\sum_{j \ge 0} k_j^G t^j \Big) \Big(\sum_{j \ge 0} k_j^H t^j \Big) \Big] = 1 + (t-1)(|G| + |H|) + (t-1)^2 \Theta(t), \end{aligned}$$

with

$$\Theta(t) = |G| \cdot |H| + k_0^G (1 - |H|) + k_0^H (1 - |G|) + k_0^G k_0^H + \sum_{j \ge 1} t^j k_j,$$

where

$$k_j = k_j^G(1 - |H|) + |H|k_{j-1}^G + k_j^H(1 - |G|) + |G|k_{j-1}^H + l_j$$

and

$$l_j = \sum_{u+v=j, u,v \ge 0} k_u^G k_v^H - 2 \sum_{u+v=j-1, u,v \ge 0} k_u^G k_v^H + \sum_{u+v=j-2, u,v \ge 0} k_u^G k_v^H.$$

Note that $k_0^G = |G|$ and $k_0^H = |H|$. Therefore,

$$k_0 = |G| \cdot |H| + k_0^G (1 - |H|) + k_0^H (1 - |G|) + k_0^G k_0^H$$

= |G| \cdot |H| + |G|(1 - |H|) + |H|(1 - |G|) + |G| \cdot |H| = |G| + |H|.

From Lemma 2 we get

$$I(1) = \min_{k \in \mathbb{Z}} (I_G(1-k) + I_H(k)) = \min_{k=0,1} (I_G(1-k) + I_H(k)) = |G| + |H| = k_0.$$

From now on, our goal is to prove that $k_j \leq I(j+1)$ for $j \geq 1$. Note that

$$\begin{split} l_{j} &= \sum_{u+v=j, \ u,v \geq 0} k_{u}^{G} k_{v}^{H} - \sum_{u+v=j, \ u \geq 0, v \geq 1} k_{u}^{G} k_{v-1}^{H} - \sum_{u+v=j, \ u \geq 1, v \geq 0} k_{u-1}^{G} k_{v}^{H} \\ &+ \sum_{u+v=j, \ u,v \geq 1} k_{u-1}^{G} k_{v-1}^{H} = \sum_{u+v=j, u,v \geq 1} (k_{u}^{G} - k_{u-1}^{G}) (k_{v}^{H} - k_{v-1}^{H}) \\ &+ k_{0}^{G} k_{j}^{H} + k_{j}^{G} k_{0}^{H} - k_{0}^{G} k_{j-1}^{H} - k_{j-1}^{G} k_{0}^{H}. \end{split}$$

Thus,

$$k_j = \sum_{u+v=j, u, v \ge 1} (k_u^G - k_{u-1}^G)(k_v^H - k_{v-1}^H) + m_j,$$

where, miraculously,

$$\begin{split} m_{j} &= k_{0}^{G}k_{j}^{H} + k_{j}^{G}k_{0}^{H} - k_{0}^{G}k_{j-1}^{H} - k_{j-1}^{G}k_{0}^{H} \\ &+ k_{j}^{G}(1 - |H|) + |H|k_{j-1}^{G} + k_{j}^{H}(1 - |G|) + |G|k_{j-1}^{H} \\ &= |G|k_{j}^{H} + k_{j}^{G}|H| - |G|k_{j-1}^{H} - k_{j-1}^{G}|H| \\ &+ k_{j}^{G}(1 - |H|) + |H|k_{j-1}^{G} + k_{j}^{H}(1 - |G|) + |G|k_{j-1}^{H} \\ &= k_{j}^{G} + k_{j}^{H}. \end{split}$$

We get

$$k_j = k_j^G + k_j^H + \sum_{u+v=j, u, v \ge 1} (k_{u-1}^G - k_u^G)(k_{v-1}^H - k_v^H).$$

We are to prove that $k_j \leq (I_G \diamond I_H)(j+1)$. It suffices to prove that $k_j \leq I_G(j+1-l) + I_H(l)$ for every $l \in \mathbb{Z}$. Thus, we have to deal with the inequality

$$k_j^G + k_j^H + \sum_{u+v=j, u, v \ge 1} (k_u^G - k_{u-1}^G)(k_v^H - k_{v-1}^H) \le I_G(j+1-l) + I_H(l), \quad j \ge 1, l \in \mathbb{Z}.$$

By Lemma 2 it suffices to consider $0 \le l \le j + 1$. Note that if u + v = j then we either have $u \ge j - l + 1$ or $v \ge l$. Thus,

$$\mathbf{1}_{u \in G} \mathbf{1}_{v \in H} \mathbf{1}_{u+v=j} \le \mathbf{1}_{u \in G \cap [j-l+1,j]} + \mathbf{1}_{v \in H \cap [l,j]},$$

where the indicator functions in the above expression are functions of two variables u and v. We have also used the convention $[a, b] = \emptyset$ for a > b. We obtain

$$\begin{split} \sum_{u+v=j,u,v\geq 1} (k_{u-1}^G - k_u^G)(k_{v-1}^H - k_v^H) &= \sum_{u+v=j,u,v\geq 0} (k_{u-1}^G - k_u^G)(k_{v-1}^H - k_v^H) \\ &= \sum_{u+v=j,u,v\geq 0} \mathbf{1}_{u\in G} \mathbf{1}_{v\in H} \leq \sum_{u+v=j,u,v\geq 0} \left(\mathbf{1}_{u\in G\cap[j-l+1,j]} + \mathbf{1}_{v\in H\cap[l,j]} \right) \\ &= (I_G(j-l+1) - I_G(j+1)) + (I_H(l) - I_H(j+1)) = \\ &- (k_j^G + k_j^H) + I_G(j+1-l) + I_H(l). \end{split}$$

This concludes the proof.

Acknowledgements

We are grateful to Maciej Borodzik for his valuable comments about the meaning of our result.

References

- [FLMN] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, On rational cuspidal projective plane curves, Proc. London Math. Soc. (3) 92, 2006, no. 1, 99–138.
- [BL] M. Borodzik, C. Livingston, Heegaard Floer homology and rational cuspidal curves, arXiv:1304.1062
- [BN] J. Bodnár and A. Némethi, Lattice cohomology and rational cuspidal curves, arxiv:1405.0437
- [M] K. Moe, Rational cuspidal curves, Master Thesis, University of Oslo 2008, permanent link at University of Oslo: https://www.duo.uio.no/handle/123456789/10759
- [W] C. T. C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge, 2004.

Piotr Nayar, nayar@mimuw.edu.pl Institute of Mathematics, University of Warsaw, Banacha 2, 02-097 Warszawa, Poland

 $\quad \text{and} \quad$

Institute for Mathematics and its Applications, College of Science and Engineering, University of Minnesota, 207 Church Street SE, 306 Lind Hall, Minneapolis, MN U.S.A. 55455

Barbara Pilat, B.Pilat@mini.pw.edu.pl Faculty of Mathematics and Information Science, Warsaw University of Technology, Koszykowa 75, 00-662 Warszawa, Poland