Liga zadaniowa 2017
seria V, opublikowane 05/05/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1.

(a) Let I_{1}, \ldots, I_{k} be closed intervals in \mathbb{R} with lengths l_{1}, \ldots, l_{k} and midpoints x_{1}, \ldots, x_{k}. Assume that $I=\bigcup_{i=1}^{k} I_{i}$ is a closed interval. Show that the closed interval centred at $x=\frac{\sum_{i=1}^{k} l_{i} x_{i}}{\sum_{i=1}^{k} l_{i}}$ with length $\sum_{i=1}^{k} l_{i}$ covers I.
(b) Let B_{1}, \ldots, B_{k} be closed Euclidean balls in \mathbb{R}^{n} with diameters d_{1}, \ldots, d_{k}. Assume no hyperplane divides the balls into two non-empty sets without intersecting at least one ball. Prove that the balls can be covered by a closed ball of diameter $\sum_{i=1}^{k} d_{i}$.

Problem 2. (G) Prove that there cannot be more than $\binom{n+1}{2}$ equiangular lines in \mathbb{R}^{n}. Is this result sharp for $n=3$?

Problem 3. (G) Let A be a real symmetric $n \times n$ matrix, not equal to the zero matrix. Then

$$
\operatorname{rank}(A) \geq \frac{\left(\sum_{i=1}^{n} a_{i i}\right)^{2}}{\sum_{i, j=1}^{n} a_{i j}^{2}}
$$

Problem 4. $(\mathbf{A}+\mathbf{K})$ A sequence of real numbers $\left(x_{n}\right)_{n=1}^{\infty} \subset[0,1]$ is called nice if for any two closed intervals $I, J \subset[0,1]$ of the same length we have

$$
\left|\#\left\{1 \leq i \leq n: x_{i} \in I\right\}-\#\left\{1 \leq i \leq n: x_{i} \in J\right\}\right| \leq 10^{6} .
$$

Prove that nice sequences do not exist.

