Liga zadaniowa 2017 seria I, opublikowane 27/02/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. (A+G) Let a_1, \ldots, a_n and b_1, \ldots, b_n be positive real numbers such that $\sum_{i=1}^n a_i > \sum_{i=1}^n b_i$. Let us take the boxes $A = [0, a_1] \times \ldots \times [0, a_n]$ and $B = [0, b_1] \times \ldots \times [0, b_n]$. Prove that for any isometry R of \mathbb{R}^n we have $R(A) \nsubseteq B$. In other words, the box A cannot be packed in the box B.

Problem 2. (G) Show that the rectangle $[0,1] \times [0,a]$ can be expressed as a finite sum of closed squares (having sides parallel to the coordinate axes) with pairwise disjoin interiors if and only if a is rational.

Problem 3. (A+K) Let $f: \mathbb{Z}^2 \to \mathbb{R}$ be such that f(N,0) = 1 and f(-N,0) = -1. Show that

$$\sum_{x,y \in \mathbb{Z}^2: |x-y|=1} (f(x) - f(y))^2 \ge \frac{c}{\ln N},$$

where $|\cdot|$ is the standard Euclidean norm and c is a universal constant (for example $c = 10^{-10}$ should work).

Problem 4. (K) Fix positive integers n and m with n < m. Show that among all up-right \mathbb{Z}^2 lattice paths from (0,0) to (n,m) the fraction of paths lying strictly above the line x = y (except for the initial point) is equal to $\frac{m-n}{m+n}$.