# A note on the rational cuspidal curves 

Piotr Nayar, Barbara Pilat


#### Abstract

In this short note we give an elementary combinatorial argument, showing that the conjecture of J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi (see [BL], Conjecture 1.2) follows from Theorem 5.4 in [BL] in the case of rational cuspidal curves with two critical points.


2010 Mathematics Subject Classification. Primary 14H50; Secondary 14B05, 57M25, 57R58.
Key words and phrases. Rational cuspidal curve, Alexander polynomial, infimum convolution.

## 1 Introduction

In this short note we deal with irreducible algebraic curves $C \subset \mathbb{C} P^{2}$. Such a curve has a finite set of singular points $\left\{z_{i}\right\}_{i=1}^{n}$ such that a neighbourhood of each singular point intersects $C$ in a cone on a link $K_{i} \subset S^{3}$. We would like to know what possible configurations of links $\left\{K_{i}\right\}_{i=1}^{n}$ arise in this way. We consider only the case in which each $K_{i}$ is connected (in this case $K_{i}$ is a knot), and thus $C$ is a rational curve, meaning that there is a rational surjective map $\mathbb{C} P^{1} \rightarrow C$. Such a curve is called rational cuspidal. We refer to $[\mathrm{M}]$ for a survey on rational cuspidal curves.

Suppose that $z$ is a cuspidal singular point of a curve $C$ and $B$ is a sufficiently small ball around $z$. Let $\Psi(t)=(x(t), y(t))$ be a local parametrization of $C \cap B$ near $z$. For any polynomial $P(x, y)$ we look at the order at 0 of the analytic map $t \mapsto P(x(t), y(t)) \in \mathbb{C}$. Let $S$ be the set of integers, which can be realized as the order for some $P$. Then $S$ is a semigroup of $\mathbb{Z}_{\geq 0}$. We call it the semigroup of the singular point, see [W] for the details and proofs. The gap sequence, $G=\mathbb{Z}_{\geq 0} \backslash S$, has precisely $\mu / 2$ elements, where the largest one is $\mu-1$. Here $\mu$ stands for the Milnor number. Assume that $K$ is the link of the singular point $z$. The Alexander polynomial of $K$ can be written
in the form

$$
\Delta_{K}(t)=\sum_{i=0}^{2 m}(-1)^{i} t^{n_{i}},
$$

where $\left(n_{i}\right)_{i=0}^{2 m}$ form an increasing sequence with $n_{0}=0$ and $n_{2 m}=2 g$, for $g=g(K)$ being the genus of $K$. Writing $t^{2 n_{i}}-t^{2 n_{i-1}}=(t-1)\left(t^{2 n_{i}-1}+\right.$ $\left.t^{2 n_{i}-2}+\ldots+t^{2 n_{i-1}}\right)$ yields the representation

$$
\begin{equation*}
\Delta_{K}(t)=1+(t-1) \sum_{j=1}^{k} t^{g_{j}} \tag{1}
\end{equation*}
$$

for some finite sequence $0<g_{1}<g_{2}<\ldots<g_{k}$. We have the following lemma (see [W], Exercise 5.7.7), which relates the Alexander polynomial to the gap sequence of a singular point.

Lemma 1. The sequence $g_{1}, \ldots, g_{k}$ in (1) is the gap sequence of the semigroup of the singular point. In particular, $k=|G|=\mu / 2$, where $\mu$ is the Milnor number, so $|G|$ is the genus.

If we write $t^{g_{j}}=(t-1)\left(t^{g_{j}-1}+t^{g_{j}-2}+\ldots+1\right)+1$, we obtain

$$
\Delta_{K}(t)=1+(t-1) g(K)+(t-1)^{2} \sum_{j=0}^{\mu-2} k_{j} t^{j}
$$

where $k_{j}=|\{m>j: m \notin S\}|$. This motivates the following definition.
Definition. For any finite increasing sequence of positive integers $G$ we define

$$
I_{G}(m)=\left|\left\{k \in G \cup \mathbb{Z}_{<0}: k \geq m\right\}\right|
$$

where $\mathbb{Z}_{<0}$ is the set of negative integers. We shall call $I_{G}$ the gap function, because in most applications $G$ will be a gap sequence of some semigroup.

Clearly, for $j=0,1, \ldots, \mu-2$ we have $I_{G}(j+1)=k_{j}$.
In [FLMN] the following conjecture was proposed.
Conjecture 1. Suppose that the rational cuspidal curve $C$ of degree d has critical points $z_{1}, \ldots, z_{n}$. Let $K_{1}, \ldots, K_{n}$ be the corresponding links of singular points and let $\Delta_{1}, \ldots, \Delta_{n}$ be their Alexander polynomials. Let $g=$ $\sum g\left(K_{i}\right)$. Let $\Delta=\Delta_{1} \cdot \ldots \cdot \Delta_{n}$, expanded as

$$
\Delta(t)=1+\frac{(d-1)(d-2)}{2}(t-1)+(t-1)^{2} \sum_{j=0}^{2 g-2} k_{j} t^{j}
$$

Then for any $j=0, \ldots, d-3$ we have $k_{d(d-j-3)} \leq(j+1)(j+2) / 2$, with equality for $n=1$.

This conjecture was verified in the case $n=1$ by Borodzik and Livingston, see [BL].

We define the infimum convolution of $n$ functions.
Definition. Let $I_{1}, I_{2}, \ldots, I_{n}: \mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$. We define

$$
\left(I_{1} \diamond I_{2} \ldots \diamond I_{n}\right)(k)=\min _{\substack{k_{1}, k_{2}, \ldots, k_{n} \in \mathbb{Z} \\ k_{1}+k_{2}+\ldots+k_{n}=k}}\left(I_{1}\left(k_{1}\right)+I_{2}\left(k_{2}\right)+\ldots+I_{n}\left(k_{n}\right)\right) .
$$

In [BL] the authors proved the following theorem.
Theorem 1. (see [BL, Theorem 5.4]) Let $C$ be a rational cuspidal curve of degree d. Let $I_{1}, \ldots, I_{n}$ be the gap functions associated to each singular point on $C$. Then for any $j \in\{-1,0, \ldots, d-2\}$ we have

$$
I_{1} \diamond I_{2} \diamond \ldots \diamond I_{n}(j d+1)=\frac{1}{2}(j-d+1)(j-d+2)
$$

Note that we have $\left|G_{1}\right|+\left|G_{2}\right|+\ldots+\left|G_{n}\right|=\frac{(d-1)(d-2)}{2}$. Therefore, one can give an equivalent reformulation of the Conjecture 1.

Conjecture 2. Suppose that the rational cuspidal curve $C$ of degree $d$ has critical points $z_{1}, \ldots, z_{n}$. Let $K_{1}, \ldots, K_{n}$ be the corresponding links of singular points and let $\Delta_{1}, \ldots, \Delta_{n}$ be their Alexander polynomials. Moreover, let $G_{1}, G_{2}, \ldots, G_{n}$ be the gap sequences of these points. Let $g=\left|G_{1}\right|+\left|G_{2}\right|+$ $\ldots+\left|G_{n}\right|$ be the genus of $K$. Let $\Delta=\Delta_{1} \cdot \ldots \cdot \Delta_{n}$, expanded as

$$
\Delta(t)=1+(t-1) g+(t-1)^{2} \sum_{j=0}^{2 g-2} k_{j} t^{j}
$$

and let $I=I_{1} \diamond I_{2} \diamond \ldots \diamond I_{n}$. Then for any $j=0, \ldots, d-3$ we have $k_{d(d-j-3)} \leq$ $I(d(d-j-3)+1)$, with equality for $n=1$.

In this note we give an elementary argument, showing that FLMN conjecture follows from Theorem 1 for $n=2$. The idea of our proof is to forget about the specific structure of the problem coming from theory of singularities and to prove Conjecture 2 for general sets $G_{1}, G_{2}$. Namely, we have the following theorem.

Theorem 2. Let $G, H$ be two finite sets of positive integers and let $I_{G}, I_{H}$ : $\mathbb{Z} \rightarrow \mathbb{Z}_{\geq 0}$ be their gap functions. Let us define the polynomials

$$
\begin{aligned}
& \Delta_{G}(t)=1+(t-1)|G|+(t-1)^{2} \sum_{j \geq 0} k_{j}^{G} t^{j} \\
& \Delta_{H}(t)=1+(t-1)|H|+(t-1)^{2} \sum_{j \geq 0} k_{j}^{H} t^{j}
\end{aligned}
$$

where $k_{j}^{G}=I_{G}(j+1), k_{j}^{H}=I_{H}(j+1), j \geq 0$. Take $\Delta=\Delta_{G} \cdot \Delta_{H}$ and $I=I_{G} \diamond I_{H}$. Then

$$
\Delta(t)=1+(t-1)(|G|+|H|)+(t-1)^{2} \sum_{j \geq 0} k_{j} t^{j}
$$

where $k_{j} \leq I(j+1)$ for $j \geq 0$.
This gives the proof of Conjecture 1 in the case $n=2$.
It is natural to ask whether the above theorem is valid for arbitrary $n \geq 2$. Recently, after we found our elementary combinatorial argument for $n=2$, J. Bodnár and A. Némethi showed that the Conjecture 1 is false for $n \geq 3$, see [BN]. We provide their example below. They also found yet another proof of Conjecture 1 in the case of two singularities.

Example. Consider semigroups $S_{1}=\{6 k+7 l: k, l \geq 0\}, S_{2}=\{2 k+$ $9 l: k, l \geq 0\}, S_{3}=\{2 k+5 l: k, l \geq 0\}$. The corresponding gap sequences are $G_{1}=\{1,2,3,4,5,8,9,10,11,15,16,17,22,23,29\}, G_{2}=\{1,3,5,7\}, G_{3}=$ $\{1,3\}$. Then,

$$
\begin{aligned}
& \begin{array}{l}
\Delta_{1}(t)=1+(t-1)\left(t+t^{2}+t^{3}+t^{4}+t^{5}+t^{8}+t^{9}+t^{10}+t^{11}\right. \\
\left.\quad+t^{15}+t^{16}+t^{17}+t^{22}+t^{23}+t^{29}\right) \\
\\
\Delta_{2}(t)=1+(t-1)\left(t+t^{3}+t^{5}+t^{7}\right) \\
\Delta_{3}(t)=1+(t-1)\left(t+t^{3}\right)
\end{array}
\end{aligned}
$$

We write $\Delta=\Delta_{1} \cdot \Delta_{2} \cdot \Delta_{3}$ in the form

$$
\Delta(t)=1+\left(\left|G_{1}\right|+\left|G_{2}\right|+\left|G_{3}\right|\right)(t-1)+(t-1)^{2} \sum_{j \geq 0} k_{j} t^{j}
$$

One can check that

$$
\begin{gathered}
\left(k_{j}\right)_{j=0}^{\infty}=(21,18,20,15,19,13,18,11,16,10,13,10,11,9,10,7,9,5,9,3,9,2 \\
7,2,5,2,4,2,3,1,3,-1,4,-2,4,-2,3,-2,2,-1,1,0,0,0, \ldots)
\end{gathered}
$$

We can see that $k_{8}=16$. From Theorem 1 we have $I(9)=15$. Thus, $k_{8}>I(9)$.

## 2 Proof of the main result

In this section we give a proof of our main result.
We begin with a simple lemma.
Lemma 2. Take $j \geq 1$. Then the minimum of the function $J(l)=I_{G}(j-$ $l)+I_{H}(l)$ is attained for $0 \leq l \leq j$.

Proof. Let $l \leq 0$. Then $I_{H}(l)=|H|-l$ and $I_{G}(j-l) \geq I_{G}(j)+l$. Thus,

$$
J(l)=I_{G}(j-l)+I_{H}(l) \geq I_{G}(j)+|H|=J(0)
$$

In the case when $l \geq j$ we can take $l^{\prime}=j-l$ and use the above inequality, exchanging the roles of $G$ and $H$, to get $J(l) \geq J(j)$.

Proof. Our goal is to express the numbers $k_{j}$ in terms of the numbers $k_{j}^{G}$ and $k_{j}^{H}$. We have

$$
\begin{aligned}
& \Delta(t)=\Delta_{G}(t) \Delta_{H}(t)=1+(t-1)(|G|+|H|) \\
& +(t-1)^{2}\left[|G| \cdot|H|+\sum_{j \geq 0}\left(k_{j}^{G}+k_{j}^{H}\right) t^{j}+(t-1)\left(|G| \sum_{j \geq 0} k_{j}^{H} t^{j}+|H| \sum_{j \geq 0} k_{j}^{G} t^{j}\right)\right. \\
& \left.+(t-1)^{2}\left(\sum_{j \geq 0} k_{j}^{G} t^{j}\right)\left(\sum_{j \geq 0} k_{j}^{H} t^{j}\right)\right]=1+(t-1)(|G|+|H|)+(t-1)^{2} \Theta(t)
\end{aligned}
$$

with

$$
\Theta(t)=|G| \cdot|H|+k_{0}^{G}(1-|H|)+k_{0}^{H}(1-|G|)+k_{0}^{G} k_{0}^{H}+\sum_{j \geq 1} t^{j} k_{j}
$$

where

$$
k_{j}=k_{j}^{G}(1-|H|)+|H| k_{j-1}^{G}+k_{j}^{H}(1-|G|)+|G| k_{j-1}^{H}+l_{j}
$$

and

$$
l_{j}=\sum_{u+v=j, u, v \geq 0} k_{u}^{G} k_{v}^{H}-2 \sum_{u+v=j-1, u, v \geq 0} k_{u}^{G} k_{v}^{H}+\sum_{u+v=j-2, u, v \geq 0} k_{u}^{G} k_{v}^{H}
$$

Note that $k_{0}^{G}=|G|$ and $k_{0}^{H}=|H|$. Therefore,

$$
\begin{aligned}
k_{0} & =|G| \cdot|H|+k_{0}^{G}(1-|H|)+k_{0}^{H}(1-|G|)+k_{0}^{G} k_{0}^{H} \\
& =|G| \cdot|H|+|G|(1-|H|)+|H|(1-|G|)+|G| \cdot|H|=|G|+|H|
\end{aligned}
$$

From Lemma 2 we get

$$
I(1)=\min _{k \in \mathbb{Z}}\left(I_{G}(1-k)+I_{H}(k)\right)=\min _{k=0,1}\left(I_{G}(1-k)+I_{H}(k)\right)=|G|+|H|=k_{0} .
$$

From now on, our goal is to prove that $k_{j} \leq I(j+1)$ for $j \geq 1$. Note that

$$
\begin{aligned}
l_{j}= & \sum_{u+v=j, u, v \geq 0} k_{u}^{G} k_{v}^{H}-\sum_{u+v=j, u \geq 0, v \geq 1} k_{u}^{G} k_{v-1}^{H}-\sum_{u+v=j, u \geq 1, v \geq 0} k_{u-1}^{G} k_{v}^{H} \\
& +\sum_{u+v=j, u, v \geq 1} k_{u-1}^{G} k_{v-1}^{H}=\sum_{u+v=j, u, v \geq 1}\left(k_{u}^{G}-k_{u-1}^{G}\right)\left(k_{v}^{H}-k_{v-1}^{H}\right) \\
& +k_{0}^{G} k_{j}^{H}+k_{j}^{G} k_{0}^{H}-k_{0}^{G} k_{j-1}^{H}-k_{j-1}^{G} k_{0}^{H} .
\end{aligned}
$$

Thus,

$$
k_{j}=\sum_{u+v=j, u, v \geq 1}\left(k_{u}^{G}-k_{u-1}^{G}\right)\left(k_{v}^{H}-k_{v-1}^{H}\right)+m_{j}
$$

where, miraculously,

$$
\begin{aligned}
m_{j}= & k_{0}^{G} k_{j}^{H}+k_{j}^{G} k_{0}^{H}-k_{0}^{G} k_{j-1}^{H}-k_{j-1}^{G} k_{0}^{H} \\
& +k_{j}^{G}(1-|H|)+|H| k_{j-1}^{G}+k_{j}^{H}(1-|G|)+|G| k_{j-1}^{H} \\
= & |G| k_{j}^{H}+k_{j}^{G}|H|-|G| k_{j-1}^{H}-k_{j-1}^{G}|H| \\
& +k_{j}^{G}(1-|H|)+|H| k_{j-1}^{G}+k_{j}^{H}(1-|G|)+|G| k_{j-1}^{H} \\
= & k_{j}^{G}+k_{j}^{H} .
\end{aligned}
$$

We get

$$
k_{j}=k_{j}^{G}+k_{j}^{H}+\sum_{u+v=j, u, v \geq 1}\left(k_{u-1}^{G}-k_{u}^{G}\right)\left(k_{v-1}^{H}-k_{v}^{H}\right)
$$

We are to prove that $k_{j} \leq\left(I_{G} \diamond I_{H}\right)(j+1)$. It suffices to prove that $k_{j} \leq I_{G}(j+1-l)+I_{H}(l)$ for every $l \in \mathbb{Z}$. Thus, we have to deal with the inequality

$$
k_{j}^{G}+k_{j}^{H}+\sum_{u+v=j, u, v \geq 1}\left(k_{u}^{G}-k_{u-1}^{G}\right)\left(k_{v}^{H}-k_{v-1}^{H}\right) \leq I_{G}(j+1-l)+I_{H}(l), \quad j \geq 1, l \in \mathbb{Z}
$$

By Lemma 2 it suffices to consider $0 \leq l \leq j+1$. Note that if $u+v=j$ then we either have $u \geq j-l+1$ or $v \geq l$. Thus,

$$
\mathbf{1}_{u \in G} \mathbf{1}_{v \in H} \mathbf{1}_{u+v=j} \leq \mathbf{1}_{u \in G \cap[j-l+1, j]}+\mathbf{1}_{v \in H \cap[l, j]}
$$

where the indicator functions in the above expression are functions of two variables $u$ and $v$. We have also used the convention $[a, b]=\emptyset$ for $a>b$. We obtain

$$
\begin{aligned}
\sum_{u+v=j, u, v \geq 1} & \left(k_{u-1}^{G}-k_{u}^{G}\right)\left(k_{v-1}^{H}-k_{v}^{H}\right)=\sum_{u+v=j, u, v \geq 0}\left(k_{u-1}^{G}-k_{u}^{G}\right)\left(k_{v-1}^{H}-k_{v}^{H}\right) \\
& =\sum_{u+v=j, u, v \geq 0} \mathbf{1}_{u \in G} \mathbf{1}_{v \in H} \leq \sum_{u+v=j, u, v \geq 0}\left(\mathbf{1}_{u \in G \cap[j-l+1, j]}+\mathbf{1}_{v \in H \cap[l, j]}\right) \\
& =\left(I_{G}(j-l+1)-I_{G}(j+1)\right)+\left(I_{H}(l)-I_{H}(j+1)\right)= \\
& -\left(k_{j}^{G}+k_{j}^{H}\right)+I_{G}(j+1-l)+I_{H}(l)
\end{aligned}
$$

This concludes the proof.

## Acknowledgements

We are grateful to Maciej Borodzik for his valuable comments about the meaning of our result.

## References

[FLMN] J. Fernández de Bobadilla, I. Luengo, A. Melle-Hernández, A. Némethi, On rational cuspidal projective plane curves, Proc. London Math. Soc. (3) 92, 2006, no. 1, 99-138.
[BL] M. Borodzik, C. Livingston, Heegaard Floer homology and rational cuspidal curves, arXiv:1304.1062
[BN] J. Bodnár and A. Némethi, Lattice cohomology and rational cuspidal curves, arxiv:1405.0437
[M] K. Moe, Rational cuspidal curves, Master Thesis, University of Oslo 2008, permanent link at University of Oslo:
https://www.duo.uio.no/handle/123456789/10759
[W] C. T. C. Wall, Singular Points of Plane Curves, London Mathematical Society Student Texts, 63. Cambridge University Press, Cambridge, 2004.

Piotr Nayar, nayar@mimuw.edu.pl
Institute of Mathematics,

```
University of Warsaw,
Banacha 2,
02-097 Warszawa,
Poland
```

and

Institute for Mathematics and its Applications, College of Science and Engineering, University of Minnesota, 207 Church Street SE, 306 Lind Hall, Minneapolis, MN U.S.A. 55455

Barbara Pilat, B.Pilat@mini.pw.edu.pl
Faculty of Mathematics and Information Science, Warsaw University of Technology,
Koszykowa 75, 00-662 Warszawa,
Poland

