Inequalities in convex geometry

homework problems

Problem 1. (3 p.) Let K be a convex body in \mathbb{R}^{n} with volume 1 and barycentre at the origin, that is $\int_{K} x_{i} \mathrm{~d} x=0$ for all $i=1, \ldots, n$. Prove that for any $\theta \in S^{n-1}$ we have

$$
\operatorname{vol}_{n}(\{x \in K:\langle x, \theta\rangle \geq 0\}) \geq\left(\frac{n}{n+1}\right)^{n} .
$$

Hint: use Brunn's principle.
Problem 2. (3 p.)
(a) Prove that Steiner symmetrization of a compact convex set is compact.
(b) Is it true that Steiner symmetrization preserves compactness?

Problem 3. (3 p.) Prove Blaschke selection principle using Arzela-Ascoli theorem.
Problem 4. (1 p.) Prove that if K, L are compact sets such that $|K|=|L|$, then for any $t \geq 0$ we have $|K+t L| \geq|(1+t) L|$.

Problem 5. (2 p.) Prove that for compact convex bodies with non-empty interiors the convergence $K_{j} \rightarrow K$ implies $S_{u}\left(K_{j}\right) \rightarrow S_{u}(K)$ for any direction $u \in S^{n-1}$.

Problem 6. (3 p.)
(a) Suppose K, L are compact sets in \mathbb{R}^{n}. Prove the inequality

$$
\operatorname{vol}_{n}(K) \operatorname{vol}_{n}(L) \leq \operatorname{vol}_{n}(K+L) \sup _{x \in \mathbb{R}^{n}} \operatorname{vol}_{n}(K \cap(x-L)) .
$$

(b) Show that if K is convex then

$$
\sup _{x \in \mathbb{R}^{n}}^{\operatorname{vol}_{n}}(K \cap(x-K)) \geq 2^{-n} \operatorname{vol}_{n}(K) .
$$

(c) Prove that every convex body K contains a symmetric (with respect to some point) convex body L with

$$
\operatorname{vol}_{n}(L) \geq 2^{-n} \operatorname{vol}_{n}(K)
$$

Problem 7. (2 p.) Let K, L be convex bodies in \mathbb{R}^{n}. Prove the inequality

$$
\operatorname{vol}_{n}(K-L) \leq\binom{ 2 n}{n} \operatorname{vol}_{n}(K+L) .
$$

Problem 8. (2 p.) Suppose $f: \mathbb{R} \rightarrow \mathbb{R}$ be an even log-concave probability density. Prove or disprove the inequality

$$
\int_{t}^{+\infty} f(s) \mathrm{d} s \leq \frac{f(t)}{2 f(0)}
$$

Problem 9. (4 p.) Prove that in dimension one Prékopa-Leindler inequality for smooth strictly positive functions implies Prékopa-Leindler inequality for general measurable functions.

Problem 10. (1 p.) Let $\left(a_{i j}\right)_{i, j=1}^{n}$ be a positive semi definite matrix. Prove that $\left(e^{a_{i j}}\right)_{i, j=1}^{n}$ is also positive semi-definite.

Problem 11. (2 p.) Let A, B be symmetric positive semi-definite matrices. Prove that

$$
\operatorname{det}(A+B)^{1 / n} \geq \operatorname{det}(A)^{1 / n}+\operatorname{det}(B)^{1 / n}
$$

Problem 12. Let f be a bounded measurable function. Define

$$
\left(Q_{t} f\right)(x)=\int_{\mathbb{R}^{n}} f(x+\sqrt{t} z) \mathrm{d} \gamma_{n}(z), \quad t \geq 0
$$

(i) (1 p.) Prove that for $t>0$ the function $Q_{t} f$ is C^{∞} smooth.
(ii) $\left(1 \mathrm{p}\right.$.) Prove that $Q_{s+t}=Q_{s} \circ Q_{t}$.
(iii) (1 p.) Prove that $\int f Q_{t} g=\int g Q_{t} f$ for $t \geq 0$.
(iv) (1 p.) Prove that $\left(Q_{t} f\right)(x) \sim_{t \rightarrow \infty} \frac{1}{(2 \pi t)^{n / 2}} \int f(x) \mathrm{d} x$.

Problem 13. (2 p.) Let X be a topological space, and M a family of closed subsets of X with the finite intersection property, i.e. with the property that every finite intersection of elements of M is non-empty. Is it true that X is compact if and only if every family of closed sets with the finite intersection property have non-empty intersection?

Problem 14. (3 p.) Suppose X is a compact topological space and let $g: X \rightarrow \mathbb{R}$ be an upper semi-continuous functional (that is, the sets of the form $\{g \geq t\}$ are closed).
(i) Is g bounded from above on X ?
(ii) Assuming that g is bounded from above, does g attain its supremum on X ?

Problem 15. (5 p.) Let M be a metric space and let $f: M \rightarrow \mathbb{R}$ be an upper semicontinuous function. Prove that there exists a sequence of continuous function $f_{n}: M \rightarrow \mathbb{R}$ such that $f_{n} \searrow f$.

Problem 16. (3 p.) Suppose μ is a measure with continuous density f. Assume μ is a log-concave measure on \mathbb{R}^{n}, that is

$$
\mu(\lambda A+(1-\lambda) B) \geq \mu(A)^{\lambda} \mu(B)^{1-\lambda}, \quad \lambda \in[0,1]
$$

for any compact sets A, B in \mathbb{R}^{n}. Prove that $f=e^{-V}$ for some convex function $V: \mathbb{R}^{n} \rightarrow$ $\mathbb{R} \cup\{+\infty\}$.

Problem 17. (1 p.) Find the John ellipsoid for the set $B_{1}^{n}=\left\{\left|x_{1}\right|+\ldots+\left|x_{n}\right| \leq 1\right\}$.
Problem 18. (2 p.) Suppose an ellipsoid is invariant under coordinate reflections and permuting coordinates. Does it follow that this ellipsoid is a centered Euclidean ball?

Problem 19. For a random vector X with density f on Euclidean space we write $h(X)=$ $-\int f \ln f$, provided that this integral exists.
(i) (1 p.) For a random vector $X=\left(X_{1}, X_{2}\right)$, where $X_{i} \in R^{n_{i}}, i=1,2$ prove that

$$
h\left(X_{1}, X_{2}\right) \leq h\left(X_{1}\right)+h\left(X_{2}\right)
$$

(ii) (2 p.) For a random vector $X=\left(X_{1}, X_{2}, X_{3}\right)$, where $X_{i} \in R^{n_{i}}, i=1,2,3$ prove that

$$
h\left(X_{1}, X_{2}, X_{3}\right)+h\left(X_{3}\right) \leq h\left(X_{1}, X_{3}\right)+h\left(X_{2}, X_{3}\right) .
$$

(iii) (3 p.) For independent random vectors $X_{i} \in R^{n}, i=1,2,3$ prove that

$$
h\left(X_{1}+X_{2}+X_{3}\right)+h\left(X_{3}\right) \leq h\left(X_{1}+X_{3}\right)+h\left(X_{2}+X_{3}\right)
$$

Problem 20. (4 p.) Suppose X is a random vector in \mathbb{R}^{n} with density of the form

$$
f(x)=\exp \left(-V(x)-\frac{1}{2}|x|^{2}\right)
$$

for some convex function V. Suppose $\mathbb{E} X=0$. Prove that for every convex function φ : $\mathbb{R}^{n} \rightarrow \mathbb{R}$ we have

$$
\mathbb{E} \varphi(X) \leq \mathbb{E} \varphi(G),
$$

where $G \sim \mathcal{N}\left(0, I_{n}\right)$ is a standard Gaussian random vector in \mathbb{R}^{n}.

Problem 21. Let us define Hermite polynomials via

$$
H_{n}(x)=(-1)^{n} e^{x^{2} / 2} \frac{\mathrm{~d}^{n}}{\mathrm{~d} x^{n}}\left(e^{-x^{2} / 2}\right) .
$$

(i) (1 p.) Prove that $H_{n}(x)=\left(x-\frac{\mathrm{d}}{\mathrm{d} x}\right)^{n} \cdot 1$.
(ii) (1 p.) Prove that $\left(H_{n} / \sqrt{n!}\right)$ form an orthonormal system in $L_{2}\left(\mathbb{R}, \frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}\right)$.
(iii) (1 p.) Prove that $H_{n}^{\prime}(x)=n H_{n-1}(x)$.

Problem 22. (3 p.) Suppose G is a standard $\mathcal{N}(0,1)$ Gaussian random variable. Prove that for a compactly supported C^{∞} function $f: \mathbb{R} \rightarrow \mathbb{R}$ we have

$$
\operatorname{Var} f(G)=\mathbb{E}\left(f^{\prime}(G)\right)^{2}-\sum_{k=2}^{\infty} \frac{k-1}{k!}\left(\mathbb{E} f^{(k)}(G)\right)^{2}
$$

Problem 23. (4 p.) Let us define

$$
M_{\theta}^{p}(x, y)= \begin{cases}\left(\theta x^{p}+(1-\theta) y^{p}\right)^{1 / p} & p \in \mathbb{R} \backslash\{0\} \\ x^{\theta} y^{1-\theta} & p=0 \\ \min \{x, y\} & p=-\infty \\ \max \{x, y\} & p=+\infty\end{cases}
$$

for $x, y>0$. If $x \cdot y=0$, we set $M_{\theta}^{p}(x, y)=0$.
Let $\gamma \geq-1 / n$ and let $f, g, m: \mathbb{R}^{n} \rightarrow \mathbb{R}_{+}$be positive measurable functions. Fix $\theta \in[0,1]$. Assume that for all $x, y \in \mathbb{R}^{n}$ we have

$$
m(\theta x+(1-\theta) y) \geq M_{\theta}^{\gamma}(f(x), g(y))
$$

Prove that

$$
\int_{\mathbb{R}^{n}} m(x) \mathrm{d} x \geq M_{\theta}^{\frac{\gamma}{1+\gamma n}}\left(\int_{\mathbb{R}^{n}} f(x) \mathrm{d} x, \int_{\mathbb{R}^{n}} g(x) \mathrm{d} x\right) .
$$

Problem 24. (3 p.) Let A be a measurable set in \mathbb{R}^{n} and let $r \geq 0$ be such that $\gamma_{n}(A)=$ $\gamma_{n}\left(r B_{2}^{n}\right)$. Here γ_{n} stands for the standard Gaussian measure in \mathbb{R}^{n}. Prove that

$$
\gamma_{n}(t A) \leq \gamma_{n}\left(t \cdot r B_{2}^{n}\right), \quad t \geq 1
$$

Problem 25. (3 p.) Let f be a log-concave probability density on \mathbb{R}. Let $h(f)=-\int f \ln f$. Prove that

$$
-\ln \|f\|_{\infty} \leq h(f) \leq 1-\ln \|f\|_{\infty}
$$

Problem 26.

(i) (1 p.) Suppose v_{1}, \ldots, v_{n} are vectors in \mathbb{R}^{n}. Prove that these vectors form an orthonormal basis if and only if $\sum_{i=1}^{n} v_{i} \otimes v_{i}=I_{n}$.
(ii) (1 p.) Suppose that v_{1}, \ldots, v_{m} are vectors in \mathbb{R}^{n} such that $\sum_{i=1}^{m} v_{i} \otimes v_{i}=I_{n}$. Prove that $m \geq n$.
(iii) (2 p.) Let $m \geq n$. Suppose u_{1}, \ldots, u_{m} be an orthonormal basis in \mathbb{R}^{m}. Let $P: \mathbb{R}^{m} \rightarrow$ \mathbb{R}^{n} be given by $P\left(x_{1}, \ldots, x_{m}\right)=\left(x_{1}, \ldots, x_{n}\right)$. Prove that $\sum_{i=1}^{m}\left(P u_{i}\right) \otimes\left(P u_{i}\right)=I_{n}$.
(iv) (2 p.) Suppose $m \geq n$. Assume that v_{1}, \ldots, v_{m} are vectors in \mathbb{R}^{n} satisfying $\sum_{i=1}^{m} v_{i} \otimes$ $v_{i}=I_{n}$. Does there always exist an orthonormal basis u_{1}, \ldots, u_{m} of \mathbb{R}^{m} such that for the standard projection P defined above we have $v_{i}=P u_{i}$ for $i=1, \ldots, m$?

Problem 27. (3 p.) Suppose X, Y are positive i.i.d. real random variables having densities with respect to the Lebesgue measures. Find the best constant C is the inequality

$$
H\left(\frac{X}{X+Y}\right) \leq C
$$

Problem 28. (2 p.) Let X be a real random variable and let $\psi: \mathbb{R} \rightarrow \mathbb{R}$ be a C^{1} increasing map. Prove that

$$
H(\psi(X))=H(X)+\mathbb{E} \ln \psi^{\prime}(X)
$$

In particular

$$
H\left(e^{X}\right)=H(X)+\mathbb{E} X
$$

Problem 29. (4 p.) Take $n \geq 2$ and consider projections $\pi_{j}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ given by

$$
\pi_{j}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{j-1}, x_{j+1}, \ldots, x_{n}\right)
$$

Using Brascamp-Lieb inequality prove that for any functions f_{1}, \ldots, f_{n} in $L^{n-1}\left(\mathbb{R}^{n-1}\right)$ we have

$$
\int_{\mathbb{R}^{n}} \prod_{j=1}^{n} f_{j}\left(\pi_{j}(x)\right) \mathrm{d} x \leq \prod_{j=1}^{n}\left\|f_{j}\right\|_{L^{d-1}\left(\mathbb{R}^{d-1}\right)}
$$

Deduce that for any measurable set A in \mathbb{R}^{n} we have

$$
\operatorname{vol}_{n}(A)^{n-1} \leq \prod_{j=1}^{n} \operatorname{vol}_{n-1}\left(\pi_{j}(A)\right)
$$

Problem 30. (3 p.) Let A_{1}, \ldots, A_{n} be symmetric positive definite $k \times k$ matrices. Prove that the function

$$
\left(t_{1}, \ldots, t_{n}\right) \mapsto \ln \operatorname{det}\left(\sum_{i=1}^{n} e^{t_{i}} A_{i}\right)
$$

is convex on \mathbb{R}^{n}.

Problem 31.

(i) (4 p.) Suppose $f:[0, \infty) \rightarrow[0, \infty)$ is a continuous log-concave function. Prove that the function

$$
f(p)=\frac{1}{\Gamma(p+1)} \int_{0}^{\infty} t^{p} f(t) \mathrm{d} t, \quad p>-1
$$

is \log-concave.
(ii) (1 p.) Prove that $\lim _{p \rightarrow-1} f(p)=f(0)$.
(iii) (1 p.) Prove that if $f(0)=1$ then

$$
p \mapsto\left(\frac{\int_{0}^{\infty} t^{p} f(t) \mathrm{d} t}{\Gamma(p+1)}\right)^{1 /(p+1)}
$$

is non-increasing on $(-1, \infty)$.

Problem 32. (2 p.) Suppose Z is a positive real random variable with \log-concave tail, i.e., the function $f(t)=\mathbb{P}(Z>t)$ is log-concave. Let \mathcal{E} be the exponential random variable with parameter 1. Prove that

$$
\left(\mathbb{E} Z^{p}\right)^{1 / p} \leq \frac{\left(\mathbb{E} \mathcal{E}^{p}\right)^{1 / p}}{\left(\mathbb{E} \mathcal{E}^{q}\right)^{1 / q}}\left(\mathbb{E} Z^{q}\right)^{1 / q}, \quad p \geq q>0
$$

Problem 33. (3 p.) Let $h: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$be a non-increasing function. Suppose $\Phi: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$ be such that $\Phi(0)=0$ and the function $\Phi(x) / x$ is non-decreasing. Prove that the function

$$
p \mapsto\left(\frac{\int_{0}^{\infty} h(\Phi(x)) x^{p} \mathrm{~d} x}{\int_{0}^{\infty} h(x) x^{p} \mathrm{~d} x}\right)^{1 /(p+1)}
$$

is non-increasing on $(-1, \infty)$.

Problem 34. (3 p.) Let ϕ be a non-negative concave function supported on a convex body $K=\{\phi>0\}$ in \mathbb{R}^{n}. Then for any $0<p \leq q$ we have

$$
\left(\binom{n+p}{n} \frac{1}{|K|} \int_{K} \phi(x)^{p} \mathrm{~d} x\right)^{1 / p} \geq\left(\binom{n+q}{n} \frac{1}{|K|} \int_{K} \phi(x)^{q} \mathrm{~d} x\right)^{1 / q}
$$

Problem 35. (2 p.) Let ν be a measure with density $\frac{1}{2} e^{-|x|}$ on \mathbb{R}. Prove that for any C^{1} function f with compact support we have

$$
\operatorname{Var}_{\nu}(f) \leq 4 \int\left(f^{\prime}\right)^{2} \mathrm{~d} \nu
$$

Problem 36. (2 p.) Suppose X is a random vector in \mathbb{R}^{n} with density f. We define $H(X)=-\int f \ln f$ whenever this quantity exists. Take $N(X)=\frac{1}{2 \pi e} \exp (2 H(X) / n)$. Let $\operatorname{Cov}(X)$ be the covariance matrix of X. Prove that

$$
N(X) \leq \operatorname{det}(\operatorname{Cov}(X))^{1 / n}
$$

