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Abstract

We prove that if f : Zd → R is harmonic and there exists a polynomial W :
Zd → R such that f + W is nonnegative, then f is a polynomial.

1 Introduction

Harmonic functions on the integer lattice are closely related to lattice random walks and

have been studied by many authors - some introduction and detailed references can be

found in a modern monographic book by Woess, [8]. Many different methods have been

succesfully applied, including the extreme point theory, [2], and martingale approach, [4].

The present paper grew out of the author’s licentiate thesis, [7] which extended results and

methods of Darkiewicz, [3]. Similar result for sublinear functions on compactly generated

groups having polynomial growth has been obtained in a paper by Hebisch and Saloff-

Coste, [6] (Theorem 6.1), by using Gaussian estimates for iterated kernels of random

walks.

2 Preliminaries and main results

Let d ∈ N and let (ei)
d
i=1 be the standard orthonormal basis for Rd. The function f :

Zd → R is called harmonic if it has the mean value property

f(x) =
1

2d

d∑
i=1

[f(x+ ei) + f(x− ei)] for all x ∈ Zd.
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We say that f : Zd → R is a polynomial if there exists a polynomial F : Rd → R such

that f = F |Zd .

For t ≥ 0 let Y
(t)
1 , . . . , Y

(t)
d , Z

(t)
1 , . . . , Z

(t)
d be independent Poisson random variables with

mean t.

We will use the following notation:

• ‖x‖p = (
∑d

i=1 |xi|p)1/p for p ∈ [1,∞) and x = (x1, . . . , xd) ∈ Rd

• X(t)
i = Y

(t)
i − Z

(t)
i for i = 1, . . . , d, X(t) =

∑d
i=1X

(t)
i ei

• gt(l) = P(Y
(t)
1 − Z

(t)
1 = l) for l ∈ Z

• Gt(k) =
∏m

i=1 gt(ki) for k = (k1, . . . , km) ∈ Zm

• qt(l) = P(Y
(t)
1 = l) = e−ttl/l! for l ∈ N0 = N ∪ {0}

Note that if t ∈ N then qt(0) ≤ qt(1) ≤ . . . ≤ qt(t− 1) = qt(t) ≥ qt(t+ 1) ≥ qt(t+ 2) ≥ . . .

We consider the space of all exponentially bounded functions

L = {f : Zd → R | ∃c1,c2>0 |f(x)| ≤ c1e
c2‖x‖1 for all x ∈ Zd}

and define a family of operators (Pt)t≥0, Pt : L → L by

Pt(f)(x) = Ef
(
x+X(t)

)
.

Theorem 2.1. The family (Pt)t≥0 is a well-defined semigroup of operators. Moreover,

harmonic functions belonging to L lie in a domain DA of an infinitesimal generator A of

the semigroup (Pt)t≥0 and for f ∈ DA we have

(Af)(x) =
d

dt
Pt(f)(x)

∣∣
t=0

=
∑

k∈Zd:‖k‖1=1

f(x+ k)− 2df(x).

In particular, if f ∈ L is harmonic, then for all x ∈ Zd there is (Af)(x) = 0 and so for

x ∈ Zd

Pt(f)(x) =
∑
k∈Zd

Gt(k)f(x+ k) = f(x).

Proof. If f ∈ L, then there exist c1, c2, c̃1(t) > 0 such that

|Ef(x+X(t))| ≤ c1Eec2‖x+X
(t)‖1 ≤ c1e

c2‖x‖1(Eec2|X
(t)
1 |)d = c̃1(t)e

c2‖x‖1 ,

so Pt(f) ∈ L. Observe that P0(f) = f . If s, t ≥ 0 and X̃(s) is a copy of X(s) independent

of X(t), then X(t) + X̃(s) ∼ X(t+s), so one can easily check that (Pt)t≥0 is a semigroup.

The last part is a simple calculation. 2



Harmonic functions 3

Lemma 2.2. If (ri)i∈N are independent ±1 symmetric Bernoulli random variables and

M is a Poisson variable with mean 4t, such that M , (ri)i∈N are independent, then

X
(t)
1 ∼

1

2
(r1 + . . .+ r2M) .

Moreover, for l ∈ N0

gt(l) = gt(−l) =
∞∑
n=0

e−4t t
n

n!

(
2n

n+ l

)
,

so if 0 ≤ l1 ≤ l2; l1, l2 ∈ Z, then

gt(l1) ≥ gt(l2).

Proof. It is enough to show that the characteristic functions of both random variables

are equal. We have

φ
X

(t)
1

(x) = φ
Y

(t)
1

(x)φ
Z

(t)
1

(−x) = et(e
ix−1)et(e

−ix−1) = et(2 cosx−2) = e−4t sin2(x/2)

and

φ(r1+...+r2M )/2(x) =
∞∑
n=0

P (M = n)φ(r1+...+r2n)/2(x) =
∞∑
n=0

e−4t (4t)
n

n!

(
φr1/2(x)

)2n
= e−4te4t(φr1/2(x))2 = e4t(−1+cos2(x/2)) = e−4t sin2(x/2),

as

φr1/2(x) = φr1(x/2) =
1

2

(
e−ix/2 + eix/2

)
= cos(x/2).

To finish the proof observe that for l ∈ N0 we have

gt(l) = P
(

1

2
(r1 + . . .+ r2M) = l

)
=
∞∑
n=0

P (M = n) P (r1 + . . .+ r2n = 2l)

=
∞∑
n=0

e−4t (4t)
n

n!

1

22n

(
2n

n+ l

)
=
∞∑
n=0

e−4t t
n

n!

(
2n

n+ l

)
and

(
2n
n+l1

)
≥
(

2n
n+l2

)
for 0 ≤ l1 ≤ l2. 2

Lemma 2.3. For ε > 0 and d ∈ N we can find 0 < s < t such that

gt(k) ≥ (1− ε)gs(k − 1) for k ∈ Z

and

Gt(k) ≥ (1− ε)Gs(k − e1) for k ∈ Zd.

Proof. If the first inequality holds for k = 1, 2, . . . ,m then it holds for k = 0,−1, . . . ,−m.

Indeed, for k = −1,−2, . . . ,−m we have (see Lemma 2.2)

P
(
X

(t)
1 = k

)
= P

(
X

(t)
1 = −k

)
≥ (1− ε)P

(
X

(s)
1 = −k − 1

)
= (1− ε)P

(
X

(s)
1 = k + 1

)
≥ (1− ε)P

(
X

(s)
1 = k − 1

)
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and

P
(
X

(t)
1 = 0

)
≥ P

(
X

(t)
1 = 1

)
≥ (1− ε)P

(
X

(s)
1 = 0

)
≥ (1− ε)P

(
X

(s)
1 = −1

)
.

For k ≥ 1 we have

P (Xt = k) =
∞∑
l=0

P (Yt = l + k) P (Zt = l) =
∞∑
l=0

e−2t t2l+k

l!(l + k)!
,

P (Xs = k − 1) =
∞∑
l=0

e−2s s2l+k−1

l!(l + k − 1)!
.

Let s > 1 be such that
√
s ∈ N and set t = s+

√
s. We then have

P (Xt = k) ≥
∞∑

l=
√
s

e−2t t2l+k

l!(l + k)!
=
∞∑
l=0

e−2t t2(l+
√
s)+k

(l +
√
s)!(l +

√
s+ k)!

.

It is enough to prove that

inf
k≥1,l≥0

(
e−2t t2(l+

√
s)+k

(l +
√
s)!(l +

√
s+ k)!

/
e−2s s2l+k−1

l!(l + k − 1)!

)
−−−→
s→∞

1.

We then consider the expression

pl,k(s, t(s)) := e2(s−t)s t2
√
s

(
t

s

)l+k
(l + k − 1)!

(l +
√
s+ k)!

(
t

s

)l
l!

(l +
√
s)!
.

A function N 3 n 7→ (t/s)n(n−1)!/(n+
√
s)! has its minimum at n = s(1+

√
s)/(t−s) = t.

Similarly, a function N0 3 n 7→ (t/s)nn!/(n+
√
s)! has its minimum at n = s

√
s/(t−s) = s.

Therefore

pl,k(s, t(s)) ≥ ps,t−s(s, t(s)) = e2(s−t)s t2
√
s

(
t

s

)t+s
(t− 1)!

(t+
√
s)!

s!

t!

= e−2
√
ss(s+

√
s)2
√
s

(
s+
√
s

s

)2s+
√
s

s!

(s+ 2
√
s)!

1

s+
√
s
.

Using Stirling’s formula we get s!/(s + 2
√
s)! ≈ e2

√
sss/(s + 2

√
s)s+2

√
s as s → ∞, hence

we arrive at

inf
k≥1,l≥0

pl,k(s) ≈ s−s−
√
s+1(s+

√
s)2s+3

√
s−1(s+ 2

√
s)−s−2

√
s

=
√
s
−2s−2

√
s+2+2s+3

√
s−1

(1 +
√
s)−
√
s−1(1 +

√
s)2s+4

√
s(s+ 2

√
s)−s−2

√
s

=

( √
s

1 +
√
s

)√s+1(
s+ 2

√
s+ 1

s+ 2
√
s

)s+2
√
s

−−−→
s→∞

e−1e = 1.

To prove the second part observe that the first inequality yields

Gt(k) = gt(k1) · . . . · gt(kd) ≥ (1− ε)gs(k1 − 1)gt(k2) · . . . · gt(kd) ≥ (1− ε)dGs(k − e1),
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since

gt(l) = gt(|l|) ≥ gt(|l|+ 1) ≥ (1− ε)gs(|l|) = (1− ε)gs(l). 2

A sequence (xi)
n
i=0 ⊂ Zd is called a path in Zd between x0 and xn if ‖xi − xi+1‖1 = 1 for

i = 0, . . . , n− 1. For k ∈ Zd let Ln(k) denote the number of paths in Zd between 0 and k.

Lemma 2.4. Let f : Zd → R be harmonic. Suppose there exists a polynomial W : Zd → R
such that f(x) ≥ −W (x). Then f ∈ L.

Proof. Using simple induction we prove that for f harmonic and n ∈ N we have

f(0) =
1

(2d)n

∑
k∈Zd

f(k)Ln(k).

Let l ∈ Zd. Then L‖l‖1(l) ≥ 1 and

f(0)(2d)‖l‖1 =
∑
k∈Zd

(f(k) +W (k))L‖l‖1(k)−
∑
k∈Zd

W (k)L‖l‖1(k)

≥ (f(l) +W (l))− max
k:‖k‖1≤‖l‖1

|W (k)| · (2d)‖l‖1 ,

hence

f(l) ≤ f(0)(2d)‖l‖1 + (2d)‖l‖1 · max
k:‖k‖1≤‖l‖1

|W (k)| −W (l) ≤ c1e
c2‖l‖1

for some c1, c2 > 0 which depend only on f and W but not on l. Since f is polynomially

bounded from below we have f ∈ L. 2

Now we may recover the classical strong Liouvillle property of harmonic functions on

Zd. Woess, [8], traces back its weak form to Blackwell, [1]; see also [2] and [5].

Theorem 2.5. If f : Zd → R is harmonic and f ≥ 0 then f is constant.

Proof. By Lemma 2.4 we have f ∈ L. Let x ∈ Zd. Lemma 2.3 implies that there exist

t > s > 0 such that

f(x)− f(x+ e1) = Pt(f)(x)− Ps(f)(x+ e1) =
∑
k∈Zd

f(x+ k)Gt(k)−
∑
k∈Zd

f(x+ k + e1)Gs(k)

=
∑
k∈Zd

f(x+ k) (Gt(k)−Gs(k − e1))

≥ −ε
∑
k∈Zd

f(x+ k)Gs(k − e1) = −εf(x+ e1),

By taking ε → 0 we get f(x) ≥ f(x + e1). Applying this inequality to the harmonic

function x 7→ g(x) = f(−x) we get f(x) = f(x + e1) and similarly f(x) = f(x + ei) for

i = 1, . . . , d. 2

We will now prove some auxiliary lemmas.
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Lemma 2.6. Let n ∈ N and let k ∈ Z satisfy |k| ≤ n. Then

1

2
√
n

(
1− k2

n

)
≤ 1

22n

(
2n

n+ k

)
≤ 1√

2n+ 1
e−

k2

2n ≤ 1√
n+ 1

e−
k2

2n .

Proof. We can assume k ≥ 0. By multiplying the obvious inequalities (2j − 1)2 ≥
2j(2j − 2) for j = 2, 3, . . . , n and (2j)2 ≥ (2j − 1)(2j + 1) for j = 1, 2, . . . , n we arrive at

((2n− 1)!!)2 ≥ 1
2
(2n)!!(2n− 2)!! and ((2n)!!)2 ≥ (2n− 1)!!(2n+ 1)!!, so that

1

4n
≤
(

(2n− 1)!!

(2n)!!

)2

≤ 1

2n+ 1
.

To finish the proof it suffices to observe that

1

22n

(
2n

n+ k

)
=

(2n− 1)!!

(2n)!!
·

k∏
j=1

(
1− k

n+ j

)
and

1− k2

n
≤
(

1− k

n

)k
≤

k∏
j=1

(
1− k

n+ j

)
≤
(

1− k

2n

)k
≤ e−

k2

2n . 2

Lemma 2.7. There exists a constant C > 0 such that for k ∈ Zd \ {0}

G‖k‖21(k) ≥ Cd · ‖k‖−2d
1 .

Proof. Let t > 0 and k = (k1, . . . , kd) ∈ Zd. We have (see Lemma 2.2)

gt(ki) ≥ e−4t t
n

n!

(
2n

n+ ki

)
≥ e−4t t

n

n!

(
2n

n+ ‖k‖1

)
(i = 1, . . . , d, n ∈ N).

We set t = ‖k‖21 and n = 4t. Then e−4ttn = e−nnn/4n, so that

gt(ki) ≥ qn(n) · 1

22n

(
2n

n+ ‖k‖1

)
≥ qn(n) · 1

2
√
n

(
1− ‖k‖

2
1

n

)
=

3

16
qn(n)/‖k‖1,

where we have used Lemma 2.6. Note that by Chebyshev’s inequality

P(|Y (n)
1 − n| ≥ 2

√
n) = P(|Y (n)

1 − EY (n)
1 | ≥ 2

√
n) ≤ D2Y

(n)
1

4n
= 1/4,

so that

3/4 ≤ P(|Y (n)
1 − n| < 2

√
n) =

∑
m∈N0:|m−n|<2

√
n

qn(m)

≤ card{m ∈ N0 : |m− n| < 2
√
n} · qn(n) ≤ 8‖k‖1 · qn(n).

Hence

gt(ki) ≥
3

32‖k‖1
· 3

16‖k‖1
=

C

‖k‖21
and therefore

G‖k‖21(k) =
d∏
i=1

gt(ki) ≥ Cd · ‖k‖−2d
1 . 2
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Lemma 2.8. Let W : Rd → R be a polynomial. We define HW : R→ R by

HW (t) = Pt(W )(0) =
∑
k∈Zd

Gt(k)W (k).

Then HW is a polynomial.

Proof. HW is well-defined since W
∣∣
Zd ∈ L. Because of the product structure of Gt it is

enough to consider the case d = 1 and W (z) = zl for l ∈ N. The characteristic function

φ
X

(t)
1

(z) = e−4t sin2(z/2)

is smooth, so that

HW (t) = E[(X
(t)
1 )l] = (−i)l

dlφ
X

(t)
1

dzl
(0)

which clearly is a polynomial in variable t. 2

Lemma 2.9. Let f : Zd → R be harmonic. Suppose there exists a polynomial W : Zd → R
such that f ≥ −W . Then |f | ≤ R for some polynomial R : Zd → R.

Proof. We have f ∈ L (see Lemma 2.4). Proposition 2.1 yields

f(0) =
∑
k∈Zd

Gt(k)f(k),

hence for l ∈ Zd

f(0) =
∑
k∈Zd

Gt(k) (f(k) +W (k))−
∑
k∈Zd

Gt(k)W (k)

≥ Gt(l)(f(l) +W (l))−HW (t).

Therefore

f(0) +HW (t) ≥ Gt(l)(f(l) +W (l)).

There exists a constant c = c(d) > 0 such that (see Lemma 2.7) for l 6= 0

G‖l‖21(l) ≥ c · ‖l‖−2d
1 .

Hence for l 6= 0

f(0) +HW (‖l‖21) ≥ c · (f(l) +W (l)) · ‖l‖−2d
1

and therefore

f(l) ≤ c−1‖l‖2d1
(
f(0) +HW (‖l‖21)

)
−W (l).

Since the right-hand side of the above inequality is polynomially bounded from above in

variable l, we have f(l) ≤ P (l) for some polynomial P : Rd → R and for all l ∈ Zd. One

can easily check that |f(l)| ≤ 1 + [P (l)]2 + [W (l)]2. 2
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Lemma 2.10. For x ∈ Z, n ∈ N, a, b ∈ R and p ≥ 0 we have

|a+ b|p ≤ 2p(|a|p + |b|p)

and

||x|n − |x+ 1|n| ≤ 1 + 2n|x|n−1.

Proof. Without loss of generality we may assume that |a| ≤ |b|. Then

|a+ b|p ≤ (2|b|)p ≤ 2p(|a|p + |b|p).

To prove the second inequality note that

||(x+ 1)n|− |xn|| ≤ |(x+ 1)n−xn| =
∣∣∣ n−1∑
k=0

(
n

k

)
xk
∣∣∣ ≤ 1 +

n−1∑
k=1

(
n

k

)
|x|n−1 ≤ 1 + 2n|x|n−1. 2

Lemma 2.11. If t > 0 then

gt(0) ≤ 1

2
√
t

and

E|X(t)
1 |m ≤ b(m)tm/2 + c(m)

for some constants b(m), c(m) > 0 and m ∈ N.

Proof. Let M be the Poisson variable with mean 4t. By Lemma 2.2, Lemma 2.6 and

Jensen’s inequality we have

gt(0) =
∞∑
n=0

e−4t (4t)
n

n!

1

22n

(
2n

n

)
≤

∞∑
n=0

e−4t (4t)
n

n!

1√
n+ 1

= E
1√

M + 1
≤
(

E
1

M + 1

)1/2

and

E
1

M + 1
=
∞∑
n=0

e−4t (4t)n

(n+ 1)!
=

1

4t

∞∑
n=0

e−4t (4t)n+1

(n+ 1)!
≤ 1

4t
.

Now let us prove the second part. Let M, r1, r2, . . . be as in Lemma 2.2. For fixed k ∈ N
and i ≤ k we have Eeri/

√
k = 1 +

∑∞
s=1 k

−s/(2s)! ≤ 1 + ek−1 ≤ ee/k, so that

1

m!
E
(
r1 + r2 + . . .+ rk√

k

)m
+

≤ E exp

(
r1 + . . .+ rk√

k

)
=

k∏
i=1

Eeri/
√
k ≤ ee.

Hence

E|r1 + . . .+ rk|m = 2E(r1 + . . .+ rk)
m
+ ≤ 2eem! · km/2

and therefore, by Lemma 2.2,

E|X(t)
1 |m ≤ 2eem! · 2−m · E(2M)m/2 ≤ 2eem! · (EMm)1/2.
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Now,

EMm = EMmIM<m + EMmIM≥m ≤ mm +mmE(M −m+ 1)m

≤ mm

(
1 +

∞∑
k=m

e−4t (4t)
k

k!
k(k − 1) . . . (k −m+ 1)

)
= mm(1 + (4t)m)

and it is obvious (see Lemma 2.10) that

E|X(t)
1 |m ≤ b(m)tm/2 + c(m)

for some constants b(m), c(m) > 0 .

Now we state the key lemma of this paper. Similar estimates for sublinear harmonic

functions has been obtained in a more general setting in the paper [6] (Theorem 6.1) by

using Theorem 5.1 (inequality (14)).

Lemma 2.12. Let n ∈ N and let f : Zd → R be harmonic. Suppose that there exists a

constant an such that

|f(x)| ≤ an(1 + ‖x‖nn)

for all x ∈ Zd. Then there exists a constant an−1 such that for all x ∈ Zd

|f(x+ e1)− f(x)| ≤ an−1(1 + ‖x‖n−1
n−1).

Proof. For x ∈ Zd and any t > 0 we have

f(x) =
∑
k∈Zd

Gt(k)f(x+ k)

and

f(x+ e1) =
∑
k∈Zd

Gt(k)f(x+ e1 + k) =
∑
k∈Zd

Gt(k − e1)f(x+ k),

hence

|f(x+ e1)− f(x)| ≤
∑
k∈Zd

|Gt(k − e1)−Gt(k)||f(x+ k)|

≤
∑
k∈Zd

|Gt(k − e1)−Gt(k)|an(1 + ‖x+ k‖nn)

=
∑

k∈Zd:k1≤0

(Gt(k)−Gt(k − e1))an(1 + ‖x+ k‖nn) +
∑

k∈Zd:k1>0

(Gt(k − e1)−Gt(k))an(1 + ‖x+ k‖nn)

=
∑

k∈Zd:k1≤−1

Gt(k)an(|x1 + k1|n − |x1 + k1 + 1|n) +
∑

k∈Zd:k1≥1

Gt(k)an(|x1 + k1 + 1|n − |x1 + k1|n)

+
∑

k∈{0}×Zd−1

Gt(k)an(1 + ‖x+ k‖nn) +
∑

k∈{0}×Zd−1

Gt(k)an(1 + ‖x+ k + e1‖nn).
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We have used the product structure of Gt and Lemma 2.2. By using Lemma 2.10 we get

∑
k1≤−1,k∈Zd

Gt(k)(|x1 + k1|n − |x1 + k1 + 1|n) +
∑

k1≥1,k∈Zd

Gt(k)(|x1 + k1 + 1|n − |x1 + k1|n)

≤
∑
k∈Zd

Gt(k)(2n|x1 + k1|n−1 + 1) = 1 + 2n
∑
k1∈Z

gt(k1)|x1 + k1|n−1

≤ 1 + 22n−1
∑
k1∈Z

gt(k1)(|x1|n−1 + |k1|n−1) = 1 + 22n−1
(
|x1|n−1 + E|X(t)

1 |n−1
)

We also have, again by using Lemma 2.10 several times,∑
k∈{0}×Zd−1

Gt(k)(1 + ‖x+ k‖nn) +
∑

k∈{0}×Zd−1

Gt(k)(1 + ‖x+ k + e1‖nn)

≤
∑

k∈{0}×Zd−1

Gt(k)
(
2 + 2n‖x‖nn + 2n‖x+ e1‖nn + 2n+1‖k‖nn

)
≤ gt(0)

(
2 + 2n‖x‖nn + 2n‖x+ e1‖nn + d 2n+1E|X(t)

1 |n
)

≤ 4n+1gt(0)
(

1 + ‖x‖nn + d E|X(t)
1 |n

)
,

so we arrive at

|f(x+ e1)− f(x)| ≤ an

(
1 + 22n−1

(
|x1|n−1 + E|X(t)

1 |n−1
)

+ 4n+1gt(0)
(

1 + ‖x‖nn + d E|X(t)
1 |n

))
≤ 4n+2and

[(
1 + ‖x‖n−1

n−1 + E|X(t)
1 |n−1

)
+ gt(0)

(
‖x‖nn + E|X(t)

1 |n
)]
.

From Lemma 2.11 we infer that there exists a constant C = C(n, d) such that for every

t > 0 and every x ∈ Zd there is

|f(x+ e1)− f(x)| ≤ Can

[
1 + ‖x‖n−1

n−1 + t
n−1

2 + t−1/2
(
‖x‖nn + tn/2

)]
.

By setting t = (1 + ‖x‖1)2 we complete the proof. 2

Lemma 2.13. Let f : Zd → R be such that fi(x) = f(x+ ei)− f(x) are polynomials for

i = 1, 2, . . . , d. Then f is a polynomial.

Proof. To begin with we consider the case d = 1. Note that f(x) − f(0) is determined

by values of f1. Define a sequence of polynomials (Wk)
∞
k=0 by

xm =
m−1∑
k=0

(
m

k

)
Wk(x); m = 1, 2, . . .
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A simple induction yields that Wk(x+ 1)−Wk(x) = xk and Wk(0) = 0. It follows that if

f1(x) =
∑l

i=0 aix
i then f(x) = f(0) +

∑l
i=0 aiWi(x). If d > 1 then

f(x1, . . . , xd) = f(x1, x2, . . . , xd)− f(0, x2, . . . , xd) + f(0, x2, . . . , xd)− f(0, 0, x3, . . . , xd)

+ . . .+ f(0, . . . , 0, x1)− f(0, . . . , 0) + f(0).

By using the same argument as in the case d = 1 we see that

f(0, . . . , xi, . . . , xd)− f(0, . . . , xi+1, . . . , xd), (i = 1, . . . , d)

are polynomials. 2

Main Theorem 2.14. Let f : Zd → R be harmonic. Suppose there exists a polynomial

W : Zd → R such that f(k) ≥ −W (k) for k ∈ Zd. Then f is a polynomial.

Proof. There exists (see Lemma 2.9) n ∈ N such that |f(x)| ≤ an(1 + ‖x‖nn). We claim

that together with the harmonicity of f this already implies that f is a polynomial. We

prove this claim by induction with respect to the parameter n. For n = 0 the claim is

a consequence of Proposition 2.5. For n > 1 let fi(x) = fi(x + e1) − f(x). Note that

fi, i = 1, . . . , d are also harmonic. By the Lemma 2.12 and induction hypothesis, fi are

polynomials, hence by Lemma 2.13 we get that f is a polynomial as well. 2
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