Liga zadaniowa 2017
seria II, opublikowane 13/03/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. (A+G)

(a) Let A be a positive definite $n \times n$ matrix. Prove that

$$
\ln \operatorname{det} A=\inf _{B \text { positive definite }}(\operatorname{tr}(A B)-n-\ln \operatorname{det} B)
$$

(b) Deduce that for any positive semi-definite $n \times n$ matrices A, B we have

$$
\operatorname{det}(\lambda A+(1-\lambda) B) \geq \operatorname{det}(A)^{\lambda} \operatorname{det}(B)^{1-\lambda}, \quad \lambda \in[0,1]
$$

Problem 2. $(\mathbf{K}+\mathbf{A})$ Consider the following process. We start with an urn containing two balls, one black and one white. In each step of the process we choose a ball at random from those already in the urn and return the chosen ball to the urn together with additional ball of the same color. Let $n \geq 1$ and let $j \in\{1, \ldots, n+1\}$. What is the probability that after n steps of this process the number of black balls inside the urn is equal to j ?

Problem 3. (G) Fix a sequence of pairwise distinct positive real numbers x_{1}, \ldots, x_{n}. Prove that the sign of the determinant of the matrix

$$
\left(\begin{array}{cccc}
x_{1}^{k_{1}} & x_{1}^{k_{2}} & \ldots & x_{1}^{k_{n}} \\
x_{2}^{k_{1}} & x_{2}^{k_{2}} & \ldots & x_{2}^{k_{n}} \\
\vdots & \vdots & \ddots & \vdots \\
x_{n}^{k_{1}} & x_{n}^{k_{2}} & \ldots & x_{n}^{k_{n}}
\end{array}\right)
$$

does not depend on the choice of integers $0 \leq k_{1}<k_{2}<\ldots<k_{n}$.

Problem 4. $(\mathbf{G}+\mathbf{K})$ Let $G=(V, E)$ be a simple connected and undirected graph with $|V|=n$. For $1 \leq i, j \leq n$ let $d_{i j}$ be the distance between vertices v_{i}, v_{j} in the standard graph metric. We define the matrix $D(G)=\left(d_{i j}\right)_{i, j=1}^{n}$. Show that for any tree T we have $\operatorname{det}(D(T))=(-1)^{n-1}(n-1) 2^{n-2}$.

