Liga zadaniowa 2017

seria I, opublikowane 27/02/2017

Pytania dotyczące zadań prosimy kierować do Piotra Nayara na adres: nayar@mimuw.edu.pl.

Problem 1. $(\mathbf{A}+\mathbf{G})$ Let a_{1}, \ldots, a_{n} and b_{1}, \ldots, b_{n} be positive real numbers such that $\sum_{i=1}^{n} a_{i}>$ $\sum_{i=1}^{n} b_{i}$. Let us take the boxes $A=\left[0, a_{1}\right] \times \ldots \times\left[0, a_{n}\right]$ and $B=\left[0, b_{1}\right] \times \ldots \times\left[0, b_{n}\right]$. Prove that for any isometry R of \mathbb{R}^{n} we have $R(A) \nsubseteq B$. In other words, the box A cannot be packed in the box B.

Problem 2. (G) Show that the rectangle $[0,1] \times[0, a]$ can be expressed as a finite sum of closed squares (having sides parallel to the coordinate axes) with pairwise disjoin interiors if and only if a is rational.

Problem 3. $(\mathbf{A}+\mathbf{K})$ Let $f: \mathbb{Z}^{2} \rightarrow \mathbb{R}$ be such that $f(N, 0)=1$ and $f(-N, 0)=-1$. Show that

$$
\sum_{x, y \in \mathbb{Z}^{2}:|x-y|=1}(f(x)-f(y))^{2} \geq \frac{c}{\ln N}
$$

where $|\cdot|$ is the standard Euclidean norm and c is a universal constant (for example $c=10^{-10}$ should work).

Problem 4. (K) Fix positive integers n and m with $n<m$. Show that among all up-right \mathbb{Z}^{2} lattice paths from $(0,0)$ to (n, m) the fraction of paths lying strictly above the line $x=y$ (except for the initial point) is equal to $\frac{m-n}{m+n}$.

