Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. $(\mathbf{A}+\mathbf{G})$ Let P be a non-constant polynomial with complex coefficients. Show that the roots ${ }^{1}$ of P^{\prime} lie in the convex hull of the set of roots of P.

Problem 2. $(\mathbf{G}+\mathbf{K})$ Let n be a positive integer and let $G=(V, E)$ be a bipartite graph with bipartition $V=\left\{u_{1}, \ldots, u_{n}\right\} \cup\left\{v_{1}, \ldots, v_{n}\right\}$ and with m edges. For every edge $\left\{u_{i}, u_{j}\right\} \in E$ we introduce a variable $x_{i j}$. Define a matrix ${ }^{2} A=\left(a_{i j}\right)_{i, j=1}^{n}$ by

$$
a_{i j}= \begin{cases}x_{i j} & \text { when }\left\{u_{i}, u_{j}\right\} \in E \\ 0 & \text { otherwise }\end{cases}
$$

The determinant $\operatorname{det}(A)$ is a polynomial in m variables $x_{i j}$. Show that this polynomial is identically zero if and only if G has no perfect matching ${ }^{3}$.

Problem 3. Suppose there is a "linear" parking lot with n available parking spots (these spots have numbers $1, \ldots, n)$. There are n cars waiting in the line to park in this parking lot. Assume that the i th car prefers spot number $a_{i} \in\{1, \ldots, n\}$. If the spot is already occupied, then the i th car takes the next available space (having number greater than a_{i}). If this is not possible, then it fails to park. What is the number of sequences $\left(a_{i}\right)_{i=1}^{n}$ such that all cars can park?

Example 1. Suppose that $a_{1}=1, a_{2}=1, a_{3}=2$. Then the first car takes spot number 1 . The second car also wants to take this spot, but since it is not available, it takes the next available spot, which is spot number 2 . In the same manner, the car number 3 takes spot number 3, since spot number 2 is occupied.

If $a_{1}=2, a_{2}=2, a_{3}=3$, then the first car takes spot number 2 , the second car takes spot number 3 (since spot number 2 is occupied), and the third car fails to park.

Problem 4. $(\mathbf{A}+\mathbf{G})$ Let $\left(a_{i j}\right)_{i, j=1}^{n}$ be a positive semidefinite matrix. Is it true that the matrix $\left(e^{a_{i j}}\right)_{i, j=1}^{n}$ is also positive semidefinite?

[^0]
[^0]: ${ }^{1}$ Here by root we mean any $z \in \mathbb{C}$ such that $P(z)=0$.
 ${ }^{2}$ Note that $x_{i j}=x_{j i}$ and so A is symmetric.
 ${ }^{3}$ A matching in a graph G is a set of edges $F \subseteq E(G)$ such that no vertex of G is incident to more than one edge of F. A perfect matching is a matching covering all vertices.

