Liga zadaniowa 2017 seria V, opublikowane 05/05/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1.

- (a) Let I_1, \ldots, I_k be closed intervals in \mathbb{R} with lengths l_1, \ldots, l_k and midpoints x_1, \ldots, x_k . Assume that $I = \bigcup_{i=1}^k I_i$ is a closed interval. Show that the closed interval centred at $x = \frac{\sum_{i=1}^k l_i x_i}{\sum_{i=1}^k l_i}$ with length $\sum_{i=1}^k l_i$ covers I.
- (b) Let B_1, \ldots, B_k be closed Euclidean balls in \mathbb{R}^n with diameters d_1, \ldots, d_k . Assume no hyperplane divides the balls into two non-empty sets without intersecting at least one ball. Prove that the balls can be covered by a closed ball of diameter $\sum_{i=1}^k d_i$.

Problem 2. (G) Prove that there cannot be more than $\binom{n+1}{2}$ equiangular lines in \mathbb{R}^n . Is this result sharp for n = 3?

Problem 3. (G) Let A be a real symmetric $n \times n$ matrix, not equal to the zero matrix. Then

$$\operatorname{rank}(A) \ge \frac{\left(\sum_{i=1}^{n} a_{ii}\right)^2}{\sum_{i,j=1}^{n} a_{ij}^2}.$$

Problem 4. (A+K) A sequence of real numbers $(x_n)_{n=1}^{\infty} \subset [0,1]$ is called *nice* if for any two closed intervals $I, J \subset [0,1]$ of the same length we have

$$|\#\{1 \le i \le n : x_i \in I\} - \#\{1 \le i \le n : x_i \in J\}| \le 10^6.$$

Prove that nice sequences do not exist.