Liga zadaniowa 2017

seria III, opublikowane 27/03/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. (K) Let G be a simple triangle-free graph with n vertices. Suppose that any vertex of G has degree greater than $\frac{2 n}{5}$. Show that G is bipartite.

Problem 2. (G) Suppose A and B are $n \times n$ real matrices with A positive semidefinite and B symmetric. Prove that the characteristic polynomial of $A B$ is real rooted.

Problem 3. (A) Let E be the arithmetic mean and M be a median of a sequence of real numbers a_{1}, \ldots, a_{n}. Prove that for any $p \geq 1$ we have

$$
\frac{1}{3^{p}} \sum_{k=1}^{n}\left|a_{k}-M\right|^{p} \leq \sum_{k=1}^{n}\left|a_{k}-E\right|^{p} \leq 2^{p} \sum_{k=1}^{n}\left|a_{k}-M\right|^{p}
$$

Problem 4. $(\mathbf{A}+\mathbf{G}+\mathbf{K})$ Let v_{1}, \ldots, v_{n} be unit vectors in \mathbb{R}^{n}, such that for all $i, j=1, \ldots, n$ we have $\left\langle v_{i}, v_{j}\right\rangle \geq-0.999$. Prove that there is a vector $x \in \mathbb{R}^{n}$ such that

$$
\left|\left\{1 \leq i \leq n:\left\langle x, v_{i}\right\rangle>0\right\}\right| \geq \frac{1}{2}\left(n+n^{0.001}\right)
$$

