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Abstract

In this short note we give an elementary combinatorial argument,
showing that the conjecture of J. Fernández de Bobadilla, I. Luengo, A.
Melle-Hernández, A. Némethi (see [BL], Conjecture 1.2) follows from
Theorem 5.4 in [BL] in the case of rational cuspidal curves with two
critical points.
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1 Introduction

In this short note we deal with irreducible algebraic curves C ⊂ CP 2. Such
a curve has a �nite set of singular points {zi}ni=1 such that a neighbourhood
of each singular point intersects C in a cone on a link Ki ⊂ S3. We would
like to know what possible con�gurations of links {Ki}ni=1 arise in this way.
We consider only the case in which each Ki is connected (in this case Ki

is a knot), and thus C is a rational curve, meaning that there is a rational
surjective map CP 1 → C. Such a curve is called rational cuspidal. We refer
to [M] for a survey on rational cuspidal curves.

Suppose that z is a cuspidal singular point of a curve C and B is a su�-
ciently small ball around z. Let Ψ(t) = (x(t), y(t)) be a local parametrization
of C ∩ B near z. For any polynomial P (x, y) we look at the order at 0 of
the analytic map t 7→ P (x(t), y(t)) ∈ C. Let S be the set of integers, which
can be realized as the order for some P . Then S is a semigroup of Z≥0. We
call it the semigroup of the singular point, see [W] for the details and proofs.
The gap sequence, G = Z≥0\S, has precisely µ/2 elements, where the largest
one is µ − 1. Here µ stands for the Milnor number. Assume that K is the
link of the singular point z. The Alexander polynomial of K can be written
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in the form

∆K(t) =
2m∑
i=0

(−1)itni ,

where (ni)
2m
i=0 form an increasing sequence with n0 = 0 and n2m = 2g, for

g = g(K) being the genus of K. Writing t2ni − t2ni−1 = (t − 1)(t2ni−1 +
t2ni−2 + . . .+ t2ni−1) yields the representation

∆K(t) = 1 + (t− 1)
k∑
j=1

tgj , (1)

for some �nite sequence 0 < g1 < g2 < . . . < gk. We have the following
lemma (see [W], Exercise 5.7.7), which relates the Alexander polynomial to
the gap sequence of a singular point.

Lemma 1. The sequence g1, . . . , gk in (1) is the gap sequence of the semi-
group of the singular point. In particular, k = |G| = µ/2, where µ is the
Milnor number, so |G| is the genus.

If we write tgj = (t− 1)(tgj−1 + tgj−2 + . . .+ 1) + 1, we obtain

∆K(t) = 1 + (t− 1)g(K) + (t− 1)2
µ−2∑
j=0

kjt
j ,

where kj = |{m > j : m /∈ S}|. This motivates the following de�nition.

De�nition. For any �nite increasing sequence of positive integers G we
de�ne

IG(m) = |{k ∈ G ∪ Z<0 : k ≥ m}|,

where Z<0 is the set of negative integers. We shall call IG the gap function,
because in most applications G will be a gap sequence of some semigroup.

Clearly, for j = 0, 1, . . . , µ− 2 we have IG(j + 1) = kj .
In [FLMN] the following conjecture was proposed.

Conjecture 1. Suppose that the rational cuspidal curve C of degree d has
critical points z1, . . . , zn. Let K1, . . . ,Kn be the corresponding links of sin-
gular points and let ∆1, . . . ,∆n be their Alexander polynomials. Let g =∑
g(Ki). Let ∆ = ∆1 · . . . ·∆n, expanded as

∆(t) = 1 +
(d− 1)(d− 2)

2
(t− 1) + (t− 1)2

2g−2∑
j=0

kjt
j
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Then for any j = 0, . . . , d − 3 we have kd(d−j−3) ≤ (j + 1)(j + 2)/2, with
equality for n = 1.

This conjecture was veri�ed in the case n = 1 by Borodzik and Livingston,
see [BL].

We de�ne the in�mum convolution of n functions.

De�nition. Let I1, I2, . . . , In : Z→ Z≥0. We de�ne

(I1 � I2 . . . � In)(k) = min
k1,k2,...,kn∈Z

k1+k2+...+kn=k

(I1(k1) + I2(k2) + . . .+ In(kn)) .

In [BL] the authors proved the following theorem.

Theorem 1. (see [BL, Theorem 5.4]) Let C be a rational cuspidal curve of
degree d. Let I1, . . . , In be the gap functions associated to each singular point
on C. Then for any j ∈ {−1, 0, . . . , d− 2} we have

I1 � I2 � . . . � In(jd+ 1) =
1

2
(j − d+ 1)(j − d+ 2).

Note that we have |G1|+ |G2|+ . . .+ |Gn| = (d−1)(d−2)
2 . Therefore, one can

give an equivalent reformulation of the Conjecture 1.

Conjecture 2. Suppose that the rational cuspidal curve C of degree d has
critical points z1, . . . , zn. Let K1, . . . ,Kn be the corresponding links of singu-
lar points and let ∆1, . . . ,∆n be their Alexander polynomials. Moreover, let
G1, G2, . . . , Gn be the gap sequences of these points. Let g = |G1| + |G2| +
. . .+ |Gn| be the genus of K. Let ∆ = ∆1 · . . . ·∆n, expanded as

∆(t) = 1 + (t− 1)g + (t− 1)2
2g−2∑
j=0

kjt
j

and let I = I1�I2�. . .�In. Then for any j = 0, . . . , d−3 we have kd(d−j−3) ≤
I(d(d− j − 3) + 1), with equality for n = 1.

In this note we give an elementary argument, showing that FLMN con-
jecture follows from Theorem 1 for n = 2. The idea of our proof is to forget
about the speci�c structure of the problem coming from theory of singulari-
ties and to prove Conjecture 2 for general sets G1, G2. Namely, we have the
following theorem.
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Theorem 2. Let G,H be two �nite sets of positive integers and let IG, IH :
Z→ Z≥0 be their gap functions. Let us de�ne the polynomials

∆G(t) = 1 + (t− 1)|G|+ (t− 1)2
∑

j≥0 k
G
j t

j

∆H(t) = 1 + (t− 1)|H|+ (t− 1)2
∑

j≥0 k
H
j t

j ,

where kGj = IG(j + 1), kHj = IH(j + 1), j ≥ 0. Take ∆ = ∆G · ∆H and
I = IG � IH . Then

∆(t) = 1 + (t− 1)(|G|+ |H|) + (t− 1)2
∑
j≥0

kjt
j ,

where kj ≤ I(j + 1) for j ≥ 0.

This gives the proof of Conjecture 1 in the case n = 2.
It is natural to ask whether the above theorem is valid for arbitrary n ≥ 2.

Recently, after we found our elementary combinatorial argument for n = 2,
J. Bodnár and A. Némethi showed that the Conjecture 1 is false for n ≥ 3,
see [BN]. We provide their example below. They also found yet another
proof of Conjecture 1 in the case of two singularities.

Example. Consider semigroups S1 = {6k + 7l : k, l ≥ 0}, S2 = {2k +
9l : k, l ≥ 0}, S3 = {2k+ 5l : k, l ≥ 0}. The corresponding gap sequences are
G1 = {1, 2, 3, 4, 5, 8, 9, 10, 11, 15, 16, 17, 22, 23, 29}, G2 = {1, 3, 5, 7}, G3 =
{1, 3}. Then,

∆1(t) = 1 + (t− 1)(t+ t2 + t3 + t4 + t5 + t8 + t9 + t10 + t11

+ t15 + t16 + t17 + t22 + t23 + t29)

∆2(t) = 1 + (t− 1)(t+ t3 + t5 + t7)

∆3(t) = 1 + (t− 1)(t+ t3)

We write ∆ = ∆1 ·∆2 ·∆3 in the form

∆(t) = 1 + (|G1|+ |G2|+ |G3|)(t− 1) + (t− 1)2
∑
j≥0

kjt
j .

One can check that

(kj)
∞
j=0 = (21, 18, 20, 15, 19, 13, 18, 11, 16, 10, 13, 10, 11, 9, 10, 7, 9, 5, 9, 3, 9, 2,

7, 2, 5, 2, 4, 2, 3, 1, 3,−1, 4,−2, 4,−2, 3,−2, 2,−1, 1, 0, 0, 0, . . .).

We can see that k8 = 16. From Theorem 1 we have I(9) = 15. Thus,
k8 > I(9).
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2 Proof of the main result

In this section we give a proof of our main result.
We begin with a simple lemma.

Lemma 2. Take j ≥ 1. Then the minimum of the function J(l) = IG(j −
l) + IH(l) is attained for 0 ≤ l ≤ j.

Proof. Let l ≤ 0. Then IH(l) = |H| − l and IG(j − l) ≥ IG(j) + l. Thus,

J(l) = IG(j − l) + IH(l) ≥ IG(j) + |H| = J(0).

In the case when l ≥ j we can take l′ = j − l and use the above inequality,
exchanging the roles of G and H, to get J(l) ≥ J(j).

Proof. Our goal is to express the numbers kj in terms of the numbers kGj
and kHj . We have

∆(t) = ∆G(t)∆H(t) = 1 + (t− 1)(|G|+ |H|)

+ (t− 1)2
[
|G| · |H|+

∑
j≥0

(kGj + kHj )tj + (t− 1)
(
|G|
∑
j≥0

kHj t
j + |H|

∑
j≥0

kGj t
j
)

+ (t− 1)2
(∑
j≥0

kGj t
j
)(∑

j≥0
kHj t

j
)]

= 1 + (t− 1)(|G|+ |H|) + (t− 1)2Θ(t),

with

Θ(t) = |G| · |H|+ kG0 (1− |H|) + kH0 (1− |G|) + kG0 k
H
0 +

∑
j≥1

tjkj ,

where

kj = kGj (1− |H|) + |H|kGj−1 + kHj (1− |G|) + |G|kHj−1 + lj

and

lj =
∑

u+v=j, u,v≥0
kGu k

H
v − 2

∑
u+v=j−1, u,v≥0

kGu k
H
v +

∑
u+v=j−2, u,v≥0

kGu k
H
v .

Note that kG0 = |G| and kH0 = |H|. Therefore,

k0 = |G| · |H|+ kG0 (1− |H|) + kH0 (1− |G|) + kG0 k
H
0

= |G| · |H|+ |G|(1− |H|) + |H|(1− |G|) + |G| · |H| = |G|+ |H|.
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From Lemma 2 we get

I(1) = min
k∈Z

(IG(1− k) + IH(k)) = min
k=0,1

(IG(1− k) + IH(k)) = |G|+ |H| = k0.

From now on, our goal is to prove that kj ≤ I(j+1) for j ≥ 1. Note that

lj =
∑

u+v=j, u,v≥0
kGu k

H
v −

∑
u+v=j, u≥0,v≥1

kGu k
H
v−1 −

∑
u+v=j, u≥1,v≥0

kGu−1k
H
v

+
∑

u+v=j, u,v≥1
kGu−1k

H
v−1 =

∑
u+v=j,u,v≥1

(kGu − kGu−1)(kHv − kHv−1)

+ kG0 k
H
j + kGj k

H
0 − kG0 kHj−1 − kGj−1kH0 .

Thus,

kj =
∑

u+v=j,u,v≥1
(kGu − kGu−1)(kHv − kHv−1) +mj ,

where, miraculously,

mj = kG0 k
H
j + kGj k

H
0 − kG0 kHj−1 − kGj−1kH0

+ kGj (1− |H|) + |H|kGj−1 + kHj (1− |G|) + |G|kHj−1
= |G|kHj + kGj |H| − |G|kHj−1 − kGj−1|H|

+ kGj (1− |H|) + |H|kGj−1 + kHj (1− |G|) + |G|kHj−1
= kGj + kHj .

We get

kj = kGj + kHj +
∑

u+v=j,u,v≥1
(kGu−1 − kGu )(kHv−1 − kHv ).

We are to prove that kj ≤ (IG � IH)(j + 1). It su�ces to prove that
kj ≤ IG(j + 1 − l) + IH(l) for every l ∈ Z. Thus, we have to deal with the
inequality

kGj +kHj +
∑

u+v=j,u,v≥1
(kGu−kGu−1)(kHv −kHv−1) ≤ IG(j+1−l)+IH(l), j ≥ 1, l ∈ Z.

By Lemma 2 it su�ces to consider 0 ≤ l ≤ j + 1. Note that if u + v = j
then we either have u ≥ j − l + 1 or v ≥ l. Thus,

1u∈G1v∈H1u+v=j ≤ 1u∈G∩[j−l+1,j] + 1v∈H∩[l,j],
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where the indicator functions in the above expression are functions of two
variables u and v. We have also used the convention [a, b] = ∅ for a > b. We
obtain∑
u+v=j,u,v≥1

(kGu−1 − kGu )(kHv−1 − kHv ) =
∑

u+v=j,u,v≥0
(kGu−1 − kGu )(kHv−1 − kHv )

=
∑

u+v=j,u,v≥0
1u∈G1v∈H ≤

∑
u+v=j,u,v≥0

(
1u∈G∩[j−l+1,j] + 1v∈H∩[l,j]

)
= (IG(j − l + 1)− IG(j + 1)) + (IH(l)− IH(j + 1)) =

− (kGj + kHj ) + IG(j + 1− l) + IH(l).

This concludes the proof.
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