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1. BRUNN-MINKOWSKI INEQUALITIES

1.1. Classical BM inequality. To avoid problems with measurability we assume that K, L
are compact sets. Then their Minkowski sum

K+L={a+b: ae K,be L}

is also compact. The Brunn-Minkowski inequality gives a lower bound on the volume of
K + L, namely for non-empty compact sets K, L in R” we have

(1) K+ LY > K[V L

Here | - | stand for the n-dimensional Lebesgue measure, which will be sometimes denoted
by vol,,, to emphasise the dependence of n. This inequality is equivalent to its multiplicative
form, which seems to be weaker,

(2) IAK + (1= A)L| > [KPLI'Y, A elo,1].
By considering AK instead of K and (1 — \)L instead of L we see that (1) is equivalent to
(3) IAK + (1 = NL[Y™ > MNK[Y™ 4 (1 — \)|L|Y™,
Clearly (3) implies (2) by applying AM-GM inequality Aa + (1 — A\)b > a*b'~ to the right
hand side of (3). There is an even weaker formulation of BM inequality, namely
(4) |K|=1|L| =1 = IANK + (1= AN)L| > 1, Ae0,1].
Clearly (2) implies (4). To see that (4) implies (3) we apply (4) with K = K/|K|'",
L= L/|L|"/™ and

>\|K|1/n
NI+ (1 = NIZ

Thus, (1), (2), (4) and (3) are all equivalent.
Another equivalent way to state BM inequality is to say that for any two sets K, L if we
take two balls By, By, such that |K| = |Bg| and |L| = |Bg| then

X:

|K + L| > |Bk + By|.
Indeed, if Bx = rx By and By, = r; B} then

n|pn |K| o |L| Y\ n 1/n 1/n\n
B+ Brl = (rx +r)"1Bel = (| 5w ) + | 5 | By | = ([K 7™+ [L]7)"
2 2

1



2

1.2. Proof of BM via elementary sets. Let us first show that in order to prove (1) for
measurable set A, B such that the sum is measurable, it suffices to consider only compact
sets. Indeed, by the regularity of Lebesgue measure we can approximate them form below
by compact sets A., B. and write

() [ A+ B|'" > A+ B /" > A" 4 | BV —— [A]" | Bl
e—

Assume that we could prove the inequality for open sets. Then compact sets A, B it suffices
to take open ¢ enlargements A., B, and write

|A+ B+ 2eBy|V" = |A. + B[V > |AY"™ + | BV > | AV + | B

We conclude by taking ¢ — 07 and using the continuity of the measure. Now, every open
set can be approximated from below by a finite union of boxes of the form

v+ [—ar,a] X oo X [—ap, ay), veR" ay,...a, > 0.

If we could prove our inequality for such sets an argument identical to (5) would finish the
proof.

So, it suffices to consider only finite unions of boxes. If both A and B are just two boxes
(note that by translation invariance of Lebesgue measure we can assume that these boxes
are centred at 0)

A= [—al,al] X ... X [—an,an], B = [—bl,bl] X ... X [_bn;bn]

then we are to verify

(/(al—l—bl)(an—an) > Yay...a, + \n/bl...bn.
Note that by AM-GM we get

aq an, 1 aq an
n < = +..+
&1+b1 an+bn n a1+b1 an—l—bn

a1+61 a,n+bn_n a1+b1 an+bn ’

Adding these two proves our inequality.

Now we use induction on the number m of boxes used in the union of A and B. First,
we find a hyperplane of the form x; = s for some ¢ = 1,...,n and s € R such that the sets
AT = An{z; > s} and A~ = AN {z; < s} both consist of a smaller number of boxes that
the original set A (it is easy to see that one can always find a cut separating at least two
boxes). Now, find a number ¢ € R such that

Al 1B
Al B T

where By = BN {x; >t} and B_ = BN {z; < t}. The sets A, UB, and A_ U B_ are
disjoint and both consist of a number of boxes smaller than m. By induction hypothesis

[ A+ Bl 2 |As + Bl + [A- + B-| 2 (JA V" + BV + (JA- [V + | B[V
> )\(’A‘l/n + ’B‘l/nyz + (1 _ )\)(‘A‘l/n + ‘B|l/n)n _ (‘A|l/n + ‘B’l/n)n.

and




1.3. Brunn’s principle. We shall prove the following theorem.

Theorem 1. Suppose K is a convex body in R” and let u € S"~!. Then the function
t = vol,_1 (K N (ut + tu))/m!

is concave on its support.

Proof. We can assume that u = e;. Let K; = KN (ut+tu) = KN{x; =t} and consider these
as sets in R"™!. We claim that AK; + (1 — \) K, C Kt+(1-»x)s- Indeed, suppose a € K; and
b € K,. Then by convexity of K we have A\(t,a)+(1—\)(s,b) = (At+(1—N)s, Aa+(1—-X)b) €
K and thus Aa + (1 — \)b € Kixi+1-»s- Suppose K, K; are non-empty (i.e. we are on the
support of our map). By Brunn-Minkowski we get

[ 7T 2 (MK + (1= MK [T > MK 7T + (1= A)|K, |7,
which proves the desired concavity. 0
1.4. Isoperimetric inequality. For a compact sets K in R" we define K; = K + tB7.
Theorem 2. Let K be a compact set in R and let B be a ball such that |K| = |B|. Then

1/n n

@ 112 150 = ((5) "+ o) 1B,
ne1 o 7

(b) 0K| > 0B] = nl K" |By .

Proof. Suppose B = rB}. By the BM-inequality we have
Kl = |K + B3] > (|KI* +0B3)») " = (I1BI* +4B3]7)
— (r+)"|By| = |(r + )By| = |B +1B;| = |By.

To prove the second part we recall that

|OK | = lim inf K +eB3| — K]
e—0Tt g '
Thus from point (a) we get
K. |—|K L B.|—|B
|OK| = liminfM > hmlnfM = |0B].
0+ I e—0t £

OJ

1.5. Steiner symmetrization. In this section we will usually assume that the sets K, L are
convex. For a measurable set A and a unite vector u in R™ we define Steiner symmetral by

1
SyA = {($,tu) .z € Proju™(A), |t| < §V011(A N (z+ u]R))} .

In other words, for every line [ perpendicular to u we replace the intersection of A with this
line with an interval symmetric with respect to ut, of the same 1-dimensional measure as
INA.

We shall need several useful properties of Steiner symmetrization. In the below theorem
the volume of the boundary of K is defined via

K +eBY — |K
|8K|zliminf| +ebs| - | |

e—0t £

Proposition 3. Let K, L be convex compact sets in R". Then
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WK = A\S, K,
i) KCL = S,K CS,L,

)
)
(iii) S, K is convex and compact,
(iv) [Su K] = [K],
vi) S, K + S,L C S, (K + L),
(vii) [9S.K| < |0K].

Proof. Points (i), (ii) are very easy. Point (iv) follows from Fubini (Cavalieri’s principle).

(iii) Let xy,29 € S, K and let [, = Proj,. z; + uR, i = 1,2. The convex hull of line
segments [,, N S, K is a two-dimensional trapezoid T'. Since x,y € T and T is convex, to
prove that Az + (1 — \)y € S, K, it suffices to show that 7" C S, K. This follows from the
fact that T is the Steiner symmetral of the trapezoid T defined as the convex hull of I,, N K.
Since T C K we get by (i) that T = S,T C S,K. Compactness of s,K follows from its
convexity and from the fact that for any x the line [, is a closed interval (we shall skip the
details). The boundedness of S, K follows from the boundedness of K since by (ii) if K C B,
where B is a centred Euclidean ball, the S, K C S,B = S5,B.

(vi) Let x € S,K and y € S,L. We shall prove that z +y € S, (K + L). We have
x = (a/,tu),y = (v, su), where 2,y € u* and |t| < LK N1, |s| < 3|K N1,). We have
x4y = (' + ¢, u(s +t)). Therefore, it suffices to show that |s + t| < 3|(K + L) N ly4,[. In
fact it is enough to show that [(K + L) N ly4y| > |K N 1|+ |L N1,|. This is true since

KNn(z+4+Ru)+LN(y+Ru) C(K+L)N(x+y+Ru)
and the left hand side is an interval of length |K N1, | 4+ |L N 1|
(vii) We have (using (i), (iv) and (vi)) that
|0S, K| = liminf [Sult + Bs| = |1SuK] = lim inf [SuK + 25 B3] — | K]
e—0+t € e—0*t €
K +¢eBY)| — |K K +eBY — |K

e—0t IS e—0t

— |9K).

The Hausdorff distance between convex bodies is defined by
dy(K,L)=inf{6 >0: K CL+By,LC K+ By }.
It is not hard to see that
du(K, L) = Sup | () — hr(u)],

where hg(u) = sup{(z,u) : x € K} is the so-called support function. Indeed, this follows
from the fact that hx . = hx + hy and from the facts that K C L is equivalent to hx < hy.
We will also need the following fact.

Proposition 4. For convex sets in R” with non-empty interior the following holds true.
(i) If K; — K then |K;| — |K|.
(ii) If K;, - K and L; — L then K; + L; — K + L.
(iii) If dy(K, B) < € for certain ball B then dy (S, K, B) < ¢.

Proof. (i) If K; and K are e-close, that is for any u € S"~! we have |hg, (u) —hg(u)| < € then
\hi,(u) = hi(u)] < Cehg(u), where C' = 1/ inf, hg(u). Thus (1 —Ce)K C K; C (1+Ce)K
and the convergence of volumes follows in the limit ¢ — 0%,
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(i) This is clear due to the relation hg,+r; = hx; + hr, and the fact that K; — K if and
only if hg; — hx uniformly.

(iii) If B has radius r then dy (K, B) < € is equivalent to |hx — 7| < ¢ which is r — e <
hx <r+e, thatis (r—e)B} C K C (r+¢)Bj. The latter is preserved under K — S, K. O

Theorem 5 (Blaschke selection principle). Any sequence of convex bodies (/;)32; in R" of
which all elements are contained in some fixed ball, has a convergent subsequence.

Proof. Step 1. We construct an array of bodies (K;;)5_;, all of which belong to our original
sequence, such that (K;;)?2, is a subsequence of (K;_1;)32, and dy (K, K;j,) < 27° for
any 7ji, jo. To do this at each step we coved the big ball (which contains our sequence) by a
finite number of balls of diameter 27%. Let us call these balls By, ..., By,. There is an infinite
subsequence such that either all elements intersect By or all elements do not intersect Bj.
By passing to a further subsequence N; — 1 times we get a subsequence such that for any
ball B; either all elements intersect this ball, or neither of them intersect it. Suppose there
is a point z in K j, such that d(K; j,, ) > 27*. Then the ball B; covering x do not intersect

K j,, which is a contradiction with our construction. Thus, dy (K j,, K;j,) < 27"

Step 2. Take the diagonal (Kj;)32, to get d(Kj;, K;;) < 27 ™07 Assume we have K ; =
K, in the numbering of the original sequence K, K,.... We claim that K, + Qj%lBg is
monotone decreasing. Indeed, K, ,, C K, + %Bg and thus

1 11 1
Kn]+1+§B”§Kn]+2_JBz +2_]BQ :Kn]_’_ﬁBg
Step 3. We take K = [\,(K,,; + s+ By). Note that K is clearly convex. We claim K is

the limit of (K,,). For j large enough so that 27U~ < & we have K C K,,, + ¢BY. Take
G = int(K + eBY). We have that (K, + 5= BY) \ G are compact and

5T
~ 1

(K, + 5B\ G=KNR"\G) =2

j=1

Since the intersection of decreasing family of non-empty compact sets is non-empty, from
some point onwards we must have

1 n n

Since K C K,,, + By and K,,, C K + By we get dy(K, K,,) < ¢ for large j.

OJ
Proposition 6. For any K1, ..., K,, there is a sequence of vectors uy, us, ... such that
KN L,
S’lLk“‘S'lLQS”lLlKi _>k—>OO _n BQ, /’/:17...7m.
| B3|

Proof. 1t is enough to prove the claim only for one convex body, since due to (iii) once
some of the bodies are already close to a ball, they will stay close after applying arbitrary
symmetrizations. We then apply standard diagonal argument.

We consider the class of bodies K obtained by successive symmetrizations of K. If K C rBj§
for some r, then all the members of K are contained in rBj. Let

Ry = inf{circumradius(K) : K € K}.
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Take a sequence in K with circumradi converging to Ry and by Blaschke selection principle
pass to a subsequence such that K; — L for some convex body L. It is easy to see (by the
definition of Hausdorff distance) that Ry is the circumradius of L. We claim that L = RyBY.
Suppose 0L misses some cup

C =0(RyBy) N {{x,y) > Ry — ¢}, lu| = 1.

It is not hard to see that there is a sequence of hyperplanes Hy, ..., Hy such that
k
o(RyB3) = 5m,(C).
i=1

Indeed if we want to cover some point = € J(RBj) by a mirror image of C, it suffices to use
hyperplane H, perpendicular to x — xg, where xg in the center of C'. We then choose a finite
subcovering by compactness. If L misses the cap C then Sy, (L) misses both C' and Sy, (C).
Thus Ly = S(L) where S = Sy, o...0 Sy, misses all the d(RyBY). Since Ly is compact we
have Ly C (Ry — €)BY for some € > 0. Suppose By C toLg and define

Ry —¢/2 1
G =
Suppose L1 € K is é-close to Lg. Then
Ly C Lo+ éBY C Lo+ étoLo = (1 + étg) Lo C (14 Ety)(Ry — ) By = (Ry — €/2)By.
This contradicts the definition of Ry. O

We are ready to give a proof of the BM inequality for convex sets.

Proof of the BM inequality. Take uy,us, ... asequence given by Proposition 4(iv) for K1 = K
and Ky = L. From Proposition 3(vi) and (iv) we get that

|Suy, -+ SupSuy K+ Sy, - SupSuy L < |K + L,
whereas |S,, ... Su,Su K| = | K| and |S,, ... Su,Su L| = |L|. From Proposition 4(i) and (ii)
we infer that

K]\ L]\ P
|suk...suzsulf<+sw...suzsulLrﬁ(—) Bs+(—) By = (IK|"" 4 L]/

| B3| | B3|

Thus,
([K[V" 4 (LY < K+ L.

1.6. Applications of Steiner symmetrization and BM inequality.

Urysohn’s inequality. Let K be a convex body in R™. We define the support function
hri : S™ 1 = R via
h = :
K (u) = max (z, u)

The mean width is defined via the formula
w(K) = / hi(u)do(u),
Sn—l

where o in the uniform probability measure on S™!,



Theorem 7. For any convex body in R" we have

wik) 2 (||§;||>l/

Clearly in the above inequality we have equality for centered Euclidean balls. Since Steiner
symmetrization does not change volume due to Proposition 6, it suffices to prove the following
lemma.

Lemma 1. For any convex body K in R" and any 6 € S"! we have w(Ss(K)) < w(K).

Proof. Without loss of generality we assume 6 = e,,. Then

Sy(K) = {(:1: h ;“) (), (2, 1) € K}.

This is due to the fact that Steiner symmerization of an interval I on the real line is equal
o 35(I —1I). Foru=(uy,...,u,) € S" " we take v/ = (uy, ..., Up_1,—uy). then

hsy(ac) (1) = max {< (:1; h ;tz) u> (o t), (2,8) € K}

max {((z,t1),u) : (x,t1) € K} + %max{((a:,@),u’} D (x,ty) € K}

<

— o =

\)

1
= ghx () + hi ().
Thus,

() = [ hsuo(ida <5 [ heldot)+5 [ (o)
— /SR_1 hi(u)do(u) = w(K).

Blashke-Santalo inequality. For a compact set K in R" we define
K°={y eR": sup(z,y) <1}.
zeK
We prove the following theorem.
Theorem 8. If K is a centrally symmetric convex body in R"™ then
|K|-|K°| < [By|*.
Again it suffices to prove monotonicity under Steiner symmetrization.

Lemma 2. For any centrally symmetric convex body K and any 6 € S"~! we have |K°| <

|So(K)°).
Indeed if we denote v(K) = |K| - |K°| then v(K) < v(S,K) and due to Proposition 6 we
can find a sequence of directions uy, . .., u, such that (S,,o...0S,, (K) converges to a certain

ball B and thus

v(K) < v(Sy, 0... 08, (K)) = v(B) =v(By).
B implies K, — B° which
C (r— 5)B” (see the proof

Note that we have used the fact that the convergence K, —
can we easily seen by dualizing the inclusion (r — ¢)B} C K,
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of Proposition 4(iii)). Note also that the last equality is a consequence of the fact that v
is linear invariant, which follows from the fact that for any invertible linear map 71" we have

T(A) = ((T*) 1) (A°) (exercise) and thus
W(TK) = |TK|-|(TK)*| = |det(T)||det(T*) ™| - | K| - |[K°| = |K] - |K°| = v(K).

Proof of Lemma 2. Without loss of generality we can assume that § = e,,. Again we have

Sy(K) = {(x 5;) (8, (2,8) € K}.

We get
(S5E) = () (r) +5r(s—H) <1, (1,9), (1) € K},
Define A(r) = {zr e R"': (z,r) € A}. We have
%(KO( )+ K°(— ytz., cA{zyyy +sr <1, (w, z) —tr <1, (z,s), (w,t) € K}

1 s
Q(x y+z)+

[\

_trg 1, (z,s), (w,t) EK}

IN
/—/;\/—/H/—/H
Neg
+ o
N

tr <1, (x,9),(z,t) € K}
)°(r).
If A= K° then clearly A = —A and

A(=r)={z: (z,—r)e Ay ={z: (—x,r) e A} ={—y: (y,r) € A} = —A(r).
In particular, vol,_1(A(r)) = vol,—1(A(—r)). By BM we get

vol, . (K ") +2K O(_T)) > voly 1 (K°(r) Y2 vol, 1 (K°(=1))2 = vol,_1 (K°(r).

We arrive at

vol, (Su(K)°) = / " ol (S (1) dr > / " ol (K )+ K OH)) dr

—00 o 2

+o00
> / vol,,_1 (K°(r))dr = vol,, (K°).

o0

Rogers-Sheppard inequality. Note that the BM inequality implies
K — K| > (K'Y +] = K|V")" = 2"|K].

Equality holds for convex bodies having centre of symmetry. We shall prove the reverse
bound.

Theorem 9. Let K be a convex body in R™. Then

2
K- K| < ( ”)rm

We need the following lemma.



Lemma 3. Let K, L be convex bodies in R". Then the function
f(z) = vol,((z + L) n K)/"
is concave on its support K — L.

Proof. We check that K — L is indeed the support of f. If (x + L) N K # & then are [ € L
and k € K such that x +1=k. Thus,z =k —-1l€ K — L.
It is straightforward to check that

Mz+L)NK)+(1-MN(y+L)NnK)C A+ (1-Ny+L)NK.
Thus, by Brunn-Minkowski

fOz+ (1 =Ay) = [A(z+L)N
! ((z+L)N
Mz + L) N E)[Y" + (1= Ny + L) n K|V
f(w) (1 =X ().

nK
NE)+ (1 =Ny +L)nK)[7"

v

)+ (L= N)((y+L)n K"
)+
|/

Proof of the Rogers-Sheppard inequality. For x € K — K take the radial function
pr—k(0) =max{t >0: td € K — K}, 0e St
Take
f@) = KN (z+ K glx) = £(0) (1 - m) L w=rf.

We have f(0) = ¢g(0). Moreover, both f and g vanish on the boundary of K — K (that is,
when r = pg_k(0)). Thus, since f is concave and g is linear in the radial coordinate, we get
f>gon K — K. Let k, = vol,,(By)| =. Then vol,,_;(S"!) = nk,. We get

/ KN (z+ K)|de = / frde > / g"dx
K-K K-K K-K
; pr—K(0) . r n 0
= f(0 ”n/in/ / rT (1——> drdo,,—
) sn-1.Jo pr-x(0) 9)
1
K, / pie_1c(0)"don () / 11 — £yt
n—1 0

= ] ¢ - KPP () e i -

Here we have used the fact that
K= [ ol6)do,s(6),
Sn—l

which follows from the fact that for a spherical cone we have

vol,(d0) = k,r"do,_1(6).
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On the other hand we have
| oEneemj= [ KnEe R = [ [ 1))
K-K Rm n n
= K| | 1x(y)dy = K.
O

1.7. Spherical isoperimetry. Let xqg € S™ and let H be a n-dimensional hyperplane in
R"™™! not passing through xy. Then R™™\ H is a sum of two open halfspaces: H, containing
xo and H_ not containing zy. Let iz be the reflection through H. For a measurable f : 5™ —
R we define:

max{f(z), f(igz)} «€ H,

f(z) = ¢ min{f(2), f(inzx)} e H-

f(z) reH
Let o, be the uniform measure on S™. Let dist,, (f) be the distribution of f under o,. We
have the following lemma.

Lemma 4. We have

(1) dist,, (f7) = disto, (f),

(ii) if f is L- Lipschitz then f¥ is also L-Lipschitz,

(ili) [q. d(z,z0) f(x)don(x) > [g. d(z,z0) f7 (2)doy(x); moreover if f is continuous the

equality holds if and only if f = f¥.

Proof. The first part is obvious. To prove the second part we first observe that since the
minimum and maximum of two L-Lipschitz functions is L-Lipschitz, the function f¥ is
L-Lipschitz of Hy and on H_. It suffices to show that a continuous function f which is
L-Lipschitz on H, and H_ is also L-Lipschitz on S™. Suppose x € H, and y € H_. Take
z € H lying in the shortest geodesic between x and y. We have

[f (@) = f)l < |f(2) = fFRI+1f(2) = fW)l < Lz — 2| + |z —y]) = LIz —yl.
To prove (iii) we observe that
f@) + fligz) = f(x) + [ (inz)
and thus
fligz) = fM(igz) = f(2) = f(2).
Thus

[ )@ = @) = [ dian ) (@) = 1 ) o)
= [ dn @) = 1) o)

/ v0,2) (f(2) — £ (2))do(x) + / Ao, im) (f(imz) — (i) don(x)
San+

SrNH*
/nmrjH (20, ) — d(wo,inx))(f(x) — f(x))don(x) > 0,

since on H we have f(x) < f7(z) and d(x¢, x) < d(zo,igzx). O
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Fix zp € S™. We say that g : S™ — R is radial if d(z, x¢) < d(y, zo) implies g(z) > g(y).
Moreover, the function f* is said to be the radial symmetrization of f if f* is radial and
dist,,, (f) = dist,, (f*).

Lemma 5. The radial symmetrization f* always exists. Moreover, f* = f if and only if
fH = f for any H.
Proof. Let F(t) = o,(f < t) be the distribution function of f. It is a standard exercise to
show that the function

fo(s) =sup{u: F(u) < s}, s € (0,1)

defines a non-decreasing function which, viewed as a function fp : (0,1) — R defined on (0, 1)
with Lebesgue measure, defines a random variable whose distribution function is equal to F'.
Let T' be a radial map pushing forward o, onto Leby 1. This map is defined via

r = on({y: dly,m) < d(z,x0)}).

The function f* = fyo (1 —T) is the desired radial symmetrization. Indeed f* is radially
non-increasing and 1 — T also pushes forward o, onto Lebjg ;. Thus

on(f* <t) = Hfo St} = F(t) = on(f <1).

To prove the second claim we first observe that if f is radial, then clearly f = f for
any H. To prove the other implication assume that f is not radial. Then there are point
z,y € S™ such that d(zg,z) < d(zo,y) and f(z) < f(y). Take the segment [z,y] and bisect
it with the hyperplane H. Clearly x € H, and y € H_. We have

f(@) = max(f(2), f(inz)) = max(f(2), f(y) = f(y) > f(2).
Thus f7 # f. !
We need yet another lemma.
Lemma 6. Let us fix an L-Lipschitz function f : S™ — R. Define
A={g:5" = R: dist,,(g9) = dist,, (f), g is L — Lipschitz}
Take m = infye 4 [, d(zo, x)g(x)doy, (). Then
(i) There is a sequence (gx) C A and a function g € A such that g, — ¢ uniformly and
;}1_{20 . d(xo, x)gr(x)do,(z) = m.
(il) We have [, d(zo, z)g(z)do,(x) = m.
(iii) We have g = f*.
Proof. Clearly there is a sequence (g) such that
klggo . d(xg, z)gr(x)do,(x) = m.

Part (i) follows from Arzela-Ascoli theorem (equicontinuity follows from the fact that the
members of A are L-Lipschitz and pointwise boundedness from the fact that for any g € A
we have dist,, (¢) = dist,,, f) and f is bounded). Clearly g is L-Lipschitz as a pointwise limit
of L-Lipschitz functions. Let 1, ¢(z) — 1,.;(x) for any x we get by the Lebesgue dominated
convergence theorem (and Lemma 4 (i)) that o,(f < t) = 0,(9, < t) = 0,(g9 < t), which
implies dist,, (¢) = dist,, ().

Part (ii) follows by the Lebesgue dominated convergence theorem. O
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To prove part (iii), in view of Lemma 5, it suffices to prove that g = ¢g” for any H. If
g # g" for some H then by continuity of g we get (Lemma 4 (iii))

m = . d(xg,x)g(x)doy,(z) > /n d(zg, v)g™ (2)do,(z).

This contradicts the minimality of m.
We are ready to prove the spherical isoperimetric inequality. A set C' C S™ of the form
Crot = {2 € 5™ d(xg,x) <t} is called a spherical cup.

Theorem 10. Suppose A is a compact set. Let C' be a spherical cup such that o, (A) =
o,(C). Then 0,(As) > 0,(Cy).

Proof. Define f(x) = max{t —d(z, A),0}. The set {t > f > 0} is the open t-enlargement of
A. We have

on(Ar) = o, ({t > f > 0}) = 0,({t > f* > 0})
Let A* be the spherical cup centred at xy given by A* = {f* =t¢}. We have
on(A%) = 0u(f* =1) = on(f = 1) = 0n(A).

If x € A* then f*(x) = t and since by Lemma 6 the function f* is 1-Lipschitz (as f was
1-Lipschitz) we get that d(z, A*) <t implies f*(x) > 0. We arrive at

on(Ar) = on({t =2 [ > 0}) = on({t = [* > 0}) = 00 ((A")).
O
We shall deduce the Gaussian isoperimetric inequality from the spherical isoperimetry.

Theorem 11. Suppose A is a compact set in R¥. Let H be a half-space satisfying v,(A) =
vx(H). Then vi,(Ar) > vi(Hy).

We need the following well-known lemma.

Lemma 7. Let G,,_1 be the uniform measure on /nS™ . Let 7y, (21, ..., 2,) = (z1,...,Tk)
be the standard projection R” — R¥. Define Mk pn = TknOn—1, that is

pren(A) = G (75 (A))-

Then py,, — vk in the sense of distribution.

Proof. Let g1, go, . .. be independent standard normal real random variables. Since
o leg) (G
g gl (g )
we have
~ (91,5 9k) -
TknOn—1 ™~ \/ﬁ(g% T .x 93)1/2 - an(gla cee 7.gk’)a
where

2 2\ 1/2
o — (u) 1 s
n

The assertion follows. O
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Sketch of the proof of Gaussian isoperimetry. We can assume that H is of the form H =
{1 > r}. Since 7y, is 1-Lipschitz, it is easy to verify that (W;;(A))t - W;;(At). Thus

Ye(A) > limsup g, (A) = lim sup 5n_1(7Tk_;L(At)) > lim sup &n_l((w,;i(A))t).

n—oo n—oo n—oo

1
n

Since 6,1 (m;, ,(A)) = Gn-1(my,,(H)) we get from the spherical isoperimetry that

lim sup 5,1_1((%,;711(14))0 > lim sup 5n_1((7r,;711(H))t) = lim sup pg n(Hese, ) = e (He),

n—oo n—oo n—o0

where g, — 0 is some explicitly computable sequence. O

Corollary 12. Suppose A is a compact set in R". Let H = {z; < r} be such that 7, (A) =
Yn(H) = ®(r), where ®(r) = \/%7 I e~ /2dz. Then

Ta(A) = @(r) = @ (27 ((A)) +1) -
In particular,
WA Z1/2 = (A = 0.
Taking the derivative in ¢ at ¢ = 0 we get
771(814) > 9 (q)_l(Vn(A)) + t) =@ (q)_l(%z(A))) = [(Vn(A))y

where I = o @1 and p(x) = \/%e*ﬁ/z.

Theorem 13 (Bobkov’s inequality). Suppose f : R™ — [0, 1] is a smooth function. Then

I ( / fd%) < [ VIGE+ VT,
Proof. Let

A={(z,y): veR", yeR, (y) < f(2)}.
Let g = ® 'o f. Then

9(x)
@) = [ [ anmdn = [ el = [ .

R

Moreover, if o, () = (2r) /2~ 1#*/2 then

1i1(04) = [ paola(@)V/ T+ IVaPds = [ VoloP+ oGP IVaP
~ [ Velgr+IVaegP = [ VIR + VI

Thus the assertion follows from the Gaussian isoperimetric inequality 7,,+1(0A) > I(V,11(4)).
0
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1.8. Prékopa-Leindler inequality. We are going to prove the following fundamental the-
orem.

Theorem 14. (PREKOPA-LEINDLER, '88) Let f, g, m be nonnegative measerable functions
on R™ and let A € [0,1]. If for all 2,y € R™ we have

m((1 =Nz +Xy) > f(2)" gy,

then

(6) l/nmzi(/)f)lk(/lg)&

We first give two proof of this fact in dimension n = 1.

First proof of Prékopa-Leinlder in dimension one. We start with proving (B-M) inequality
in dimension 1. Let A, B be compact sets in R. Observe that the operations A — A + vy,
B — B + vy where vy,v5 € R does not change the volumes of A, B and (1 — \)A + AB
(adding a number to one of the sets only shifts all of this sets). Therefore we can assume
that sup A = inf B = 0. But then, since 0 € A and 0 € B, we have

(1-XMNA+ABD(1-XNAU(AB).
But (1 — A\)A and (AB)are disjoint, up to the one point 0. Therefore
(1 =XNA+AB| > |(1=MNA|+ |\B|,

hence we have proved (B-M) in dimension 1.

Let us now justify the Prekopa-Leindler inequality in dimension 1. We can assume, con-
sidering fly<p and gly<ps instead of f and g, that f,g are bounded. Note also that this
inequality possesses some homogenity. Indeed, if we multiply f, g, m by numbers c¢, ¢4, ¢,
satisfying

_ 1A
Cm = C; ¢y,
then the hyphotesis and the thesis do not change. Therefore, taking c¢; = || f H;OI, cg=llg H;ol

and ¢, = HfH;O(l*’\) Hg||;o’\ we can assume (since we are in the situation when f and g are
bounded) that || f]|., = ||lg|l,, = 1. But then

L= [ tm= s
[1=[1=nia
[o=[ tto=niar

Note also that if x € {f > r} and y € {g > r} then by the assumption of the theorem we
have (1 — Az + Ay € {m > r}. Hence,

A=M{fzrf+Mg=rfc{m=r}
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Moreover, the sets {f > r} and {g > r} are non-empty for r € [0,1). This is very important
since we want to use 1 dimensional (B-M) inequality! We have

[m=[tonzritarz [z 0=z 000 = dar
>0 [rzatao [gznte=a-n 10 [

=(f1) (J4)

Observe that we have proved
/mE(l—A)/f%—A/g,

but this inequality does not have the previous homogeneity, hence it requires the assumption
1flloe = llgllee = 1. O

For the second proof we shall assume that f, g, m are strictly positive and smooth.

Second proof of Prékopa-Leinlder in dimension one. Assume without loss of generality that
Jf=F>0and [g=G > 0. Define z,y : [0,1] — R such that z(¢),y(t) are the infima of

numbers satisfying
1 [*® 1 [v®
i res=g [ geas—t

The functions z, y are differentiable due to our assumptions. Define z(t) = Az (t)+(1—\)y(¢).
Differentiating the above equalities we get
fla@®)2'®) _ g(y(t)y'[t)

= =1.
F G

Thus, using the assumption of Prékopa-Leindler together with AM-GM we get

/ h> / B((8)# (1)t > / BOAe(t) + (1 — Ny(£) () + (1 — A/ (1))
> / ) gy ) (1) (1)
- / ()2 (0) gty (1)

e (1) ()

Proof of Prékopa-Leindler in dimension n > 1. Suppose our inequality in true in dimension
n — 1. We will prove it in dimension n. Suppose we have a numbers yg, y1, y> € R satisfying
Yo = (1 — N)y1 + Aya. Define my,, f1, gy : R — Ry by

O

myo(x) = m(yo,x), fyl (ZE) = f(yl’x)v ng(CL’) = (y27x)7



16
where x € R""!. Note that since yg = (1 — \)y; + Ayo we have
My (1 — Ny + Aza) = m((1 — Ny + Aya, (1 — X)xg + Aag)
> fyn, 1) 7 g(y2, 22)" = fy(21)' 7y, (),

hence my,, f,, and g,, satisfies the assumption of the (n — 1)-dimensional Prekopa-Leindler
inequality. Therefore we have

fomez (L) (o)

Step 4. Define new functions M, F,G : R — R,

M) = [ P = [ hee G = [ o
Rn—1 Rn—1
We have seen (the above inequality) that when yo = (1 — A)y; + Ays then there holds

M((1 =Ny + Mya) > Fyn)' Gy
Hence, by 1-dimensional (P-L) inequality we get

for= ([#) ([e)-
[r=fom fr=fon [o=[ o
Lo (L) (Lo)

Definition 1. A function f : R® — R is called log-concave if f = e~V for some convex
function V : R" — RU {+o0}.

Rn—1

But

so we shown that

O

We can now give a proof of generalization of BM inequality.
Theorem 15. Suppose p is a measure with log-concave density. Then
pAA+ (1= XN)B) > p(A) u(B) .

Proof. Let A, B be measurable in R™ and let h be the density of . Define f
and m = Lyara-xnph. Then these function clearly satisfy m(Az 4+ (1 — A)y
Thus

= 1 g = 1Bh
) > f(x)g(y).

A+ @-npl= [mx ([ f)A (/g) —|AP|BI

Fact 16. Suppose f : R" x R™ — R is log-concave. Then F(x me z,y)dy is also
log-concave.

O
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Proof. Define f,(y) = f(z,y), f» : R™ = R. Take 2, x5 € R™. The functions frz,+1-xzss fo1» fao
satisfy

Prarta-nas Ay + (1= Ny2) > fo, (1) far (42)'
Thus by Prékopa-Leindler

FOan + (1= \) = / Prors(tpms > ( / fm)A ( / fm)H — P Fas) .

Fact 17. Let f, g be log-concave on R™. Then f x g is also log-concave.

O

Proof. The function (z,y) — f(y)g(z —y) is clearly log concave. Thus it suffices to integrate
it in y and use Fact 16. O

Fact 18. Let f be log-concave on R™ and let v € R" be a fixed vector.

Rat+— f(x)dx
(z,0) >t

is also log-concave.

Proof. The function (z,t) +— f(2)1( > is log-concave (the function (x,t) — 1, .y> is log-
concave as it is of the form 1y for a convex K with K being a half-space). It suffices to use
Fact 16. O

Gaussian concentration. We shall prove the following fact.

Theorem 19. Let A C R" and let 7, be the Gaussian measure. Then

g foo (57 ) i) <

Moreover, if ,(A) > 1/2 then

(8) Tn(A:) > 1= 2exp(—£°/4).
Proof. Let
@) = o7 expld(e. A 4) exp(—[af/2)
9(y) = Wuw exp(—Iy[?/2)
and ]
() = Gy o1l /2).

We show that

h(x;—y) EW\/@

Indeed, it suffices to consider the case when y € A. In this case we have d(z, A) < |z — yla
and therefore

() f(a)aty) < exp (2 - R BEY o (200

- ()
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By the Prékopa-Leindler inequality we obtain

(1) () () 0 o (422

The second part of the statement follows from Markov’s inequality. Indeed, if 7, (A) > 1/2
then

[ e, A7 /) () <2

hence

(e, 4) 2 €) < expl(-<7/4) [ exp (C“TA)) d() < 2exp(—</4).

Corollary 20. If M is a 7, median of a 1-Lipschitz function f, then

W{f = M +¢e}) < 2exp(—e?/4), v ({f < M —e}) < 2exp(—e?/4),
and
Yul{|f — M| > e}) < dexp(—e?/4).

Proof. Let A= {f < M}. Then v,(A) > 1/2. Since f is 1-Lipschitz we have {f > M +¢} C
A¢. Therefore,
M({f = M +£}) < 7(A2) < 2exp(—</4).

The second inequality is proven identically, taking A = {f < M}. O

One can provide a nice estimate of the volume of a cup.
Fact 21. Let 0,,_; be the uniform probability measure on S™~!. Take

Ce)=5"""n{x; > ¢}

Then 0,_1(¢) < e7"<°/2,

Proof. Case 1. Assume ¢ € [0,1/v/2]. Let C' = conv(0,C(c)). Notice that and let C' C
B(e, V1 —€?). We thus have

on—1(C(g)) = ‘:;Olln((;}) < B(j(’)lv (13_5)52) —(1- 62)71/2 < e,
If = € [1/v/3,1] then € € B(L, L) and thus
~vol,(C)  Blg,a)  (1\" e
on-1(C(e)) = vol,(BY) < vol,,(B )— (2—8) <e /2

The last inequality follows from e**/2 < 2z for z € [1/4/2,1], which is easy to verify. In fact
due to the convexity of e/2 it is enough to check it for z = 1 /v/2 and z = 1. In these two
cases the inequality easily reduces to e < 4. O

Fact 22. Suppose X is a random vector having values in R”, whose density is of the form

1
o) =exp (=5 (Ba.o) = V(@) )
where B > 0 is a n x n matrix and V is convex. Then
cov(X) < B



19

In other words, of X is more log concave than a Gaussian vector Y then cov(X) < cov(Y).

Proof. Writing X = B~Y/2X we clearly see that one can assume the case B = I. Indeed, X
has density

§(x) = det(B/?)g(B™z) = det(B~"/2) exp (‘%W - v<B—”2x>)

and cov(X) = Beov(X)= BB ! =1.
Let A(y) = logEe*). We have

02 Ay) = EX; XX Ee®X) — EX;eXEX ewX)
oy (Eef®X))2

= cov(X;, X;). Thus VZA(0) = cov(X). Let us define

Thus 2 A(y)|

0Y:y; y=0

9(y) = = {a,y) = SlyI* = V(y)
1
m(z):—§—V(z)
We shall verify the inequality
1 1 1 r+y
- - < —|al? :
3 0)+ 5000 < glaf+m (T30
Indeed, due to convexity of V' it is enough to check
1 1, ., 1 1,y 1, 1le+yl
il _ = _ = S < = _ |7
> {a,2) = 7l = 5 (ay) — 7l < Glal - 5 |
This is
x—y 1, 5 1 5 1 5 1 o 1, 5 1 5 1 5 1
<z - “lal? = = - - 2= =
(0 552 Y < gl G+ Gl = glo -+l = Glaf + Glaf + Sl — § (ov0)
Loy Tz —y ?
=5l 53
The inequality follow by applying Cauchy-Schwarz and AM-GM,
2
T —y T —y 1, o 1llz—y
T IV < <= — =] .
(o250) bl "5 < gla+ 5[5

Thus
vV ef(ff)eg(y) g e%|a|2em(%) .

Thus by Prékopa-Leindler we get

(/ ef) - ( / ) P e [en

%A(a) + %A(—a) ~ A(0) < SlaP

which is equivalent to
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If we Taylor expand the left hand side we get
(V2A(0)a, a) + of|al?) < Jaf

and after comparing the leading terms we get (VZA(0)a, a) < |a|* which shows that T—A(0) >
0. 0J

1.9. Knothe map.
1.10. Brenier map.

1.11. Ehrhard inequality. Recall that ~, is the standard Gaussian measure on R" and
(t) = [ ¢(s)ds, there ¢ is the density of 7;. The main goal of this section is to prove the
following theorem, known as Ehrhard inequality.

Theorem 23. Suppose A, B are Borel sets in R". Suppose «, 3 > 0 are such that o+ 5 > 1
and |a — B < 1. Then we have

O~ (y(aA + BB)) = a® ! (74(A)) + B (1u(B)).

Let us introduce the functional form of this inequality. Define the operator

(Quf)(x) = | fla+ Viz)dy(2).

Rn
Note that

@10 = [ s,
Moreover, let us observe that f > ¢ implies Q;f > c and f < C implies Q,f < C.

Theorem 24. Suppose a, f > 0 are such that a + 5 > 1 and | — | < 1. Let f,g,h : R" —
(0,1) be Borel functions such that

O (h(az + By)) > a® ' (f(x)) + B2 (g(y)).
Then

(9) O (Qih(ax + By)) = a® ™ (Quf () + BT (Qug(y))-
In particular, taking x =y = 0 and ¢t = 1 yields

¢! ( / hd%) > ad! ( / fd%) + po! ( / gd7n> .

It is not hard to show that this theorem implies Ehrhard inequality. However, we shall not
need this implication. We first show that Erhard inequality implies Theorem 24.

Theorem 23 implies 24. Consider a Borel set
Bf ={(s,2) ERxR": s <& (f(x+ Vit2))}
Similarly we define BY and BX*PY Observe that

(B = [ fo+ Vidn(z) = Qi (2)
Thus, our goal (9) is equivalent to

O (Y1 (BEH)) 2 0@~ (i1 (BF)) + B (31 (BY)).
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But Ehrhard inequality gives
(I)il('}/nJrl(CVB]gf + /BBéJ)) > aq)il(7n+1(B}c)) + 5q>*1(7n+1(33))'
Thus, it is enough to verify
aBf + BBY C By,
If (s1,21) € B} and (s2,22) € BY then from our assumptions we get
asy + fsy < a®7 (f(z + Viz)) + O (gly + Vizn)) < @7 (h(ax + By + Vi(az + f2))),
which show that a(sy, z1) + (89, 22) = (asy + B2, az1 + B23) € B,?”ﬁy. O

Now our goal is to show that Theorem 24 for nice functions implies Ehrhard inequality.
Let us first specify that we mean by nice functions. Take parameters a > 0, 0 < 2¢ < p < 1.
Define

de,p = Max {(I)(aq)_l(Qe) + 8D (p)), (ad*(p) + 6@‘1(25))}
and
Noep = {(f,g, h): f,g,h:R"— (0,1) are C*° smooth
f,g = ¢ outside B(0,a)
f,9 < p everywhere
h > o., everywhere}.

Suppose we know Theorem 24 for these classes of functions. We now show how to deduce
Ehrhard inequality.

Theorem 24 for N, , implies Theorem 23. By a standard reasoning similar to that discussed
in the context of classical Brunn-Minkowski shows that we can restrict ourselves to compact
sets. Take 0 < 2¢ < p < 1 and some 1 > 0. There are smooth functions f, g, h such that

fo p on A _Jp onB b P((a+ )2 (p)) on aA,+ 5B,
e on Ay 7 g e on By’ Oe.p on (oA, + BBy);

with intermediate values elsewhere. Since 2¢ < p we immediately get 6., < @((a+8)2(p)),
which gives h > 4. ,. Since A, B are compact, for big enough a the functions f, g are equal ¢
outside B(0,a). Thus, for big a we have (f,g,h) € N, ..

We shall verify that

O~ (h(ax + By)) > a®™ (f(2)) + B2 (9(y))-
If € A, and y € B,, we get ax + By € aA, + 8B, and thus
a®~(f(z)) + P (g(y)) < a® ™ (p) + B (p) = D' D((a + B)@ () = h(ax + By).
since always f(z),g(y) < p. If x ¢ A, or y ¢ A, then

a® ' (f(x)) + B2 (g(y)) < max {®(a® ! (c) + SD ' (p)), D(a® ' (p) + S (€))}
< e, < hlax + By),

since always h > o, ,. Using Theorem 24 we get

= ( / hd%) > ad! ( / fd%) g ( / gdvn) > a0~ (p3a(A)) + A0 (970 (B))
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Taking ¢ — 07 and n — 0" we get J., — 0 and thus

ot (/ hd’yn) — & (@((a+ B)P ' (p))wm(aA + BB)) .
Therefore
O (((a+ B) 7 (p)) (@A + BB)) > a® ™! (p1u(A)) + 7 (p1(B)) -

Now we take p — 1~ and observe that then ®((a+ 8)®1(p)) — 1 and thus we arrive at the
desired inequality

O~ (y(aA + BB)) = a® ! (74(A)) + B (1u(B)).

We shall now prove Theorem 24 for nice triples of functions (f, g, h).

Proof of Theorem 24 for Ny.,.
Step 1. We derive a PDE for ;. It is not surprising that we shall get the heat equation.
Indeed, integration by parts gives

Q@) =5 [ e+ Vi) = 5 [ Vi Ve sl
1
=3 / %Vf(w +V1t2) - Vi (2)dz = §/Af(x +V1t2)pn(2)dz
= %A/f(:v +Vtz)dy(2) = %AQJ(%)-

Step 2. Suppose u = u(t,x) satisfies g—? = %Au. We would like to derive an equation for
U =& !(u). We have u = ®(U). Thus,
ou ou ou
— = (U)—— = p(U)—
g~ YW =),
and

Vu = p(U)VU, Au = o(U)AU + o' (U)|VU|* = o(U)AU — Up(U)|VU|>.
We get
(p(U)AU = Up(U)|VUJ?) .

Cancelling p(U) > 0 we get

)

U

57 = 5 (AU - UIVUP).

Step 3. Define

C(t,z,y) = 271 (Qih(az + By)) — a®™H(Quf(2)) — B2~ (Qug(y)).

Since @) is the identity operator, our assumption reads C'(0,z,y) > 0 for all x,y and the
assertion is C'(t, x,y) > 0 for all z,y and ¢ > 0. The idea is now to derive certain evolutionary
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equation satisfied by C' and prove an appropriate maximum principle for this equation. To
simplify our notation we will be using

F = F(t,z) = 2 (Quf (x))
G =G(ty) =27 (Qu(y))
H = H(t,ax + fy) = 2~ (Qsh(ax + By)).
Let us remember that in the upcoming computations F' and all its derivatives will always be

evaluated at (f,x), G and all its derivatives at (¢,y) and H together with all its derivatives
at (t,ax + Py). Clearly F' does not depend on y and G does not depend on x. We have

C=H-aF - 8G.

We have
V.C =«a(VH —VF)
V,C =p(VH — VGQG).
and
A, C = *AH — aAF
AC = B2AH — BAG.
Moreover,

2
E o¢ =afAH.
—  0z,;0y;
1<i<n

Let us define the operator

2 2 2
L:% (Ax+Ay+ 1_Zﬁ_ﬁ > 828%) .
1<i<n
Clearly,
LC = %(AH — aAF — BG).
From Step 2 we get
%—}; = %AF— %F\VFF
%—f - %AG _ %GlVG\Q
%—f _ %AH _ %H|VH|2.
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Thus,

H 1
LC = 0 + H|VH|2
ot
aF 1 )
- 5— - —6G|VG|2
oC
- — 40U
or T
where .
U = 5(1L1|VH|2—@F|VF|2 BGIVGP) .
Now

1
IVF|? = |VH|* + (VF —VH)-(VF+VH) = |VH|* - ~V.C" (VF +VH)

1
VG2 = [VH|> + (VG — VH) - (VG + VH) = |VH|? — 5VC" (VG + VH).

Thus we can rewrite ¥ as

1 1
U = —\VH]Z(H —aF — 3G) + 3 (V.C-(VF+VH)F+V,C-(VG+VH)G)
= —|VH| C+= (V C-(VF+VH)F+V,C-(VG+VH)G)

= 5\VH| C+V,,C -0,
where O is a vector field in R?" given by
1
6 = 5((VF + VH)F, (VG + VH)G).

We arrive at

oc 1
(10) LC—a—+—|VH|C+nyC ©.
Step 4. We now show that C attains its infimum on the sets of the form [0, 7] x R" x R™.
Recall that we dealing with the class N, . ,. Fix T' > 0. Take r such that ~,(B(0,r)) =1—¢
and define R = a +rv/T. If |z| > R and t < T then for |z| < r we have z + vtz ¢ B(0,a)

and thus f(z +v/12) < ¢, so for t € [0,T] we get

(Q:f)(x) = fz + Viz)dya(2) + flz + Viz)dva(2)

|z|<r |z|>r

<e(l—e)+ep<2e.

By the same argument (Q.g)(y) < 2¢. Since h > J., then also Q;h > 6. ,. Thus if |z| > R
or [y| > R then either (Q.f)(z) < 2¢ or (Q:9)(y) < 2e and thus (since Q. f(z), Qig(y) < p as
f.9<0p)

aQuf () + fQug(y) < max {@(ad™'(22) + 7 (p)), 2(a®™(p) + B2~ (20)) }
- 5a,p S ch(CY(L' + 5y)
Thus C' is non-negative on [0,7] x (B(0, R) x B(0, R))°.
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Step 5. Suppose C(t, x,y) is negative at some point (T, z,y). From Step 4 we know that
0> inf  C(t,z,y)= inf C(t, z,y),

[0,T]xR™ xR™ [0,T]xBxB
where B = B(0, R). Since C'is continuous (in fact C'is C'*° smooth with all partial derivatives
of all orders uniformly bounded) we get that on the set [0, 7] x B x B the function C' attains
its negative infimum —M. Define Cy(t, x,y) = C(t,x,y) + t0 where § = M/2T. We have
inf  Cy(t,z,y) < -M+T-M/2T = —-M/2
[0,T]xR™xR™

and since Cy > C we see that Cy on the set [0, 7] x R" x R™ attains its infimum in certain
point (to, zo,%0) € [0,T] x B x B and in that point C(tg, g, yo) < Ca(to, To, yo) < 0.

Due to our assumption Cp(0, z,y) > 0 and so the infimum is not attained on {0} x B x B.
Also the infimum in not attained on [0,7] x (0B x B U B x 0B) since on these points the
function Cy is non-negative. So, the infimum is attained on (0,7") x int(B) X int(B) or on
{T} x int(B) x int(B).

Let us analyse the first case. At the minimal values we have

oC,
VeyCo =0, a—t" =0, Hess,,Cp>0, Cp<0,
which gives
oC
Ve, C =0, 5 = —0 <0, Hess,, C' > 0, ¢ <0,
We shall soon verify
claim: Hess,, C >0 — LC >0.
Using (10) we get
oc 1 5
0<LC’—§—I——|VH| C+V,,C-6< -0,

which is a contradiction.

If the infimium of Cy is attained on {T'} X int(B) X int(B) then the same equations for the
critical point are satisfied, except for equations 809 = 0 which now has to be replaced by the
inequality < 809 < 0, leading to the same contradlctlon.

Step 6. We shall verify the claim. Let A be a 2n x 2n matrix with n diagonal 2 x 2 blocks

1 1—a?—(2
AO — 17&2*ﬂ2 236-5
2a8

It is straightforward to observe that

1
2LC =11,...,1] - (A*Hess,, C) - | : |,
1
where * denotes the Hadamard product of two matrices, namely (A x B) = (a;;b;5):;. It is

therefore enough to verify that Ax*Hess,, C is positive semi-definite. Since Hess, , C' itself is
positive semi-definite and the Hadamard product of two positive semi-definite matrices (see
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lemma below) is positive semi-definite, it is enough to verify that A is positive semi-definite,
which amounts to proving that Ag is positive semi-definite. The matrix

A(d) = { Cli Cli }
is positive semi-definite iff |d| < 1, which leads to the condition |1 — a? — 32| < 2af3. This is
—20f <1-a” - < 2ap,
which is (o + 8)? > 1 and (o — 8)? < 1. These are the assumptions of Theorem 24. O

Lemma 8. Hadamard product of two symmetric positive semi-definite matrices is positive
semi-definite.

Proof. Let A = (ay)},=, and B = (b;;)i;=;. We have A x B = (aybij)} =
symmetric and positive semi-definite, where is an orthogonal matrix U such that B = UDU”
where D = diag(\y,...,\,) is diagonal. All the entries of D (eigenvalues of B) are non-
negative as B was positive semi-definite. Let \/ﬁdiag(\//\_l vV ). Define C =U VDUT.

We have B = C?%. Thus if v = (vy,...,v,) then
<(A * B ’U U E vlambl]v] E Uiaijbjﬂ]j = E V;Qi;CiCriVj = E Cri ViV Cjk .
Z’hj

i,5,k .5,k

Since B is

The last expression in equal to tr(CVAVC(C), where V = diag(vy,...,v,). The operation
A — SAS preserves positive semi-definiteness as for any vector v we have (setting w = Su)

(SASu,u) = (ASu, Su) = (Aw,w) > 0.
It suffices to use this fact twice for S =V and S = C. OJ
We now formulate some corollaries of the Ehrhard inequality:.
Corollary 25. Let K be convex in R™. Then for all £ > 1 we have
O (4 (tK)) > t0 7 (a(K)).

Proof. Using Ehrhard inequality with A = B = K and a = [ = t/2 yields the desired
inequality. Note that K + £K = tK due to the convexity of K. O

Corollary 26. Let A be Borel and let K be convex. Suppose o, > 0, a + 8 > 1 and
a — [ < 1. Then we have

CI)_I('Vn(OéA + BK)) > qu)_l(%z(A)) + ﬂ@‘l('yn(K)),

Proof. 1f additionally § —a < 1 then the assumptlons of the Ehrhard inequality are satisfied,
so the desired inequality follows. Suppose that —= > 1. Let us use Ehrhard inequality with

a and f =1+ a with the sets A and a_+1K' We get

O (v (A + BK)) = 7! (vn(ozA +(a+1)- - f_ 1K))

> a®™ (7,(A4) + (a + )3~ (% <ai1K)) |

Now it suffices to use Corollary 25 with ¢ = = > 1 to get

@ ne (5 (LK)) > 5 (3 (K)) .

+1
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0

Our last application is the Gaussian isoperimetric inequality. Before we prove it let us
establish the following simple lemma.

Lemma 9. We have

sup~ @ (7(rBy)) = lim ~0((rB})) = 1.

r>0 T roo T

Proof. We have , by de 'Hospital

1 R
1—-0(r)= — e 2ds ~oypyoy ———¢
(r) \/2#/,« - V2T
Thus In(1 — ®(r)) ~, e —72/2 and therefore, taking z = ®(r) — 1, we get 71 (x) ~, 4
v/ —2In(1 — z). As a consequence @ (y(rBY)) ~r—00 v/—2In(1 — 7, (rBY)) ~, 00 7 since
By| [ By
1 — 'Yn(ng> _ nl 2‘ Sn_16_52/2d8 ~ n’ 2 ’T,n—2 —r2/2

- \/ﬂ'ﬂ i 7—00 \/%TL )

again by de 'Hospital. This shows the second inequality.
Now it suffices to observe that

O (1, (rB3)) < & ({ar < 7}) = 2N (@() =1

OJ
Proof of Gaussian isoperimetry. By Corollary 26 we get
-1 _ $-! € .pn
O ((As) = 7 ( (A+ = 7B3))
> &7 (,(A)) + =7 ((rBy)) —— 7 (u(A)) + <.
OJ

1.12. Brascamp-Lieb inequality. In this section we will be using the following notation.
Let ST(R™) be n x n positive definite matrices. For a m x n matrix B we denote by B* its
n X n transposition. The space of all linear maps R” — R™ will be denoted by L(R™ R™).
If A e ST(R¥) then G4(z) = exp(— (Az, x)) be the corresponding Gaussian function. Note
that
Ga(x)dx = 7%/ det(A) /2,
Rk
Let L{ (R") be the space of non-negative functions from L;(R"). For a function m : R® — R,

we put
1
/ m = sup {/Th :m<m, mis measurable} .

Theorem 27. Let m > n be positive integers and let c¢q,..., ¢, > 0 be real numbers. Let
ni,...,N, < n be positive integers such that n = " ¢;n;. Suppose B; € L(R",R™) be

surjective. Assume (/" ker(B;) = {0}. For f; € LT(R™) ,i=1,...,m set us define

i=1
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and

! m m
I(fl»'-'afm):/ Sup{HfiCi(yi): xZZCiB;yia inRni}dﬂi-

" i=1 i=1

Let E. F be best constants in the inequalities

Hﬁ,.wﬁ@;3E~II(éwﬁ)i, JUL”.JQ)SFVII</?jOi

Let

H:’il (I]R”z GAz‘)Ci

ngsup{J(GAu'..,GAm) . Ai€S+(Rm), izl,...,m}

T

H?il (f]an GAi)Ci

be the corresponding best constants for Gaussian functions. Let D be the best constant in
the inequality

=1

i=1
Then

E=E,=vD, and F:@:vﬁ
Remark 1. The condition (-, ker(B;) = {0} ensures that Y ", ¢;BfA;B; is non-singular.
Otherwise the theorem still holds true with D = 0.

Remark 2. The condition n = )", ¢;n; is the condition needed for the homogeneity of (11)
under A; — M\A;.

Remark 3. By using approximations similar to those described in the transportation proof
of Prékopa-Leindler we can assume that the functions fi,..., f,, are of the form f; = filgi,
where ; is some open Euclidean ball in R™, the function f; is Lipschitz and satisfies 0 <
¢ < ﬁ < (C; for some positive finite constants ¢;, C;. We shall denote this class of functions
fi by C(R™). The proof of Theorem 27 uses the following regularity theorem.

Theorem 28. Suppose f,h € CL(R") be probability densities with open domains €, €2,
and let py, py be the corresponding probability measures. Then there is a C?(2),) convex
function ¢ such that p, = T'uy, where T'= V¢. Moreover, the following transport equation
is satisfied,

det(DT(z))f(Tz) = h(z).

Lemma 10. We have I, = \/iﬁ.
Proof. We have

m

J(GAl,...yGAm):/ H

R™ i1

exp(—c¢; (A; Bz, Bix))dx = / exp (— Z ¢; (A; Bz, B,m>) dzx

i=1

" " ~1/2
= / exp <— <Z ¢; B A;B;x, 93>) dz = 72 det (Z ciB;kAZ-BZ) .

i=1 i=1
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Moreover,
RN mo
i=1 " i=1
= 3 Zika i H det(A;) "¢/ = z"/? Hdet(Ai)*cz'/Q_
=1 i=1
Thus
MBI AB)\ det (X7, &:BrAB)\ ?
F— s (SO GBIAB) (o et (CF B AB) _ e
S AR [T, det(A;)e Ao Am [T det(A;)e .

Lemma 11. We have E F, = 1.
Proof. Let

Q= ZCiB;AiBia and Q) = (Qu,y),
i=1

where we slightly abused notation. This matrix is symmetric positive definite since
(Qy,y) = ch- (A;B;jv, Bjv) >0
i=1

and its is equal zero only if B;u = 0 fori = 1, ..., m, which means that v € (", ker(B;) = {0}
by our assumptions. In particular det(Q)) > 0. We saw in the proof of Lemma 10 that

J(GAM e 7GAm) . H?il det(Ai)ci 1/2
" H;il (f]R"z‘ GAi)Ci B ( det(Q) ) :

We define the dual of this quadratic form as
Qu(x) = Al {z,m)|: Qy) <1}
Claim 1. Q.(z) = (Q 'z, z).
Proof of Claim 1. We observe that

| (z,y) |* <(Q7'z,2) (Qu,y)
with equality for y = Q~'z. Indeed, we have

| (z,y) |2 = [{Q %2, Q%) I < |Q 72z - |Q*y|* = (Q ', 2) (Qu, v) -

Here we have used the fact that

QY = (Q'?y, Q'?y) = (Q*Q"?y,y) = (Qy.y) .

Now we define

R(x)Z/{Zci<A;1yi,yi>: $=ZCinyi, y; € R™, i:1,...,m}.
i=1

=1
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Note that R is highly relevant to the computation of I(fi,..., fi,), namely
(G-, Gyn) = / exp(—R(z))dz.

Claim 2. We have R = Q.. In particular, using Claim 1 we get R(z) = (Q 'z, z).
Proof of Claim 2. Suppose x = Y ", ¢;Bfy;, for some y; € R™. Then we have

| (z,9) |? = <Z CiB;yi7y>

i=1

2 2 2

YR

i=1

< (Sowaar e ) (3w o
. (Z ¢ <yi>Ai_1yi>> <Z CiBZ‘AiBiy,y> = (Z Ci <A21yz~,yz~>> Qy)

=1 =1

= > (Veiyi, VeBiy)

=1

2

— S IVaA Py - 1EAY By
=1

Taking the infimum with respect to y; gives

[ (z,9) [P < R(2)Q(y).

In particular R > Q.. To see that we actually have equality it suffices to show that for every
fixed x there is y with | (x,y) |* = R(z)Q(y). Take

y=Q 'z, and x; = A;By.
We have

m m

R('T) < Zcz <:L’Z,A xz> ch A Bzya 1y = Zcz B A; Bzy y) Q(y)

i=1 i=1
and thus

[ {z.9) P =1{(Qy.9) " = Qy)* 2 R()Q(y) = [{.y)|*,
so we must have R(z)Q(y) = | (z,y) |*. O

Using Claim 2 we get

Gy, Gyn) = /n exp(—R(x))dz = /Rn exp(— (Q 'z, z))dx

= "2 det(Q)7V2 = 7"/2 det(Q) V2.
Therefore,
[(GAl_l""’GAr_nl) B n/Qdet(Q)l/Q
m i ' cini/2 ci/2
02 (fon G)” T 7o det(A0)

Combining this with (12) gives

= det(Q 1/2 H det(A 01/2

-1

J(GAl,...7GAm) _ ](GA;17-"7GAIR1)
H?;l (fan GAi)CZ HZZI (f]R"z GAZ_—1>CZ

Taking the supremum of both sided gives F, = 1/E,,. O

We shall also need the following lemma.
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Lemma 12. Suppose f;,h; € CL,(R™), i =1,...,m satisfy [p., fi = [gn, hi = 1. Then
I(fiye o f) > DI (b, ).

Proof. We can assume D > 0, since otherwise there is nothing there to prove. Recall that
h; are restriction of some positive Lipschitz function to some open domains €2;,. Take the
Brenier maps T; transporting the probability measure with density h; onto the probability
measure with density f;. By the Brenier-Cafarelli theorem we have T; = V¢;, where ¢; is a
convex C?(Q,) function. Thus, DT; is positive semi-definite. Moreover, we have the following
transport equation

det(DT;(x)) fi(Tix) = hi(z).
Since h;(x) > 0 on €2, we get that det(DT;) > 0 and thus DT; is positive definite. Define
S =", B () CR" and consider © : S — R" given by

Oy) = ZCiB:E(Biy>'
i=1

We have

DO(y) = ZCiB;DTi(Bz‘y)Bi.
i=1
Thus, DO(y) is positive definite (we argue similarly to the proof of Lemma 11). alternatively
we could write that

m

i=1

Thus, (DO(y)v,v) for any v # 0 and so
(y—z,0(y) — O(z)) = <y - :c/o ;it@(ty +(1—t)z )dt>
= <?/ - $7/0 DO(ty+ (1 —t)z)(y — m)dt>

_ /0 (DO(ty + (1 — )e)(y — z),y — 2) dt > 0.

Thus, © is an injective map.
We have

[ 10w By - / thiwiy /S T (B et DT, () dy

=1

1
5/, (@(y) sup Hfz Vi) )det O(y))dy

:Z?;I ciBZyi =1

IN

1 m
< = sup filyi)®
D R z=>"", ciBly; E
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Here the last equality is a change of variables and the second inequality is

H(fl(Tz(Bzy)))c < Sup Hf yi)“,

=1 G(y) ZZ 1C'LB Yi =1

which follows from the fact that y; = T;(B;y) satisfies

m m

i=1 i=1
Note that we have used the usual integral instead of the inner integral since the function
m
e sup [ i)
x:Z:.ll ciBjyi i=1

is measurable (due to the continuity of f;’s on their support one can replace the sup with a
supremum on the dense countable subset of the space {(y1,...,ym): &= 1o, ;Bfy;}; see
the discussion before the transportation proof of Prékopa-Leindler inequality). OJ

Proof of BL and RBL. Note that due to the invariance under scaling f; — \; f; we have

E, > E =inf{I(g1,...,9m), gi — centered Gaussian densitites}
> Dsup{J(g1,.--,9m), gi — centered Gaussian densitites}

=DF, = E,,
where the second inequality follows from Lemma 12 and the last equality from Lemma 10
and Lemma 11. O
Ezxample 1. Take ny = ... = n,, = nand ¢; > 0, ¢« = 1,...,m such that Z?;Ci = 1.
Moreover, let By = ... = B,, = I. Then the BL inequality reads

which is Holder inequality. We know that the best constant in Holder inequality is F' = 1
and thus we expect that D = 1. To check it we have to prove that

det Z ) > Hdet i, A € ST(RM).
=1

We proceed by induction on m. Suppose we can prove it for m > 2. For the induction steps
we write

m—+1
Cm+1
det cA; | =det CA; + A, +———A, (Cm + Cm
(Z ) (Z (Cm + Cmt1 Cm + Cmt1 H i

m— c c Cm+cm+1
m m+1
H ) det (—Am + —AmH)
=1 Cm + Cm+1 Cm + Cm+1

where the last inequality follows from the case m = 2. To prove the assertion for m = 2 we
assume without loss of generality that A is invertible (otherwise approximate A by invertible

e
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matrices). Assume we know how to prove the inequality for A = I. Then
det(AA + (1 = A\)B) = det(A) det(A + (1 — A)A™'B) > det(A) det(A™'B)'
= det(A)*det(A)'""*det(A7'B)! ™ = det(A)* det(B)' .

If A = I then by applying orthogonal transformation we can assume that B is diagonal with
positive eigenvalues ay, ..., a,. Then the inequality reads

m

[T+ @ =Na) > ﬁ al™.

i=1

Clearly it suffices to prove it for m = 1. then it reads A\ + (1 — A\)a > a'~*, which is the
concavity of the logarithm,

log(A + (1 — A)a) > Mog(1) 4+ (1 — M) loga = (1 — \)loga = log(a' ™).

The RBL inequality for this choice of n; and B; reads as follows: Whenever Z:L ¢ =1

then
i m m m Cq
/ sup {Hfz(yz)c S Zciyia Yi € Rn} dr > H (/R fi) .
1 i=1 i=1 "

n i
This is a generalization of Prékopa-Leindler inequality for the case of m functions.

FExample 2. We shall prove the following theorem

Theorem 29. Suppose p,q,r > 1 with ]13 +% = %+ 1. Assume f € L,(R") and g € L,(R).
Then

CpCy ! 9 sl/s 1 1
13 ool < (2) Wbl G2 T4t

To see the connection to Brascamp-Lieb inequality let us state an alternative equivalent
form of the above inequality.

Theorem 30. Suppose p,q,r > 1 with % + % + % = 2. Assume f € L,(R"), g € L,(R") and
h € L.(R™). Then

| [ s = natntsdy < (,¢,60 171, ol 1],

To see the equivalence of Young’s inequality and the above theorem we observe that

1f =gl n n
— =T . L, (R L, (R
“m{umAmm f e LpR).g € Ll )}

—su f]R” fRn f(z —y)g(y)h(x)dzdy ' . . o
) p{ 17T, Toll, A, 'fEL“R%QGLAR%hELmR>}.

Note that %+ é + 7% =1+ % + % = 2. Moreover C,, = 1/C,.
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For n = 1 we also have

Jen Jon T (@ = 9)g(y) h(z)dady
A1, llall, HhHw
f]R“f]R" g%(y) ()dxdy
(Jgn ) (fRn 9)7 (Ju )7

o d e PP () (L) () @A () (LODrdy

e £ (Jr9)? (k)™

This relates the problem to the quantity studied by Brascamp and Lieb. We can now give a
proof in dimension n = 1 using BL inequality.

sup : feLl,(R"), g€ L,(R"),h e LT,/(R”)}

t f.9.h € L{(R)

= sup

Proof of Young’s inequality for n = 1. Suppose p,q,r > 1 with % + % + % = 2. From BL
inequality the best constant F' in the inequality

Lsemiomios () () (1)

is 1/ VD, where D is the best constant in the inequality
det (c1a1(1, —1)"(1, —1) + c2a2(0,1)7(0,1) + c3a3(1,0)"(1,0)) > af*as?as,

where ¢; = 1/p, ¢co = 1/q and ¢3 = 1/r. Note that ¢; + ¢y + ¢3 = 2. The determinant of the
matrix on the left hand side is equal to

cia1 + csa —C1aq
det ( 378

2 92
= (c1a1 + c3a3)(Cc1a1 + Caa2) — CiQ
—C1a C1a1 + Ca02 ) ( ) ) 1

= 1020102 + C2C3a2a3 + C3€1A307 .
Thus, we ask for the best constant in
c1 Co C3

C1C2Q102 + C2C30203 + C3C1A301 = A7 Gy A3’ .

Without loss of generality we can assume that p,¢,r > 1 and thus ¢, 2,3 < 1. By AM-GM
we have

C1C20a10G9 CoC30U203 C3Ciasy
C1C2a109 + CoC3A903 + C3C1A301 = (1 — 3)— + (1 — Cl)— + (1 — 62)—
1 C3 1-— C1 1-— Co
C1Cy 17 cpc3 17e1 €3C1 172 9 () 0 9 e ey 2-c1—c
1-— C3 1— C1 1-— (&)
C1Co 1—c3 CyC3 l—c1 c3Cq 1—c2 o1 ¢y cs
= ay Gy ag.

1—c3 l—0c I —c

The equality holds for aq, as, ag such that
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Solving this system of equations is straightforward (we leave is as an exercise). It suffices to
observe that

Ci1Cy 1=c3 co9cg 1-a c3cp 1-c2 1 1
162 263 3¢1 _ (p/)p/ (q/)ql (’I"/)r C% c2— 6363 c1— Cacg c1—c2

1—03 1—61 1—02

- (CquCr)iz

We now show that Young’s inequality in dimension n = 1 implies Young’s inequality in
any dimension. Note that || f « g| < |||, llgll,, and thus, with h( ) = h(—x), we have

1fxg*hlle IS *gl, f]R” x —y)g(y)h(x)dzdy
11, gl AL = T, Tgll, — T 11, ||g|| [112]],
On the other hand,

[t = athadsty = [ (7o) @hlits = [ (7 xg@h(-o)s

= fxg#*h(0) < Hf*g*ﬁHoo

sup

Thus

|7+9+]
o NFr g hlo _ Fxal, gl

v A, g, ol = ||f|| loll, = "o AT, gl Tkl — ot AT, Tl T2l

Therefore Young’s inequality is equivalent to the following theorem.

Theorem 31. Suppose p,q,r > 1 with ]13 - % + % = 2. Assume f € L,(R"), g € L,(R™) and
h € L.(R™). Then

1f* g% hllo < (GCCO™ L1, lglly 1171, -

This inequality easily tensorizes. To see this suppose that such an inequality is true on R”
with constant C'(n) and on R™ with constant C(m). Then on R""™ we can write

(f*g*h)(zy,22) = / f(o1 —y1 — 21,22 — Y2 — 22)9(Y1, Y2) h(21, 22)dy2dzodyidz
n Rm

< C(m) / n ( RS —zl,t)pdt> b ( / o, )th>1/q ( / ) h(zl,t)’”dt)l/Tdyldzl

< Cm)Cm) 11, lgllg IR, -
Thus if the inequality holds true on R with some constant C'(1) then C(n) < C(1)". To see
that in fact the optimal constants satisfy C'(n) = C(1)" it suffices to take product functions.

2. ENTROPY POWER INEQUALITY

Let f be a density of a random vector X having values in R". Take p > 0. We define the
Rényi entropy via

_plnllfllp-

= (] )
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Here we will be always assuming that the integrals are finite. We also define

h(X) =i hy(X) =~ [ fln
Suppose A is an invertible map. We claim that
(14) B (AX) = hy(X) + In | det(A)).
Indeed, the density of AX is fax(x) = ldTl(A)'f(A_la:). Thus

p
hy(AX) = . ip ln/ffxx = 1—ipln/ (MTl(Aﬂf(A_lx)) dz
_ Lm/ (;f(y)y | det(A)|dy = — ln/f +1In|det A
1—p | det(A)] 1—p
= hy(X) + In|det Al.
Suppose f is the density of X and ¢ is the density of Y with XY independent. Suppose
p,q,r > 1 with zla + % = % + 1. Then taking the logarithm of 13 we get

C,C,
il x gl < nin (L) £, + ol
Note that f * g is the density of X + Y. Thus the above is equivalent to
1—7r

r

h(X +Y)<nh (Cgc‘l) 41 ;php(X) + %hq(Y).

This is (remember that r > 1)

C,C 1 1
(15)  h(X+Y)>-——" nln( P Q)+TT B+ —— T,

r—1 C. -1 D r—1 q
Let us fix A € (0,1) and r > 1. Define
B 1 B 1
PPy 1Ty =
These numbers clearly satisfy % + % = % + 1. We have
—1 —1
e Wy iy PR
r—1 D r—1 q
We got
Cqu
h(X+Y)>— 1nln o + My (X) 4+ (1 = M)Ay (Y).
r— r

Using the scaling (14) and taking v/ AX and v/1 — AY instead of X and Y, we obtain

he(VAX + V1= AY) > - i -nln (%) + M (VAX) 4 (1 = AN hg(VI = XY)

= i () () + (L= ()

+5 (Al + (1= X In(1 - x).
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Rewriting gives

By (VAX VT =AY )= Ay (X)~(1=N)hy(¥) = ———nn (Cécq) +2 (A + (1= ) In(1 = ).

Remember that p = p(\,r) and ¢ = g(A\,r). If X is fixed and r — 17 we get p — 17 and
g — 17. The left hand side converges to

hVAX + VI = XY) = A(X) — (1 = MA(Y).

We claim that the right hand side converges to 0. It suffices to verify that

lim — ln(Oqu>_%(Aln)\—i—(l—)\)ln(l—)\)).

rs1t T — C,

In other words, using the definition of C,, C; and C,, we have to show that

r pl/pql/q ’1/7”/ r 1/pq1/q r Tll/r’
lim In . = lim ln + lim In - - .
ro1+ 17 — 1 U gi/a plr ro1+ T — ri/r rﬁl* r—1 p'H/P g't/a

Since p’ =7'/X and ¢ =7’ /(1 — X), we have
r 7,,/1/7” /1/1" r
r—lln(p’l/p'q’l/q ( o A/ = 1 7a,()\ln)\+(1—)\)111(1—)\))
(%)
=AlnA+ (1 -

We also have

1pgl/a 1 1
r pl/Pq r nr
1 = 1 1 — )
r—1n< ri/r > 7’—1( npt nq) r—1

We have % — 1 when r — 1. Moreover,

(e (o) e 2 (3 152)
e i () () ¢ (052 (e )

A 1—AX
:<1—)\+—>~)\+<)\+—>~(1—)\)—>)\+(1—)\):1.
r r r—1+

The claim is now established and we arrive at
A(VAX + VI = XY) > M(X) + (1 — AA(Y).
This is the linear form of the so-called entropy power inequality. Let us define
1 2h(X
N(X) = exp( ( ))
2me n

Suppose X is a Gaussian vector with the covariance matrix Kx. Then the density of this
vector is equal to

(@) = o (15 )).
271'\/ det KG

In other words, X = (Kx)"/2G, where G ~ N(0,1). Thus h(X) = h(G) + 4 Indet K x and
N(X) = det(Kx)""N(G) = det(Kx)"/"
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since N(G) =1 as
e = _/ Pbnn = _/ pnln ((2m) 7 exp(—[2[?/2)) = 5 In(2m) + 7.
We give three equivalent formulations of the entropy power inequality.

Theorem 32. Let X, Y be independent random variables having values is R”. We have

(i) We have
NX+Y)>NX)+ N(Y)

ivalentl
or equivalently gh(X-‘,-Y) gh(X) 2p(Y)
R > (FHOD R0,

(ii) For any A € [0, 1] we have
A(VAX + V1= AY) > A(X) + (1 — AA(Y).
(iii) If Gx and Gy are independent multiples of a standard Gaussian such that h(Gx) =
h(X) and h(Gy) = h(Y) then
N(X +Y)> N(Gx + Gy) or MX +Y)>h(Gx + Gy).

Proof. To show that (iii) implies (ii) we observe that if Kx and Ky are the covariance matrices
of Gx and Gy then

MVAX + V1 =XY) > h(VAGx + V1 = XGy) > Mi(Gx) + (1 — Nhg(Y),
where the last inequality is equivalent to
N(VAGx + V1= AGy) > N(Gx)*N(Gy)'™>
follows from
det(AGx + (1 — N)Gy) > det(Gx)* det(Gy ).

We now show that (ii) implies (i). Replacing X with X/\ and Y with Y/(1 — A) in (ii)

gives
h(X +Y) > Mo(X) + (1= Nh(Y) — g (M + (1— M) In(l — \)

We shall optimize the right hand side with respect to A € [0,1]. Computing the derivative
gives

n A
which yields
o 2h(X)

A:

e%h(X) + e%h(y) '
Note that (16) is equivalent to A(X) — §In A = A(Y) — 5 In(1 — A). Thus for optimal lambda
we have

A(X +Y) = M(X) + (1= Nh(Y) = 5 (A A+ (1= ) (1 = X))
- (h(X) - gln >\> (1) (h(Y) - gmu - )\))
gln <e%h(X) + e%h(y)> .

Rearranging gives (i).
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To show that (i) implies (iii) we observe that
N(X +Y) > N(X)+ N(Y) = N(Gx) + N(Gy) = det(Kx)"™ + det(Ky)"/"
= det(Kx + Ky)"/" = N(Gx + Gy),

where the third equality follows from the fact that Ky and Ky are multiples of the identity
matrix. 0

2.1. Geometric Brascamp-Lieb inequality. There is a setting of Brascamp-Lieb type
inequality where the optimal constant is D = 1.

Theorem 33. Let n,m > 1 and let uy,...,u, € S™ !, ¢1,...,¢, > 0 be such that I =
Yo cuy @ug I fi, oo frn i R — Ry are integrable functions then

i [ sty as<T1( [ 1)

Remark 4. The condition on ¢;’s in the Brascamp-Lieb inequality is satisfied in the above
setting. Indeed, we have n; =...n,, =1 and

m m m m
n=tr(l) =Y ctr(u@uy) =Y gluli = ¢; =) ey
j=1 j=1 j=1 j=1

Remark 5. The condition

(18) I= Z CjUj & Uy
j=1
is equivalent to
Vo € R", = Z cj (T, uj) w or equivalently to Yz e R, |z|5= ch (z,u;)° .
j=1 7j=1

We can easily construct examples of vectors satisfying condition (18). Let H be an n-

dimensional subspace of R™. Let eq,...,e, be the standard orthonormal basis in R™ and

let P : R™ — H be the orthogonal projection onto H. Clearly, Izgm = Z] 1€ @ ej and

= )" (7,e5)ej, hence Px = Y7 (v,¢;) Pe;. If v € H then Pr = x and (z,¢;) =

(Px,e;) = (x, Pej), therefore x = Y, (z, Pe;) Pe;. Thus Iyage = >0 ¢ju; @ u;, where
= |Pe;|* and u; = Pe;/|Pe;|.

j=1 Jj=1

To prove Theorem 33 it suffice to prove that D = 1 in the Brascamp-Lieb setting. Namely,
to show that the condition
m
Z V; Qv = [n
i=1

for some vy, ..., v, in R™ implies
m m
12
det E a;v; Q v; ZHaL“l , A1y ey Gy > 0.
i=1 i=1

We then use it with v; = /c;u; to verify that the optimal constant D in the formulation of
BL is equal 1.
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Using Cauchy-Binet formula we have for any n x m matrix A and m x n matrix B that

det(AB) = ) det(A;)det(B"),
]=n

where the sums rums over all subsets I C {1,...,m} of cardinality n and A; is obtained by
keeping only the columns indexed by elements of I, whereas B! is obtained by keeping only
the rows indexed by elements of I. Since

" | | — VA —
Z a;v; Q v; = \/CL_1’U1 e A/Q U, .
i=1 | | N

we get
det (Z a;V; & ?)Z‘) = Z a]d]
=1 [T|=n
where
dr = (det((vi)ig))2 and ar = Hai.
il

Taking a1 = ... = a,, = 1 gives Zm:n d;y = det(>v; ® v;) = det(!) = 1. Thus, by AM-GM
we get

Zaldl> Ha H Zuezm

[1|=n [1|=n i=1
But

odr=Ydi— > dle—det<2vk®vk>

Iiel 1T|=n I4¢1,|I|=n ki
=1—det(l, —v; ®@v;) = 1 —det(l, —v;v]) =1 —det(I; — vl v;)
=1—(1—vlv) = |l
Note that we have used the Sylvester identity.
Lemma 13. Suppose X is a m x n matrix and Y is a n x m matrix. Then
det(I,, + XY) = det(l, + YX).
Proof. To prove this, let us first observe that we have the identity

I, -Y . I, Y\ (1, 0
X I, o0 I, )] \ X XY+1I, )
We have

I, =Y L Y \\ _ Iy 0 _
det((X [m)-(o Im)) dt(X XY +1, )—det(XY—i—]m)
Since det(AB) = det(BA), the left hand side is the same as

I, Y L =Y \\ _ L+YX 0\
(5 7Y (% 7)) (M 2 caanevx



41

2.2. John’s ellipsoid theorem. We shall prove the following classical fact.

Theorem 34. Let K be a convex body (compact convex set with non-empty interior). Then

(i) There exists a unique ellipsoid £x € K with maximal volume.

(ii) If By C K is the ellipsoid of maximal volume contained in a symmetric convex body
K C R” then there exist ¢y, ..., ¢, > 0 and contact points uq, ..., u, € R" such that
[ujlz = [lujllx = llujll e = 1for 1 < j < m and

(19) Ign = ZC]'U]' ® u;.
j=1

(iii) For symmetric convex body K we have Ex C K C /nék.
(iv) If By C K and there exist contact points ui,...,u, of By and K, and numbers
C1,-..,Cp such that (19) is satisfied, then Ex = BY.

Remark 6. Let K be symmetric. One can define contact points of B} with K as points
satisfying u € 0K N S™'. In other words, this means |u| = |jul|, = 1. We claim that in
this situation also ||u| . = 1. Let us take a contact point u and let H be a supporting
hyperplane of K at u. We claim that H = {x : (x,u) = 1}. From the inclusion B} C K
and from the fact that v € 0K N 0By we see that H is also a supporting hyperplane of
BY at u. Thus H is unique and equal to {z : (z,u) = 1}, which is clearly the supporting
hyperplane for the ball Bf. It follows that K C {z : (x,u) < 1} and by symmetry of K we
get K C {x: |(x,u)| <1}. Since this is true for any contact point, we in fact get

KCf |z [(ww)| <1},

-

=1

which we shall use in the sequel.
For any u in R™ we have

[ull xo = sup{[ (z,u) [ : = € K}.

If u is a contact point then by the fact that K C {x : |(z,u)| < 1} we get ||u]
fact we have equality by taking © = v € K and using the fact that |u| = 1.

e < 1. In

Proof. (i) By applying a suitable linear transformation we can assume that Bj is the ellipsoid
of maximal volume. Suppose there is some other ellipsoid £ contained in K and having the
same volume. There is an invertible linear transformation 7" and a vector xy such that
& =TDBj + . Note that

E—wo=T{(x,2) <1} ={a: (T'2, T '2) <1} ={o: (T2, T 'z) < 1}
= {2 {a, (T T 2y <1} = {a: (T T )22, (T T /%) <1}
= (T 'T)*) By = (I'T")"/*By,
where we have used the fact that a positive definite map (7~!)*T~! has a square root. Thus,

we can assume that the map T is positive definite.
Consider the ellipsoid

E =2 CK
0=y Ty b s 2 =
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where the last inclusion follows by the convexity of K and the fact that both B} and & are
subsets of K. We shall show that the volume of & is strictly bigger that the volume of BY.
This will be a contradiction. Note that

|Eo| = det ( ) |By| > \/det(A)|By| = | By,

since |BY| = |&| = det(T)|BY| and thus det(T") = 1. The above inequality is the concavity
of the determinant proved earlier. By maximality of B we see that there has to be equality
in the above bound, which gives A = I. Thus, & = By + x9. we have & = By + % =
iBy + +€ C K. Since conv(By,€) C K, it is easy to see that one can dilate & a bit in the
direction of [0, zo] to get a bigger ellipsoid contained in K. This is a contradiction.

(i) Step 1. Since (19) implies that Y°." | ¢; = n, we have to show that £ € conv(C), where
C={u®u: [uf = ullg =1}

Assume by contradiction that it is not possible. If we view C' as a subset of the space R™,
the set conv(C) is compact and convex. Thus, if £ ¢ convC, we can find a functional ¢
(viewed as a n x n matrix) and a real number r such that

(20) <¢, %> <r <{p,u®u)

for all u such that |u| = [Jul| ;. Here {(ay)P,_y, (bij)t—y) = > i1 igbij.

Step 2. We can assume that ¢ is a symmetric matrix. Indeed, for symmetric A we have
(p, A) = (¢*, A), where ¢* is the transpose of ¢. Thus, if ¢ is not symmetric, we can replace
¢ with #, not changing (20).

Step 3. Since tr(f2) =1 = tr(u ® u), we can add cI to the matrix ¢, not changing the
separation property (take s = r + ¢ instead of r). Thus, we can assume that tr(¢) = 0, which
means that ¢(1,) = 0. Thus, we found a functional matrix B and a real number s such that
for all contact point

(B,u®@u) >s>0 and tr(B) = 0.
Note that

0<s<(Bu®u) = ZBJk :ZBjkujuk:u*Bu:(Bu,u).
k=1 7,k=1
Step 4. Define
E={xeR": (I, +0B)x,z) <1}.
For small 6 > 0 this is an ellipsoid approaching By when § — 07. We shall show that for
small 6 > 0 this ellipsoid is contained in K and |Es| > |BY|.

Step 5. We verify that indeed |&| > |BY|. For an invertible symmetric matrix A the set
{{Az,x) <1} is an image of B} under A~'/2. Indeed

{(Az,x) <1} = {{AY?2, AY?2) <1} = A7V/2By.

Thus
| B3|

Es| = .
&1 = Setz, + 0B

However, by AM-GM we have
tr(Z, +6B)

det(I, + 6B)'/" < -

=1

’
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since tr(B) = 0. The inequality is strict since not all the eigenvalues of B are equal (otherwise
tr(B) = 0 would imply that all the eigenvalue are zero, which would mean that B = 0).
Step 6. Let U be the set of contact points. We define

S :{UESnlz dist(v, U gi}, S:{UESnlz dist(v, U ZL}.
+ (U < 315] ©.0) 2 475]

Clearly S, U S_ = S""'. Our goal is to show that (for small § > 0) K > v/ ||v||, ¢ & for
all unit vector v, which easily implies that & C K.
Step 7. We first check it for v € S_. By compactness there is e > 0 such that dist(0K, S_) >

e > 0 and thus
dist ({L ve S_} ,B’;) >e> 0.
vl

v £ €
dist | { —— S_ 1+=-)By)>=>0

o ({ ves- b (+5) 2) 25

The assertion follows by observing that for sufficiently small 6 > 0 we have & C (1 + %) By.
Step 8. The case v € S, is more delicate. By Step 3, for every u € U we have
(21) ((In+0B)u,u) > 1+ 0s.
Furthermore, if v € S, then
(L, + 0B)v,v) — (L, + 0B)u,u)| = 6 |(Bv,v) — (Bu,u)]
<90 |<BU7U> - <BU7U>| +0 ’<BU7U> - <BU,U>|

Thus

1
< 20| Bllu = v] < 3s0.

This together with (21) yields ((I, +B)v,v) > 1+ 36s > 1 and thus v ¢ &. Since
v € By C K, we have ||v||; <1 and thus also v/ ||v]| , & &s.
This finishes the proof of point (ii).

(iii) Without loss of generality, by applying linear transformation we can assume that
Ex = BY. Then

Thus, if z € K then

i=1 i=1
Thus |z| < y/n, which means that 2 € \/nB?.

(iv) Clearly by uniqueness of maximal ellipsoid £k is symmetric if the body is symmetric.
Take an ellipsoid

~ (z,¢5)°
E={x: > <1y,
i1 Y
where (e;) is some orthonormal basis. Suppose u € {u1,...,u,} be a contact point. Take a

point y = > 7| a; (u, ;) e;. We claim that y € £. Indeed, (y, e;) = a; (u,¢;) and thus

S S e = =1,

i=1 J i=1
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Since

Zaj<u,ej>ej:y€5§[(§ﬂ{x: | (z,u;) | <1} CH{x: [ {(x,u)| <1},

i=1

we get

<Z a; (u,e;) ej,u> = Zaj (u,ej>2 <1
j=1 j=1

But, using (19), this means that

n m m n

n n m
2 __ 2 2 __ 2 2

205 = 2 flesl =2 i) crlue) =D ) ofluen) £ 3 o=

j=1 j=1 j=1 i=1 i=1

Thus

V(1) <Ly
(\Bg\) [[ef) =52 ais

O

Example 3. If K = B then &k = BY. Indeed, it follows from point (iv) of John’s theorem
as +e; are contact points and I =137 1 e; ®@e; 4+ 3 > (—€) ® (—e;).

2.3. Reverse isoperimetric inequality. Let us state the reverse isoperimetric inequality.

Theorem 35. Let K be a symmetric convex body in R™. Then there exists an affine
transformation K of K such that

(22) [K|=|By|, and |0K]|<|0BY|
or equivalently

oK 0B~
(23) O] < 10Bal

K[ BL |

Before we give a proof of Theorem 35 we introduce the notion of the volume ratio.

Definition 1. Let K C R" be a convex body. The volume ratio of K is defined as

’K’ 1/n
vr(K) = inf (E) , &£ C K is an ellipsoid » .

The ellipsoid of maximal volume contained in K is called the John ellipsoid. If the John
ellipsoid of K is equal to B} then we say that K is in the John position.

We have the following theorem.

Theorem 36. For every symmetric convex body K C R™ we have
2

24 vr(K = —
2y o (|BN)"
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Theorem 34 == Theorem 36. The quantity vr(K) is invariant under invertible linear trans-
formations.We let as an exercise to check that the ellipsoid of maximal volume contained in
K is unique. Therefore we may assume that the John ellipsoid of K is BY. Using Theorem

34 we find numbers ¢y, ..., ¢, > 0 and unit vectors uq,...,u,, € R™ on the boundary of K
such that
m
IRn = ZC]‘U]' ® Uj.
j=1

Since u; € 0By NOK and K is symmetric we get
KcCcK :={zeR" [(z,u;)| <1, forall 1<j<m}.

Let f;(t) = 1;_11)(t) for 1 < j < m. Note that f; = fjcj, 1 < j < m. From Theorem 33 we
have

]K|<|K/‘_/ Hf (x,u ) dx<H</f]> — 2Xj=1% = 9" = |B"|.

From Example 3 we know that B is the John ellipsoid for the cube B . Therefore
2
ni1l/n’

(1B3)"

vr(Bg) =

We now show that Theorem 36 implies Theorem 35.

Proof of Theorem 35. Let K be the linear i image of K such that BY C K is the John ellipsoid
of K. By Theorem 36 we have |K| < 2. Hence,

K +eBo| — |K K +eK|—|K
|0K|—11m1nf’ +eBs| - | ‘Sliminf’ +eK| - |K]
e—0t 6 e—0t £
1
=n|K| =n|K|"" - |K|* < 2n|K|"%
This finishes the proof as the ratio [0 |1 is affine invariant. OJ

K|
We state yet another application of the geometric Brascamp-Lieb inequality.

Theorem 37. If K is a symmetric convex body in the John position then E |G|, > E|G|,
where G is the standard Gaussian vector in R, i.e. the vector (g1, ..., ¢,) where (g;)i<, are
independent standard Gaussian random variables.

Proof. As in the proof of Theorem 35 we consider numbers c¢y,...,¢,, > 0 and vectors
Ui, ..., Uy, satisfying the assertion of the Theorem 34. Note that

KCcK ={zeR", |[{(z,u;)| <1 1<j<m}.

Clearly,
1G]l 2 Gl = max (G, u;) .

Moreover,

+oo
EG|l, = /0 P (m?X|(G,uj>| > t) dt.
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We have |G|o = maxi<j<m | (G, e;) | so that

—+o00 —+o00
Blok= [ P (max|<G, ;)] > t) at= [ a—Bll <o)
0 J 0

where g is the standard Gaussian random variable. To get the conclusion, it suffices to prove

P (max (G ) < ) < (B lg] < 1)

Take
6—52/2
hj(s) = 1[7t,t}(3)ﬁa fi(s) = 1¢4(s).
Since
|5 = ch (z,uj)?,
=1

Theorem 33 implies that

1 2
| _ —lel3/2
P (mjax (G, uy)| < t) /Rn 1 ¢ (max; | (@u))) <t} (QW)n/ze 22 dx

- z,u) [P\ 7
15 (o) gm0 (~H2520) o

(2
_ /Rthj (2, u;)) da

IA
[y b
VN
—

Qb‘
N——

S

I
VN
—
ﬁ —
3

a

L

L

[\

o,

N———
3

P(lgl <1)",

where we have used the fact that Z;n:1 cj =n. 0J

—~ .

3. KLS LOCALIZATION
3.1. Topological vector spaces. Let us define topological vector spaces.

Definition 2. A vector space X (over R) which is also equipped with some topology 7
(family of open sets) is called a topological vector space if the singletons {z} are closed sets
and the operations X x X — X given by (z,y) — z+y and Rx X — X given by (a,z) — az
are continuous (the product spaces are equipped with product topologies and R is equipped
with the usual topology).

Note that it immediately follows that translations and multiplications by non-zero scalars
are homeomorphisms of X. Thus, the topology 7 is translation invariant — U is open if and
only if x + U is open for ant z € X.

Recall that a neighbourhood of x € X is any open set containing z. The collection 7" C 7
is a base for 7 if every member of 7 is a union of elements from 7/. A collection w of
neighbourhoods of x € X is a local base if every neighbourhood of z contains a member of w.
Note that by the translation invariance of 7 the topology 7 consists of all possible translates
of neighbourhoods of 0.
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Fact 38 (W. Rudin, Functional Analysis, 1.10). Suppose K is compact and C' is closed in
some t.v.s. and K N C' = &. Then there is a neighbourhood V' of 0 such that

(K+V)Nn(C+V)=

Proof. If W is a neighborhood of 0 then there is a symmetric neighborhood U of 0 such that
U+ U C W. Indeed, since the addition is continuous, there are neighborhood Vi, V5 of 0
such that V; + Vo C W. So it suffices to take U = Vi N Vo N (=V)) N (=V3).

Applying the same trick for U we can get a symmetric neighborhood of 0 such that

U+U+U+UCW

and in particular U + U +U C W.

Now, we can assume that K # @&. Take x € K. We know that « ¢ C. Using the
translation invariance of the topology and the fact that W = X \ C is a neighborhood of
x, we get asymmetric neighborhood V,, of x such that x +V, + V, 4+ V, C X \ C and thus
(x4+V,+V,+V,)NC = 2. By the symmetry of V, we get (z+ V., +V,)N(C+V,) =
By compactness one can find x1,...,z, in K such that

KC(xi+Vy)U...U(zp+ Va,).
Take V =V, N...NV,,. Then

n

K+VC U w4 Ve, +V) S @i + Ve, + V2)
i=1 i=1
But for any ¢
(i + Vo, + Vo )N(C+ V) = (2 + Vo, + Vo, )N (C+ Vo neo.N V)
= (Ti + Vo, + Vo, )N (C+ Vi) NN (C+ V)
C (xl+1/xl+sz)ﬂ(C—|—‘/;Z) =9
Thus (K+V)N(C+V)=2. O
Since C'+ V is a union of sets of the form ¢+ V', ¢ € C, this set is open. Thus it is also
true that
(K+V)Nn(C+V)=
In particular
(K+V)NnC =w@.
Taking K = {x} (clearly they are compact by definition of compactness) we get the following
fact.

Fact 39. Every neighbourhood of 0 contains a closure of some other neighbourhood of 0. In
particular, every member of a local base at 0 contains a closure of some other member of a
local base at 0.

Taking K and C' to be singletons in the Fact 38 we get the following fact.

Fact 40. Every topological vector space is a Hausdorff space. In particular, every compact
subset of a topological vector space is closed.

Fact 41. Let X be a t.v.s. and let A, B C X. Suppose A is a real number. Then
(i) M =4,
(i) A+ BC A+ B,
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(iii) if A is convex then A is also convex.

Proof. (i) If A = 0 this is obvious. If A # 0 it follows from the fact that f(z) = Az is a
homeomorhpism as for homeomorhpism we always have f(4) = f(A).

(ii) Let @ € A and b € B and let W be a neighbourhood of a + b. Then there are
neighbourhoods W,, W, of a and b such that W, + W, C W. By the definition of the closure
of A (intersection of closed supersets of A) we immediately get that any neighbourhood of

a must have a non-empty intersection with A. Thus there exist points z € AN W, and
y € BNW,. Thus

r+ye(A+B)N(W,+W) C(A+B)NW.
In particular (A + B) N W # @. Since W was arbitrary, we get that a +b € A+ B.
(iii) From the first two points we get

MA(1-NA=M+(1-NACIM+(1-NA=A

OJ

We will also need the notion of the convex hull. For K being a subset of a vector space X

we define
conv(K) = {Z)\m o e K, N >0, Z)‘i =1, n> 1}.
i=1 =1

This is clearly the smallest convex set which contains K.

Fact 42. Suppose A;,..., A, are convex compact subsets of a t.v.s. X. Then conv(A; U
...UA,) is compact.

Proof. Let
S={(s1,...,8,): s >0,i=1,...,n,8+...+s, =1}

Take A = Ay x ... x A, and define f : S x A — X via f(s,a) = s1a1 + ... + spa,. Take
K = f(S x A). This set is clearly compact as an image of a compact set under continuous
map. Clearly K C conv(A; U...UA,). It is also straightforward to check that K is convex.
Thus since A; C K (take s; = 1) we get A;U...U A, C K and by convexity of K we arrive
at conv(A; U...UA,) C K, which yields conv(A4; U...UA,) = K and the compactness of
conv(A; U...UA,) follows. O

3.2. Locally convex spaces.

Definition 3. A t.v.s. X is called locally convex (l.c.) if it has a local base whose members
are convex.

Theorem 43 (Milman’s theorem). Let X be a l.c.t.v.s. and let K be a compact set such
that conv(K) is also compact. Then ext(conv(K)) C K.

Proof. Assume there is p € ext(conv(K)) such that p ¢ K. From Fact 38 and Fact 39 we
can find a neighbourhood V' of 0 such that (p + V)N K = @. Moreover, by the definition
of l.c. spaces we can assume that V' is convex. Furthermore, by taking V' N (—V') instead

of V' be can assume that V' is symmetric (V' = —V'). By compactness of K there are points
T1,...,%, € K such that K C |J_,(x; + V). The sets

A; =conv((z; + V)N K) C conv(K)
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are closed subsets of compact set and thus they are compact. They are also convex as closures
of convex sets (Fact 41 (iii)). Clearly K C |J;_, A;. Thus Fact 42, together with the fact
that in Hausdorff spaces compact sets are closed, yields

conv(K) C conv (U Ai> = conv (U Ai> :
i=1 i=1
Since A; € conv(K) we also have conv (| J;_, A;) C conv(K) and thus

conv(K) = conv (U Ai> :

In particular, p = >""" | Nia;, where a; € A; C conv(K) and \; € [0,1] sum up to 1. By
extremality of p in conv(K') we get that there is ¢ such that

pe A =conv((z; +V)NK)Ca; +VC K+ V.
Here the first inclusion follows from the fact that z; +V are closed and convex. Get get that
p=Fk+wv, where k € K and v € V. Since V' is symmetric (since V' = —V = —V) we get
p+V3p—v==ke K and thus (p+ V)N K # @ contradicting our initial assumption. O
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Theorem 44 (Bauer’s Maximum Principle). Let K be a nonempty compact convex set in
some l.c.t.v.s., and let ¢ : K — R be a convex upper semi-continuous function. Then g
attains its maximum over K at some extreme point of K.

Proof. Step 1. Let m = sup,cx g(x). We first prove that m < oco. Indeed, take the sets
M, {x € K: g(x) > n}. Then M, are closed (since g is upper semi-continuous) and their
intersection is empty. Thus (M), form an open covering of K and so by compactness of
K there is a finite sub-cover (MS),/). One of these sets includes the other ones (since the
family is decreasing) and thus for some m we have K = M¢, and thus M,,, = &. The assertion
follows.

Step 2. Define M = {y € K : g(y) = m}. We claim that this set is non-empty. To prove
it define closed non-empty sets M,, = {z € K : g(z) > m — 2}, We have M = (), M,
and this intersection is non empty (the argument is similar to the above reasoning; assuming
empty intersection we get that (M¢) is a cover of K which then has an open sub-cover (Mf)),
but this means that (), (M,) is empty, this is not possible since the family is decreasing and
all the sets are non-empty).

Step 3. We claim that M is compact. Indeed M = {y € K : g(y) = m} = {y €
K : g(y) > m}, which is closed as g is upper semi-continuous. Since M C K and K is
compact, the assertion follows (recall that closed subsets of compact sets in Hausdorff spaces
are compact).

Step 4. We shall show that M is extremal in K, that is, whenever x € M is written in the
form x = Ax; + (1 — A)xzy for some 1,29 € K, we must have 1,25 € M. Indeed, for such
representation we gave, by convexity of g,

m=g(z) = g(Ax1 + (1 — N)xg) < Ag(x1) + (1 — Ng(z2) < Adm+ (1 —N)ym =m.

Thus g(x1) = g(x2) = m and so x1,x9 € M.
Step 5. We claim that if M C K is extremal in K then

(25) ext(conv(M)) C M Next(K).

Since M is compact, the inclusion ext(¢onv(M)) C M follows from Milman’s theorem (The-
orem 43). Note that in order to use this theorem we need to know that conv(M) is compact
which is true as it is a close subset of K (this follows from the fact that M C K and K is
closed and convex). Not suppose x € ext(conv(M)). We shall show that = € ext(K). Of
course from Milman x € M C K. Assume that z = Azy + (1 — \)zy for some z1, 25 € K.
Since M is extremal in K, we get that z1,xo € M C conv(M). By the extremality of x in
conv(M) we infer that z; = x5 = x. This proves that x € ext(K).

Step 6. Now it suffices to use Krain-Milman theorem to claim that ext(conv(M)) is non-
empty (together with the fact that the closure of a convex set is convex, which is Fact
41(iii)). Thus from (25) there is an element in M N ext(K), that is an extremal point such
that g(x) = m.

O

4. KLS LOCALIZATION PROOF

Let K be a compact set in R". The function f : K — R is called upper semi-continuous
if for any sequence (x,) C K converging to some point € K we have

limsup f(z,) < f(z).

n—oo
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Equivalently, for any y the set {f > y} is closed. In fact we shall use this second definition
to deal with functions defined on arbitrary topological spaces.

Theorem 45. Let P(K) be the set of regular Borel probability measures supported in the
compact set K C R". Suppose f: K — R and ¢ : P(K) — R are upper semi-continuous.
Define Py C P(K) via

Pr = { i pis a log concave probability measure in K with / fdu > 0} .

Then sup,cp, ¢(11) is attained on ext(conv(Py)).

Before we give a proof of this fact let us discuss certain preparatory facts. The set conv(Fs)
consists of certain probability measures. We treat it as a subset of the linear space of Borel
regular Radon measures, which is known to be the dual of C'(K), the space of continuous
function on K with the sup norm

If[] = sup f ().
zeEK

On the dual C(K)* we can consider a norm given by

]l = sup{u(f) - fe CK), [[fl <1}

*

However, we shall equip C(K)* with the so-called weak-* topology, which is the smallest
topology such that for any f € C(K) the pointwise evaluation functionals Ty : C(K)* — R
given by Tt(u) = p(f) are continuous. Due to the celebrated Banach-Alaoglu theorem for
any normed space X the unit ball (in the dual norm) in the dual space X* is weak-* compact.
Thus, the unit ball Bo(xy+ in the space C(K)* is weak-* compact. The unit ball in this case
consists of all measures p € C'(K)* satisfying

‘/fd,u‘ <1, for all f with ||f|| < 1.

In particular, we trivially have Py C Bo(g)-.

Note that Bg(x)- is closed in weak-* topology. Indeed, the set of measures satisfying
| [ fdu] < 1 for fixed f is the same as the set of functionals satisfying |p(f)| < 1 (in the
functional analytic notation), which is closed due to the definition of weak-* topology. We
now intersect these sets for all f with || f|| < 1 and get that Be(x- is closed. As a consequence,
since Be(k)+ is convex and closed, the set conv(Py) is a closed subset of a compact set Be k)«
and thus it is itself compact (general easy fact from topology saying that a closed subset of
a compact set is compact).

The claim that the set P(K) is weak-* compact. Of course it is a subset of Be(k)-. The
only thing we have to show is that P(K) is closed. Let A be a closed subset of K. Define
fea(z) = (1 — dist(z, A)/e)4+. From the definition of weak-* topology the set of measures
satisfying [ f. adp € [0,1] is closed. Intersecting this for any ¢ > 0 and any A shows that the
set of measures in C(K)* satisfying [ f. adp € [0,1] for any A and any € > 0 is closed. We
claim that this set is actually equal to the set of measure p in C'(K)* satisfying u(A) € [0, 1]
for any Borel set A C K. Indeed, for closed sets, by the Lebesgue dominated convergence
theorem for there measures, we have

tim [ Foadp = [ Y foadn = () € 0.1
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Thus, for all closed (and open) sets A we have p(A) € [0, 1]. The assertion for general Borel
sets follows form the regularity of u. If we further intersect our set with the set of measures
satisfying p(K) = 1 (which is again closed as a preimage of the evaluation function for f = 1),
we get that the set P(K) is closed in C'(K)*.

We would like to show that also Py is compact. Consider continuous functions f,g,h

K — R. The function
A
W) = [ b - ‘/fdu

is the superposition of the maps

- (/fdu /gdu /hdu> and  ®(x,y,2) =z — |z[My"*

and thus it is continuous. Thus ¥~([0, 00)) is closed. If we intersect this set with the closed
P(K), we get that for any continuous non-negative functions f, g, h the set of probability

Radon measures satisfying
A 1-A
fo ([ ) ()

is closed and therefore compact. Therefore, the Radon probability measures satisfying the
assertion of Prékopa-Leindler inequality for for continuous functions, that is

hw+ (1= Ny) > f@) fy)'™ = / A 2 (/ fdu >A (/ gdu>H

form a compact set. These are precisely the log-concave measures. Indeed, log-concave
measures satisfy the Prékopa-leindler inequality. On the other hand, if Prékopa-Leindler is
satisfied for continuous f, g, h and the measure p is regular, then it is also satisfied for general
Borel-measurable functions and thus taking standard function h = 1y441—xB, f = 14 and
g = 1p yields the inequality

PAA+ (1= N)B) = u(A)*u(B)'~,

1-X
gdp

which gives the log-concavity of p (due to the celebrated result of Borel, which we shall not
discuss here, this is the same as the set P; used by us). We have shown the compactness of
log-concave measures on K. Now, the compactness of Py follows by observing that the set of
measures in P(K) satisfying [ fdu > 0 for a fixed upper semi-continuous function is closed.
This would follow if we could prove the semi-continuity of the functional p — [ fdu. Upper
semi-continuous functions are known to be monotone non-increasing limits of continuous
functions. Therefore there are continuous functions f, ~\, f. If p is a Radon probability
measure then [ fdu > 0 is equivalent to [ f,du > 0 for any n > 1, due to the Lebesgue
dominated convergence theorem. The set

ﬁ{u /fnduz()}

is compact as the intersection of compact sets and thus we deduce that Py closed and therefore
compact.

We are now ready go give a proof of Theorem 45.
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Proof of Theorem 45. We already know that P; is compact. Applying Bauer’s principle
(Theorem 44) to the convex compact set conv(Py) we get that ® attains its maximum at
ext(conv(Py)). We will show that ext(conv(Py)) C ext(conv(Fs)). Indeed, suppose x €
ext(conv(Py)). By Milman’s theorem (Theorem 43) we have x € P;. Suppose that z =
AT+ (1=A)zo, A € (0,1), 21, 22 € conv(Fs). Obviously z1,z, € conv(Py) and by extremality
of x in conv(Py) we get x = x1 = x5. Thus, = € ext(conv(Fs)). The description of possible
maximizers follows from Theorem 46. O

Remark 7. In the above reasoning it is important to know that x € P;. Otherwise we would
not be able to use the definition of extremality, which requires the point to be in the convex
set we are dealing with. To understand it better one can attempt to prove a false statement
that A C B (A, B - convex) implies ext(B) C ext(A).

4.1. Description of extreme points. Let us mention that the set of extreme points of
the convex hull of log-concave measures on K is the set of all Dirac masses. Indeed, if
is log-concave and p is not a Dirac mass, then there is a hyperplane H dividing R™ into
half-spaces H* and H~ such that p -+ and - are non-zero measures and p(H) = 0. Thus

Hya+

_ — M-
u—u(H+)#(H+) + p(H >ﬂ(H‘)’

which is a non-trivial convex combination of log-concave probabilities pp+/p(H™) and
- /p(H ™). Thus p is not extreme.

Our goal is to characterize extreme points of conv Py. A segment [a,b] C R™ is the set
{a+t(b—a): t €][0,1]}, where a,b € R™. We shall discuss the following theorem.

Theorem 46. Let v be an extreme point of conv(Py). Then one of the following holds

(i) v is a Dirac masses at point = such that f(x) >0,
(ii) v is supported on a segment [a,b] C K such that on that segment the density of v is
log-affine, [ fdv =0 and

(26) / fdv >0, forallz € (a,b) or / fdv >0, forall z € (a,b).

Proof. Let us assume that v is an extreme point in conv(Py) which is not a Dirac mass. We
will prove that it is of the form (ii). Clearly we have v € Py since otherwise by the definition
of convex hull it is a non-trivial combination of elements of P;. Let G be the least affine
subspace containing the support of v.

Step 1. We will prove that dimG = 1. Suppose that dimG > 2. Let zy be any interior
point (in G) of the support of v (the support of v has interior point as it is a convex set of
full dimension (in G). Let E be a two dimensional subspaces such that zo + £ C G. Take a
unit circle in S'(F) in E and for any u € S'(F) define hyperplane H, and half-spaces H
and H, by

H,={ze€G: (x—xy,u) =0}, Hf ={z € G: (x— 2, +u) > 0}.
Define ¢ : SY(E) = Rby ¢(u) = [+ fdv—3 [ fdv. Clearly p(u)+p(—u) = 0, which follows
from the fact that HY, = H,. Thus ¢(—u) = —¢(u) which means that ¢(u) and ¢(—u)

are either both zero or have opposite signs. The usual Darboux principle together with the
continuity of ¢ (which follows from the fact that v(H,) = 0) shows that there is p(ug) = 0.
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The choice of ¢ ensures that v(H;) > 0 and v(H, ) > 0. Since p(ug) = p(—up) = 0 we get
that ¢(u) = [+ fdv =3 [ fdv. Thus, the measures

g, ), g [ 1(H )

are probability measure belonging to Py and

Fad N
m=p sz_ —— +p n . )
o) gy + M),

uo

which contradicts extremality of v.

Step 2. We can therefore assume, without loss of generality, that v is supported on [a, b] C
R. If the continuous function z — ff fdv has a sign on (a,b) then it is either positive or
negative. In the former case the first condition in (26) holds true, whereas in latter case the
second condition has to be satisfied as

/;fdu:/fdy—/jfduz—/;fduzo.

Thus, suppose that for some € (a,b) we have [” fdv = 0. Since then [T fdv > 0 we
get that the measures 11 = V|jqq)/v([a, x]) and v, = V|5 q/v([x, c]) belong to Py and satisfy
v = vla, z]v1 + vz, c]r, which again leads to contradiction. To prove that [ fdv = 0 let
us assume that [ fdv > 0. By Darboux principle there is z € (a,b) such that fax fdv =
s [ fdv > 0. The also [T fdv =% [ fdv > 0 and defining v; and v, as before again leads to
contradiction.

Step 3. We shall finally prove that v is log-affine. Without loss of generality we can assume
that [ fdv > 0 for all z € (a,b). Let ¢ be the density of v. Take any ¢ € (a,b) and define

Pa(z) = 20(c)e*®=9). Consider the measures

dpte = (¥ — ¢4 )4 de, dv, = min{v), ¢, }dx.

Note that since ¢q(z) = 3¥(c) < ¥(c), the measure i, is non-zero. It is clear that v,
is log-concave, as the maximum of convex functions is convex. We claim that also pu, is
log-concave. To check it we observe that the support of p, is an interval (the inequality
1 > @, is equivalent to Iny — Inp, > 0, where the left hand side is concave). Thus its
support the measure has density 1 — ¢, = @,(e7" —1), where V = —In(¢)/,) is convex and
non-positive. We check that g = e=" — 1 is log-concave. We are to check that gg” < (¢')°.

This is equivalent to
(67\/ . 1)((V/)2 . V//)efv < (V/>2672V7
which is the same as V" (1 —e™") < (V’)2. This is true as the left hand side is non-positive.
Thus p, is log-concave.

Since [ fdv = 0 and fac fdv > 0, we have (by using Lebesgue dominated convergence
theorem)

a—r—00 a——+00

c b
lim fdv, :/ fdv >0, lim /fdva :/ fdv <0.

Thus, by continuity of a@ — f fdv, there is ag such that fdv,,—o. Clearly p, + v, = v and
thus [ fdua, = [ fdv = 0. Take

Hag Vayg

Y where A = v,,[a,b], 1—X=v]a,b] — vyla,b] = ta,la,b].
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We get v = Ay + (1 — A, where vy and 1, are probability measures in Py. This is a
contradiction. O

We are ready to deduce the so-called four function theorem.

Theorem 47. Let fi, fo, f3, fs : R™ — R be nonnegative and such that f;, fo are upper
semi-continuous and f3, f4 are lower semi-continuous. Suppose a, 5 > 0. Then the inequality

(f ) () = (f ) (f )

holds true for any log-concave measure y if and only if it holds for Dirac masses and log-affine
measures supported on one-dimensional segments.

Proof. By considering py = jiyxpy one can assume that p is compactly supported on some
convex compact set K. By considering f3 + % instead of f3; we can assume that f3 > 0.

Define .
f Jidu f Jidp\?
f=h- [, d(0) = fod6 — [ fud6.
Crha PO\ T han i )
The functional ® is affine and upper semi-continuous. Indeed by upper semi-continuity of f,
and lower semi-continuity of f; we have

lim sup / Jodpin < / fodp. limin / Fidpan > / Fudy
n—oo

n—o0

whenever p,, = p. Clearly € Pr. By Theorem 77 we get that there is v € Py of the special
form described in Theorem 46 such that ®(u) < ®(v). Thus,

(Fie)' - s () o
S ({;;j;)ﬁ/fﬂw—/ﬂ;du <0,

where the second inequality follows form [ fdv > 0 and the last from the assumptions of the
theorem. The assertion follows. O

We shall give several examples of the use of localization lemma.
FExample 4. Let us prove the following theorem.

Theorem 48. Suppose HessV > ¢*I on R”, where ¢ > 0. Let u be a probability measure
with density e™". Then for all measurable sets A we have

(27) p(Ap) > @ (D71 (u(A)) + ch)
where @(s) = (2m)"Y2 [ e7*/2dz and A, = {z : d(z, A) < h}.

Proof. Step 1. It is enough to consider ¢ = 1. Indeed, let us take the measure v(A) = pu(A/c).
Then v has density e V®/9¢= and thus it satisfies our assumption with ¢ = 1. Since
(1A), = A, we get, by taking £ A instead of A that
_ 1 1
@ (&7 ((A)) + ch) < pu((-A)n) = (- Aw) = V(A).

Taking h instead of ch finishes the argument.
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Step 2. To deal with the case ¢ = 1 take a compact convex set A and a number m € (0, 1).
It suffices to show that u(A) > m implies pu(Ay) > ®(®~!(m) + h). Consider

f=ela—m), g=—p(ls, — (D" (m)+h)).

Here A, = {z : d(x,A) < h} and thus A is open. Thus both f and g are upper semi-
continuous. The inequality p(A) > m is equivalent to [ fdu > 0, where yu is log-concave.
The functional ®(p) = [ gdu is upper semi-continuous. Our goal is to show that ®(x) < 0 on
the set Pr. By Theorem 77 the maximal value of this functional is attained on some extreme
point of conv(Py). Therefore it suffices to show the inequality ®(v) < 0 for v € ext(conv(Py)),
that is for v being log-affine on segments [a, b] C R" (and for Dirac masses in which case the
inequality is obvious as 0, € Py implies € A and thus x € A; which gives ®(6,) < 0).

Step 3. Let [ be the line containing [a,b]. Since (ANI{), C A, NI, we can assume that A
is a subset of the real line and reduce the problem to the case n = 1. We show that every
probability measure i on the real line whose density is of the form f = py is a contraction
of 1. The non-decreasing map T transporting ; onto u satisfies pu(—oo, T'(z)) = ®(x), that
is T(z) = F~1(®(x)). Computing the derivative gives

o' () ()

T FFE (@) FFE(@()

We would like to show that 7"(z) < 1, which is equivalent to ¢(z) < f(F~!(®(z))). Taking
p = ®(x) we can rewrite it in the form o(®~1(p)) < f(F~*(p)). We shall prove something
more general, namely that every finite measure (non-necessarily probability measure) satisfies
the implication

p(—o0, o) > p, p(xg,00) >1—p, pe(0,1) = fxo) = o(@71(p)).

To this end we first assume that our assertion is true for p being log-affine on R. We shall
prove it for general p. Indeed, let [(x) be the tangent line to the graph of a convex function
U = —Inp at zg. Define py = ¢! > p and let pg be the measure with density poy. If p,p
and xg satisfy u(—oo,z9) > p, p(xg,00) > 1 — p for some p € (0, 1), then also pq satisfies
the same condition as py > p. Thus f(x¢) = fo(zo) > (P~ (p)).

So, it is enough to assume that f(z) = Ce*(x). The conditions

T'(x)

p(—00, xp) = / Ce*p(s)ds = CeN 2D (zy — \) > p,

p(zo, 00) = / Ce*p(s)ds = CeM/2(1 = dlzg—A)) > 1—p

are equivalent to

l—p
C>e N2 b .
= T B (@ — N T B(zo — )

Thus

— Azg > —X2/2 Azo p 1_p
f(zo) = Ce™™p(xg) > e e @(xo)max{q)(% —A) 11— ®(z — A)}

IRV
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It is therefore enough to show that for every y € R we have

p l—p -1
oty max { G L > (07 )

For y < @ !(p) the inequality reduces to pp(y)/®(y) > (@ (p)). Here y = & 1(p) give
equality. Thus, it suffices to observe that the function ¢(y)/®(y) = (log ®(y))’ is decreasing,.
This follows form the fact that ®(y) is concave as the tail of log-concave measure (see Lemma
??). The case y > ®~!(p) follows by the same argument.

Step 4. Now we show that the validity of (27) is reserved under contractions. In general, we
shall show that every inequality of the form

1u(Ap) = W (u(A), h)
is preserved. Indeed, suppose u is an image of g under a map 7" with Lipschitz norm at
most 1. Then

p(Ar) = p(A+1B3) = po(TH(A+tB3)) > po(T'(A) +1B3)
> W(juo(T~H(A)), ) = D(u(T(A)),B).
Here the first inequality follows from the inclusion T-'(A) +tBY C T1(A + tBY). To show
it observe that it is equivalent to T'(T~*(A) +tBy) C A+tBj. Now take a point x € T~1(A).

We have to show that T'(x 4 ty) € A+ tBY for every y € BJ. In other words, we shall show
that d(T'(x + ty), A) < t. This is true as T'(z) € A and d(T'(x + ty),T(z)) < t|y| < t.

Step 5. The theorem is now established as v; satisfies (27) with ¢ = 1 (Gaussian isoperimetric
inequality). If one wants to get (27) only for convex sets, it is enough to check it for 7, and
interval on the real line. Let us do this. Let us fix m € (0,1) and consider intervals [a, 0]
such that

b
Tla,b] = (27r)_1/2/ e 2dx = m.

We would like to maximize
b+h

P(a) =7 ([a,b]n) = yla — h, b+ h] = (27071/2 /_h =24

Let us consider b = b(a) as a function of a. By symmetry we can assume that a < —b(a).
Differentiating the constrain gives e=*/2 = ¢=(®*/2)/ (). We have

w/(a) - e_(b(a)+h)2/2b/<a) i e—(a_h)2/2 _ 6_(b(a)+h)2/26_a2/26b(a)2/2 B e—(a—h)2/2
— e—a2/2€—h2/2(€—bh . eah) Z 0.

Thus, the minimum is achieved for @ = —oo (which corresponds to half-line) and the maxi-
mum for a = —b(a), which give a symmetric interval. O

Example 5. Using localization one can reduce proving Brunn-Minkowski inequality in R”
to the case n = 1. Indeed, suppose we want to show that a probability measure p with
log-concave density supported on some affine subspace of R" satisfies

pAA+ (1= X)B) > u(A)((B)' ™, Ae[0,1]

for every compact sets A, B in R™. Let us use Theorem 47 with f; = 14, fo = 1p and
fs = fi = Lat@a-rB).. Here the e-enlargement is considered to be the open enlargement
and thus f3 = f; is lower semi-continuous. Taking the limit ¢ — 07 recovers the desired
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inequality due to the continuity of measure. Now, Theorem 47 allows us to reduce our
inequality (with e > 0) to the case of u being log-affine on some segments [a, b] C.

In this case let us prove the inequality for A, B being convex. Let [ be the line containing
[a,b]. Since A(ANI)+ (1 —=A)(BNIl) C(AM+ (1 —X)B)NI, we can assume that A, B are
intervals on the real line, which reduces the problem to the casen = 1. In this case we will
prove the desired inequality already for ¢ = 0. By scaling and translating we can assume
that @ = 0 and b = 1. The inequality is invariant under multiplying p by a constant, so
the assumption of ;4 being a probability measure is not needed. Therefore, it is enough to
consider du(z) = e**1jp)(x), @ € R. Note that one can assume that inf(4 U B) = 0 and
sup(A U B) = 1, since otherwise we can truncate the support of the measure p without
changing the inequality. We therefore have to consider only two cases: A = [0,¢|, B = [d, 1]
and A =[0,1], B = [¢,d].

In the first case we have AA + (1 = A\)B = [(1 — A\)d, 1 — XA + A¢|. Thus, we are to show

1-A+Ac c A 1 1-X
/ e“dx > ( / e‘””dx) ( / e‘”dw)
(1-\)d 0 d

a(l=A+Ac)

This is equivalent to

_ A 1-X
_ea(l )\)d‘ > ’eac . 1’ ’ea _ead‘ )

le
Dividing this by e*=Y? gives

}ea(lf)\Jr)\cf(lf/\)d) . 1| > ‘eac N 1‘>\ ‘ea(lid) . 1‘17)\ .

1-d) 1|17)\

Taking z = e and y = e gives |22yl — 1] > |2 — 1My — , where z,y > 1

(if @ > 0) or z,y < 1 (if @« < 0). Since this inequality is invariant under changing xr —

1/z and y — 1/y, we can assume that x,y > 1, in which case the inequality is simply

Y(Aa+ (1= A)b) > Ap(a) + (1 — A\)p(b), where ¥(z) = In(e” — 1) and a = Inz, b = Iny. The

concavity of 1 can we checked by observing that ¢/(z) = 1/(1 — e~*), which is decreasing,.
The second case A = [0,1], B = [¢, d] leads to the same computations.

FExample 6. We shall prove the following theorem.

Theorem 49. For every symmetric convex compact set K and a log-concave measure g on
R™ we have -
tK) > 1— (1= p(K)'T,  t>1

Clearly the above inequality cannot be true for arbitrary non-symmetric convex set K.
This creates some difficulties in proving the inequality. We need to modify the definition of
the dilation tK. Let us set
t+1

2
It turns out that with this definition one can prove the above inequality for general Borel
sets K. Here, for simplicity, we shall give a proof for convex K. We will need the following
lemma.

K'={z € R": there is an interval I > x such that [I| < |[K N1}

Lemma 14. Let K be a convex compact set. Then for every ¢ > 1 we have
t—1 t+1 t—1
K'= K+ =~ (K - K) = J; K+~ (-K).

In particular, if K is symmetric then K = tK.
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Proof. The second inequality follows by convexity. To prove the first one we prove two
inclusions. Suppose x € K'\ K. Then there is a segment [b, 2| such that [b,z] N K = [b, (]
and |z — b| < &b — ¢|. Since c lies between b and z, we can write ¢ = (1 — A\)b+ Az for
some A € (0,1). Plugging this into this inequality give 1/A < (¢t + 1)/2. Thus,

4mm+(%—Q@—MGK+(%—Q@&JQQK+Z§RK—Ky

To prove the reverse inclusion let us assume that x € %K + %(—K ). We can assume that
x ¢ K. Let us write # = %te+ 53(—b) where ¢,b € K. Let d be such that [b, 2] N K = [b, d].
Since z = b+ 21 (c—b), the point  is on the line joining b and ¢, and [b—c| < [b—z|. Thus,

t+1 t+1 t+1
b, 2ll = 1o — o] = ——lb— | = —o—lb— d| = = |K " b, ]

This gives z € K'. O

We are ready to give a proof of the inequality

t+1

KD 21— (1= u(K)'T =1,
for convex sets K. In fact it is enough to prove the inequality p(U) > 1 — (1 — u(K ))%
for any open set U containing K*. Let us take f = 1y — m and ®(u) = u(A). Both f
and ® are upper semi-continuous, so they satisfy the assumptions of Theorem ?7. Note that
p € Py osatisty 1 — pu(U) > m. Our goal is to prove that under this constraint we have

(1—P(p)) " > m. Due to Theorem ?? it is enough to check it for log-affine measures v on
segments [a, b] C R™ (note that for Dirac masses this inequality is obvious). This is equivalent
to the validity of the inequality

v(U)>1—(1-v(K)*, t>1
We shall also use the additional information given by Theorem ??, namely that [ fdv =0

and either f[a g fdv >0 on (a,b) or f[x y fdv >0 on (a,b). Without loss of generality we
shall assume that the second case holds true. Namely

(28) v(U° N [2,8]) > v(U)w([z, ).

Clearly we can assume that K is one-dimensional (since (K N[); C K; N[) and further that
K C [a,b] (since the parts of K outside [a, b] do not contribute to p(K) and can only increase
p(K")).
We claim that without loss of generality one can assume that a € F'. Indeed, let ' = inf K
ans suppose that v/ = v|,y/v]a’, b]. We have
v(Kenlad,b) v(K¢) —vla,d]

V(K°) = R == Ja.d] < v(K°).

Moreover, form (28) we get

v(Uend,b])
via, bl

Thus, it is harder to verify our assertion for /.

V(U = > v(U°).
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Let us then assume (using translation invariance )that a = 0 and K = [0,¢] C [0,b]. We
can finally get read of U and simply prove
V(KN >1—(1-v(K) 5, t>1.
Or equivalently,
V((KYY) < (K%, t>1.
Note that K* = [-5tc, Hle]. Let T'= 21 > 1. We are to show v[T'¢,0) < v[c, 00)”. Since
1 _

P
[c,00) =T HTc,00) + (1 —T1)[0,00) we get by log-concavity of v

v[e,00) > v[Te,00)"  1]0,00)" """ = v[Tc,00)T .
FExample 7. We shall prove the following theorem.

Theorem 50. Suppose K, Ky are two compact disjoint subsets of a compact convex set K
in R, such that d(K;, K») := infeck, per, d(a, b) > 0. Then

M, (K)
L, (K L, (K3) < ——+—
Vo ( 1>V0 ( 2) d(Kl,KQ) In2

1
= )|d WK)= ——— dzx.
Vol / [z = b(K)lda, (K) vol, (K) /KI v

In particular, taking ux to be the uniform measure on K and K; = A, Ky = (A.)° so that
d(K, Ks) = € one gets the isoperimetric-type inequality

i A)(1 — () < 210

Proof. Let d(Ky,K;) = ¢ > 0. Take f; = 1k, for i = 1,2 and 1(x,uk,). Also, let us take
fa(z) = |z—u|/eIn2, where u is arbitrary vector in R”. Then fi, f5 are upper semi-continuous
and f3, f4 are lower semi-continuous. The assertion of the theorem is equivalent to

/Kfld/L/KdeMS/ngdu/Kﬁ;dp

for p being the Lebesgue measure restricted to K. We shall prove the above for every
log-concave measure supported on K. Due to Theorem 47 it is enough to consider only
the case of p being log-affine on a segment [a,b] C R™. Clearly, we can assume that [a,b]
intersects both K; and K,. Also, we can assume that u belongs to the line [ containing
[a, b], since otherwise we can shift the whole picture not changing the integrals of fi, fs, f3
and decreasing the integral of f; (|x — u| changes to the length of the distance between z
and the orthogonal projection of u onto the line containing the segment [a,b]). We can in
fact assume that u € [a, b], since otherwise we can shift the whole picture along | and again
decrease the contribution coming from f;. Now we can restrict our attention to the case
n =1 by considering K; = K; N1, i =1,2 (note that d(K;, Ks) < d(Kl, Kg)) By rescaling
and canceling multiplicative constants we can assume that the log-affine density of i is equal
to e'. Thus, given two disjoint compact subsets K1, K5 of [a,b], such that d(Ky, Ks) = ¢ we

are to show that
1 b
/ etdt/ eldt < / etdt/ e'|t — uldt.
K1 Ko eln2 [a,b]\ (K1UK?) a

vol,(K) vol, (K \ (K; U K3)),

where

M (K

e (OA).
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Let us first assume that Ky, Ky and K3 := [a,b] \ (K; U K3) are intervals. Note that we can
assume that K3 = [c,d] is an interval of length ¢ (by considering the worst possible case) and
is between K, and K,. Without loss of generality we can assume that K; = [a, c] K3 = [¢, d]
and Ky = [d,b] with a < ¢ <d < band d — ¢ =e. We are to show

c b 1 ct+e b
/ etdt/ eldt < ] 2/ etdt/ el |t — uldt.
a ct+e em c a

Changing variables in the second and third integral we get an equivalent form

c b—c 5 b
1
/etdt/ eldt < /etdt/ 't — uldt.
a R eln2 J, “

The left hand side is equal to

(ec . ea)(ebfc . 65) _ eb — efef — €a+bfc + eate < eb . 266/2€(a+b)/2 + eate — (eb/Z . e(a+s)/2)2.

by the AM-GM inequality. Clearly without loss of generality we can assume that a < u <b
since otherwise one can decrease the right hand side by changing u. We have

b U b
/ et — u|dt = / e'(u — t)dt + / et(t —u)dt = 2e* — u(e® + €®) +e(a— 1)+ e’ (b—1).

The maximum of this function is attained for u = In((e® + €%)/2) and is equal to

a b
ae“—l—beb—(e“—i—eb)ln(e ;e).

Our goal is to verify

6_1 €a+eb
b/2 (a+8)/22<e a bb_ a bl
(e e ) <3 {ae%—e (e +¢€”)In 5 )

Observe that

a b 1 b—a
ae® + be’ — (% + e’) In (e e ) = ae” + be’ — (e* + ) (a+In <+—e)

2 2
1 b—a
= (b—a)e’ — (" +€)In (+Te) :
Thus, dividing the above inequality by e and denoting z = e*=/2 we get
€ _1 1 2
(z—eE/Q)QS;W(221nz2—(1+22)1n< ZZ )), z > 1.
Clearly the worst case is € = 0, which leads to
1 2
(2—1)21n2§221n22—(1+22)ln( —;Z), z> 1.

This is equivalent to
—2:In2 < 22z — (1 + 2% In(1 + 2%), z > 1.

For z = 1 this is equality. Differentiating and canceling the constant 2 shows that it suffices
to prove
—In2 < zlnz*— zIn(1 + 2%), z>1.
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Again we have equality for z = 1. We show that the right hand side is monotone in z. Indeed,
the derivative is equal to

1 2 12 2_
—ln(1+—2)+ > —— + —Z >0, z>1
z

T+227 22 1422 241"

To deal with the general case we can assume that K3 = [a,b] \ (K; U K3) is open in
[a,b]. Thus, it is a union of open intervals. We can assume that these intervals have length
at least e since otherwise both endpoints either belong to K; or to K5 and thus we could
add this interval to either K; or Ky, making the inequality tighter. So, let us assume that
Ks = U, [¢i, di], where |¢; — d;| > e. Using the previous case we get

=1
ci b 1 d; b
/ etdt/ eldt < / etdt/ 't — uldt, i=1,...,k.
a d; 81H2 ci a

Summing over ¢ we get

k ci b k 1 d; b
etdt/ efdt < / etdt/ e'|t — u|dt :/ e'dt.
; /CL dl ; € ln 2 Cj a K3

Now the inequality
k c; b
> / etdt / etdt > / etdt / dt
=1 Ja d; K Ko

follows from the fact that every point © € K; and every pointy € K, are separated by at
least one of the intervals (¢;, d;). To be more precise one can integrate the inequality

Z (Lae ()i, 61 () + Lared (W) Ly (2)) > 1k, (2) 1, (y) + 1k, () 1k, ().

against e”e?dxdy and use Fubini. U

5. LOG-BM INEQUALITY
In this chapter we shall need the following definition.

Definition 4.

(1) We say that a function f : R"™ — R is unconditional if for any choice of signs
€1,...,6n € {—1,1} and any z = (x1,...,2,) € R" we have f(e121,...,e,2,) = f(2).

(2) We say that an unconditional function is decreasing if for any 1 <i < n and any real
numbers xi,...,T; 1, %1, .., T, the function

t— f(.’ll'l, ey L1, U T,y ,.Tn)

is non-increasing on [0, 00).

(3) A set A C R"is called an ideal if 14 is unconditional and decreasing. In other words,
aset A C R" is an ideal if (z1,...,2,) € A implies (0121, ...,0,2,) € A for any choice
of 01,...,0, € [—1,1]. In other words, an ideal is a union of symmetric coordinate
boxes. The class of all ideals (in R™) will be denoted by K;. Note that A, B € K;
implies MA+ (1 — \)B € K.

(4) A set A C R™ is called symmetric if A = —A. The class of all symmetric convex sets
in R™ will be denoted by Kg.
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(5) A measure p on R” is called unconditional if it has an unconditional density with
respect to the Lebesgue measure.

Definition 5. We say that a Borel measure ;2 on R” satisfies the Brunn-Minkowski inequality
in the class of sets K if for any A, B € K and for any A € [0, 1] we have

(29) POAA + (L= X)B)Y" = Au(A)" + (1= Nu(B)H"

Definition 6. Let K be a class of subsets closed under dilations. We say that a family
© = (Oa)aepo,1 of functions £ x K — K is a geometric mean if for any A, B € K the set
A ®) B is measurable, satisfies an inclusion A ©y B C AA + (1 — A\)B, and (sA) ®, (tB) =
sMIA(A ©y B), for any s,t > 0.

Definition 7. We say that a Borel measure p on R™ satisfies the log-Brunn-Minkowski
inequality in the class of sets K with a geometric mean ®, if for any sets A, B € K and for
any A € [0, 1] we have

(A @y B) > p(A)*u(B) A
Remark 8. We shall use two different geometric means. The first one is the geometric mean
®%: Kg x Kg — Kg, defined by the formula

Ay B={reR": (x,u) <h)(u)hs*(uv), Yu € S"'}.
Here hy4 is the support function of A, i.e., ha(u) = sup,e4 (%, u).
The second mean ® : K; x K; — K; is defined by

A{B=J oMyl o Pyl = %o =Myl ™ LMyl .
r€AyeB

It is straightforward to check, with the help of the inequality a*b!=* < Aa + (1 — \)b,
a,b > 0, that both means are indeed geometric.

We have the following theorem.

Theorem 51. The log-Brunn-Minkowski inequality holds true with the geometric mean ©f
for any measure with unconditional log-concave density in the class IC; of all ideals in R™.

Proof. Let A, B € K; and let us take f,g,m : [0,+00)" — [0, +00) given by f = 1anp+00)n,
9 = 1BA0,40c)» and m = 1(A®§B)m[07+oo)n. Let ¢ be the unconditional log-concave density of
p. We define

F(z) = f(e™,...,e™)p(e™, ... e )e™ ™o G(x) = g(e™, ..., e™)p(e™, ... e )em o,
M<:C) = m(€x17 e ’exn>gp(em1’ . ’eﬁn)e‘xl+...+xn.
One can easily check, using the definition of K; and the definition of the geometric mean 4,

as well as the inequalities

(P(ekzl-‘r(l—)\)m e>\$n+(1—>\)yn)

> p(Ae™ 4+ (1= N, ... e™ + (1= Ne¥) > p(e®™, ..., e™ ) p(e”, ... e¥m) 7,

that the functions F, G, M satisfy the assumptions of the Prékopa-Leindler inequality. As a
consequence, we get pu((A ®F B) N[0, +00)") > u(AN 0, +00)") (B N[0, +00)")"*. The
assertion follows from unconditionality of our measure p and the fact that A, B and A ®% B
are ideals. 0J
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We shall prove that the log-BM inequality implies the BM-inequality.

Proposition 52. Suppose that a Borel measure p with a radially decreasing density f,
i.e. density satisfying f(txz) > f(z) for any x € R" and t € [0, 1], satisfies the log-Brunn-
Minkowski inequality, with a geometric mean ©, in a certain class of sets K. Then pu satisfies
the Brunn-Minkowski inequality in the class K.

Proof. Let us first assume that p(A)u(B) > 0. From the definition of geometric mean we
have A ®, B C pA+ (1 —p)B, for any p € (0,1). Thus,

pAA+ (1= X)B) —u(p-%AJr(l—p%%B) ZM(GA) Op (uB))

p

QOISR

1—
Let t = (%)p (%) g and C = A®, B. From the concavity of the logarithm it follows that

0 <t <1. We have

(30) u(tC) = /tC f(z)dz = t"/cf(t:t) dz > t”/cf(x) dz = t"u(C).

Therefore, since p satisfies the log-Brunn-Minkowski inequality,

WA+ (1=X)B) > Pu(A®, B) > (AP u(B)! = [(3) (122) | marum—,

p I—p
Taking
B A(A)m
(31) D= a4 (1= Na(B)
gives

pOAA+ (1= N)B)Y" > Ap(A)V" + (1= \u(B)V",
If, say, u(B) = 0 then by (30), applied for C replaced with A, and the fact that 0 € B we

et
A= VB S A S (A = M A 4 (1= \yu(B)

As a consequence, applying our Proposition 52 we deduce the following theorem.

Theorem 53. Let p be an unconditional log-concave measure on R”. Then u satisfies the
Brunn-Minkowski inequality in the class IC; of all ideals in R"™.
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