Liga zadaniowa 2017 seria III, opublikowane 27/03/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. (K) Let G be a simple triangle-free graph with n vertices. Suppose that any vertex of G has degree greater than $\frac{2n}{5}$. Show that G is bipartite.

Problem 2. (G) Suppose A and B are $n \times n$ real matrices with A positive semidefinite and B symmetric. Prove that the characteristic polynomial of AB is real rooted.

Problem 3. (A) Let *E* be the arithmetic mean and *M* be a median of a sequence of real numbers a_1, \ldots, a_n . Prove that for any $p \ge 1$ we have

$$\frac{1}{3^p} \sum_{k=1}^n |a_k - M|^p \le \sum_{k=1}^n |a_k - E|^p \le 2^p \sum_{k=1}^n |a_k - M|^p.$$

Problem 4. (A+G+K) Let v_1, \ldots, v_n be unit vectors in \mathbb{R}^n , such that for all $i, j = 1, \ldots, n$ we have $\langle v_i, v_j \rangle \geq -0.999$. Prove that there is a vector $x \in \mathbb{R}^n$ such that

$$|\{1 \le i \le n : \langle x, v_i \rangle > 0\}| \ge \frac{1}{2}(n + n^{0.001}).$$