Liga zadaniowa 2017
seria VI, opublikowane 16/05/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. (A) For a function $g: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ we define

$$
(\partial g)(x)=\{y \in \mathbb{R}: g(z) \geq g(x)+y(z-x), \text { for any } z \in \mathbb{R}\}
$$

Let $A \subseteq \mathbb{R}^{2}$. Prove that the following conditions are equivalent,
(a) for any $m \geq 1$ and $\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right) \in A$ we have

$$
y_{1}\left(x_{1}-x_{2}\right)+y_{2}\left(x_{2}-x_{3}\right)+\ldots+y_{m}\left(x_{m}-x_{1}\right) \leq 0,
$$

(b) there exists a function $g: \mathbb{R} \rightarrow \mathbb{R} \cup\{+\infty\}$ such that g is not identically equal $+\infty$ and $A \subseteq\{(x, y): y \in(\partial g)(x)\}$.

Problem 2. (G) Let A be a $n \times n$ real matrix with $\operatorname{tr}(A)=0$.
(a) Show that there are real $n \times n$ matrices X, Y such that $A=X Y-Y X$.
(b) Show that there is an invertible real matrix C such that $C A C^{-1}$ has zero diagonal.

Problem 3. (A) Let a_{1}, \ldots, a_{k} be real numbers and let $n_{1}<n_{2}<\ldots<n_{k}$ be positive integers. Prove that

$$
\int_{-\pi}^{\pi}\left|\sum_{i=1}^{k} a_{i} \sin n_{i} t\right| \mathrm{d} t \geq \pi \max _{1 \leq i \leq k}\left|a_{i}\right| .
$$

Problem 4. (K) Let $G=(V, E)$ be a simple graph with a maximal vertex degree Δ and suppose we are give a set of colours $C=\left\{c_{1}, \ldots, c_{q}\right\}$, where $|C|=q=\Delta+2$. A colouring $h: V \rightarrow C$ is proper if $x \sim y$ implies $h(x) \neq h(y)$. Let \mathcal{H} be the set of all proper colourings of G. We introduce a graph $\mathcal{G}=(\mathcal{H}, \mathcal{E})$, where $h_{1}, h_{2} \in \mathcal{H}$ are neighbours, that is $\left(h_{1}, h_{2}\right) \in \mathcal{E}$, if and only if $\left|\left\{v \in V: h_{1}(v) \neq h_{2}(v)\right\}\right|=1$. Is \mathcal{G} always connected?

