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1. Brunn-Minkowski inequalities

1.1. Classical BM inequality. To avoid problems with measurability we assume that K,L
are compact sets. Then their Minkowski sum

K + L = {a+ b : a ∈ K, b ∈ L}

is also compact. The Brunn-Minkowski inequality gives a lower bound on the volume of
K + L, namely for non-empty compact sets K,L in Rn we have

(1) |K + L|1/n ≥ |K|1/n + |L|1/n.

Here | · | stand for the n-dimensional Lebesgue measure, which will be sometimes denoted
by voln, to emphasise the dependence of n. This inequality is equivalent to its multiplicative
form, which seems to be weaker,

(2) |λK + (1− λ)L| ≥ |K|λ|L|1−λ, λ ∈ [0, 1].

By considering λK instead of K and (1− λ)L instead of L we see that (1) is equivalent to

(3) |λK + (1− λ)L|1/n ≥ λ|K|1/n + (1− λ)|L|1/n.

Clearly (3) implies (2) by applying AM-GM inequality λa + (1 − λ)b ≥ aλb1−λ to the right
hand side of (3). There is an even weaker formulation of BM inequality, namely

(4) |K| = |L| = 1 =⇒ |λK + (1− λ)L| ≥ 1, λ ∈ [0, 1].

Clearly (2) implies (4). To see that (4) implies (3) we apply (4) with K̃ = K/|K|1/n,
L̃ = L/|L|1/n and

λ̃ =
λ|K|1/n

λ|K|1/n + (1− λ)|L|1/n
.

Thus, (1), (2), (4) and (3) are all equivalent.
Another equivalent way to state BM inequality is to say that for any two sets K,L if we

take two balls BK , BL such that |K| = |BK | and |L| = |BL| then

|K + L| ≥ |BK +BL|.

Indeed, if BK = rKB
n
2 and BL = rLB

n
2 then

|BK +BL| = (rK + rL)n|Bn
2 | =

((
|K|
Bn

2

)1/n

+

(
|L|
Bn

2

)1/n
)n

|Bn
2 | = (|K|1/n + |L|1/n)n.

1
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1.2. Proof of BM via elementary sets. Let us first show that in order to prove (1) for
measurable set A,B such that the sum is measurable, it suffices to consider only compact
sets. Indeed, by the regularity of Lebesgue measure we can approximate them form below
by compact sets Aε, Bε and write

(5) |A+B|1/n ≥ |Aε +Bε|1/n ≥ |Aε|1/n + |Bε|1/n −−−→
ε→0+

|A|1/n + |B|1/n.

Assume that we could prove the inequality for open sets. Then compact sets A,B it suffices
to take open ε enlargements Aε, Bε and write

|A+B + 2εBn
2 |1/n = |Aε +Bε|1/n ≥ |Aε|1/n + |Bε|1/n ≥ |A|1/n + |B|1/n.

We conclude by taking ε → 0+ and using the continuity of the measure. Now, every open
set can be approximated from below by a finite union of boxes of the form

v + [−a1, a1]× . . .× [−an, an], v ∈ Rn, a1, . . . an > 0.

If we could prove our inequality for such sets an argument identical to (5) would finish the
proof.

So, it suffices to consider only finite unions of boxes. If both A and B are just two boxes
(note that by translation invariance of Lebesgue measure we can assume that these boxes
are centred at 0)

A = [−a1, a1]× . . .× [−an, an], B = [−b1, b1]× . . .× [−bn, bn]

then we are to verify

n
√

(a1 + b1) . . . (an + bn) ≥ n
√
a1 . . . an + n

√
b1 . . . bn.

Note that by AM-GM we get

n

√
a1

a1 + b1

· . . . · an
an + bn

≤ 1

n

(
a1

a1 + b1

+ . . .+
an

an + bn

)
and

n

√
b1

a1 + b1

· . . . · bn
an + bn

≤ 1

n

(
b1

a1 + b1

+ . . .+
bn

an + bn

)
.

Adding these two proves our inequality.
Now we use induction on the number m of boxes used in the union of A and B. First,

we find a hyperplane of the form xi = s for some i = 1, . . . , n and s ∈ R such that the sets
A+ = A ∩ {xi ≥ s} and A− = A ∩ {xi ≤ s} both consist of a smaller number of boxes that
the original set A (it is easy to see that one can always find a cut separating at least two
boxes). Now, find a number t ∈ R such that

|A+|
|A|

=
|B+|
|B|

=: λ,

where B+ = B ∩ {xi ≥ t} and B− = B ∩ {xi ≤ t}. The sets A+ ∪ B+ and A− ∪ B− are
disjoint and both consist of a number of boxes smaller than m. By induction hypothesis

|A+B| ≥ |A+ +B+|+ |A− +B−| ≥ (|A+|1/n + |B+|1/n)n + (|A−|1/n + |B−|1/n)n

≥ λ(|A|1/n + |B|1/n)n + (1− λ)(|A|1/n + |B|1/n)n = (|A|1/n + |B|1/n)n.
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1.3. Brunn’s principle. We shall prove the following theorem.

Theorem 1. Suppose K is a convex body in Rn and let u ∈ Sn−1. Then the function

t 7→ voln−1(K ∩ (u⊥ + tu))1/n−1

is concave on its support.

Proof. We can assume that u = e1. Let Kt = K∩(u⊥+tu) = K∩{x1 = t} and consider these
as sets in Rn−1. We claim that λKt + (1 − λ)Ks ⊆ Kλt+(1−λ)s. Indeed, suppose a ∈ Kt and
b ∈ Ks. Then by convexity of K we have λ(t, a)+(1−λ)(s, b) = (λt+(1−λ)s, λa+(1−λ)b) ∈
K and thus λa + (1 − λ)b ∈ Kλt+(1−λ)s. Suppose Ks, Kt are non-empty (i.e. we are on the
support of our map). By Brunn-Minkowski we get

|Kλt+(1−λ)s|
1

n−1 ≥ |λKt + (1− λ)Ks|
1

n−1 ≥ λ|Kt|
1

n−1 + (1− λ)|Ks|
1

n−1 ,

which proves the desired concavity. �

1.4. Isoperimetric inequality. For a compact sets K in Rn we define Kt = K + tBn
2 .

Theorem 2. Let K be a compact set in Rn and let B be a ball such that |K| = |B|. Then

(a) |Kt| ≥ |Bt| =
((

|K|
|Bn2 |

)1/n

+ t

)n
|Bn

2 |,

(b) |∂K| ≥ |∂B| = n|K|n−1
n |Bn

2 |
1
n .

Proof. Suppose B = rBn
2 . By the BM-inequality we have

|Kt| = |K + tBn
2 | ≥

(
|K|

1
n + t|Bn

2 |
1
n

)n
=
(
|B|

1
n + t|Bn

2 |
1
n

)n
= (r + t)n|Bn

2 | = |(r + t)Bn
2 | = |B + tBn

2 | = |Bt|.
To prove the second part we recall that

|∂K| = lim inf
ε→0+

|K + εBn
2 | − |K|
ε

.

Thus from point (a) we get

|∂K| = lim inf
ε→0+

|Kε| − |K|
ε

≥ lim inf
ε→0+

|Bε| − |B|
ε

= |∂B|.

�

1.5. Steiner symmetrization. In this section we will usually assume that the sets K,L are
convex. For a measurable set A and a unite vector u in Rn we define Steiner symmetral by

SuA =

{
(x, tu) : x ∈ Proju⊥(A), |t| ≤ 1

2
vol1(A ∩ (x+ uR))

}
.

In other words, for every line l perpendicular to u⊥ we replace the intersection of A with this
line with an interval symmetric with respect to u⊥, of the same 1-dimensional measure as
l ∩ A.

We shall need several useful properties of Steiner symmetrization. In the below theorem
the volume of the boundary of K is defined via

|∂K| = lim inf
ε→0+

|K + εBn
2 | − |K|
ε

.

Proposition 3. Let K,L be convex compact sets in Rn. Then
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(i) Su(λK) = λSuK,
(ii) K ⊆ L =⇒ SuK ⊆ SuL,

(iii) SuK is convex and compact,
(iv) |SuK| = |K|,
(vi) SuK + SuL ⊆ Su(K + L),
(vii) |∂SuK| ≤ |∂K|.

Proof. Points (i), (ii) are very easy. Point (iv) follows from Fubini (Cavalieri’s principle).
(iii) Let x1, x2 ∈ SuK and let lxi = Proju⊥ xi + uR, i = 1, 2. The convex hull of line

segments lxi ∩ SuK is a two-dimensional trapezoid T . Since x, y ∈ T and T is convex, to
prove that λx + (1 − λ)y ∈ SuK, it suffices to show that T ⊆ SuK. This follows from the
fact that T is the Steiner symmetral of the trapezoid T̃ defined as the convex hull of lxi ∩K.

Since T̃ ⊆ K we get by (ii) that T = SuT̃ ⊆ SuK. Compactness of suK follows from its
convexity and from the fact that for any x the line lx is a closed interval (we shall skip the
details). The boundedness of SuK follows from the boundedness of K since by (ii) if K ⊆ B,
where B is a centred Euclidean ball, the SuK ⊆ SuB = SuB.

(vi) Let x ∈ SuK and y ∈ SuL. We shall prove that x + y ∈ Su(K + L). We have
x = (x′, tu), y = (y′, su), where x′, y′ ∈ u⊥ and |t| ≤ 1

2
|K ∩ lx|, |s| ≤ 1

2
|K ∩ ly|. We have

x+ y = (x′ + y′, u(s+ t)). Therefore, it suffices to show that |s+ t| ≤ 1
2
|(K + L) ∩ lx+y|. In

fact it is enough to show that |(K + L) ∩ lx+y| ≥ |K ∩ lx|+ |L ∩ lx|. This is true since

K ∩ (x+ Ru) + L ∩ (y + Ru) ⊆ (K + L) ∩ (x+ y + Ru)

and the left hand side is an interval of length |K ∩ lx|+ |L ∩ lx|.
(vii) We have (using (i), (iv) and (vi)) that

|∂SuK| = lim inf
ε→0+

|SuK + εBn
2 | − |SuK|
ε

= lim inf
ε→0+

|SuK + εSuB
n
2 | − |K|

ε

≤ lim inf
ε→0+

|Su(K + εBn
2 )| − |K|

ε
= lim inf

ε→0+

|K + εBn
2 | − |K|
ε

= |∂K|.

�

The Hausdorff distance between convex bodies is defined by

dH(K,L) = inf{δ > 0 : K ⊆ L+ δBn
2 , L ⊆ K + δBn

2 }.
It is not hard to see that

dH(K,L) = sup
u∈Sn−1

|hK(u)− hL(u)|,

where hK(u) = sup{〈x, u〉 : x ∈ K} is the so-called support function. Indeed, this follows
from the fact that hK+L = hK +hL and from the facts that K ⊆ L is equivalent to hK ≤ hL.

We will also need the following fact.

Proposition 4. For convex sets in Rn with non-empty interior the following holds true.

(i) If Kj → K then |Kj| → |K|.
(ii) If Kj → K and Lj → L then Kj + Lj → K + L.

(iii) If dH(K,B) ≤ ε for certain ball B then dH(SuK,B) ≤ ε.

Proof. (i) If Kj and K are ε-close, that is for any u ∈ Sn−1 we have |hKj(u)−hK(u)| ≤ ε then
|hKj(u)− hK(u)| ≤ CεhK(u), where C = 1/ infu hK(u). Thus (1−Cε)K ⊆ Kj ⊆ (1 +Cε)K
and the convergence of volumes follows in the limit ε→ 0+.
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(ii) This is clear due to the relation hKj+Lj = hKj + hLj and the fact that Kj → K if and
only if hKj → hK uniformly.

(iii) If B has radius r then dH(K,B) ≤ ε is equivalent to |hK − r| ≤ ε which is r − ε ≤
hK ≤ r+ε, that is (r−ε)Bn

2 ⊆ K ⊆ (r+ε)Bn
2 . The latter is preserved under K → SuK. �

Theorem 5 (Blaschke selection principle). Any sequence of convex bodies (Kj)
∞
j=1 in Rn of

which all elements are contained in some fixed ball, has a convergent subsequence.

Proof. Step 1. We construct an array of bodies (Ki,j)
∞
i,j=1, all of which belong to our original

sequence, such that (Ki,j)
∞
j=1 is a subsequence of (Ki−1,j)

∞
j=1 and dH(Ki,j1 , Ki,j2) ≤ 2−i for

any j1, j2. To do this at each step we coved the big ball (which contains our sequence) by a
finite number of balls of diameter 2−i. Let us call these balls B1, . . . , BNi . There is an infinite
subsequence such that either all elements intersect B1 or all elements do not intersect B1.
By passing to a further subsequence Ni − 1 times we get a subsequence such that for any
ball Bj either all elements intersect this ball, or neither of them intersect it. Suppose there
is a point x in Ki,j1 such that d(Ki,j2 , x) > 2−i. Then the ball Bj covering x do not intersect
Ki,j1 , which is a contradiction with our construction. Thus, dH(Ki,j1 , Ki,j2) ≤ 2−i.

Step 2. Take the diagonal (Kj,j)
∞
j=1 to get d(Kj,j, Ki,i) ≤ 2−min(i,j). Assume we have Kj,j =

Knj in the numbering of the original sequence K1, K2, . . .. We claim that Knj + 1
2j−1B

n
2 is

monotone decreasing. Indeed, Knj+1
⊆ Knj + 1

2j
Bn

2 and thus

Knj+1
+

1

2j
Bn

2 ⊆ Knj +
1

2j
Bn

2 +
1

2j
Bn

2 = Knj +
1

2j−1
Bn

2 .

Step 3. We take K =
⋂
j(Knj + 1

2j−1B
n
2 ). Note that K is clearly convex. We claim K is

the limit of (Knj). For j large enough so that 2−(j−1) < ε we have K ⊆ Knj + εBn
2 . Take

G = int(K + εBn
2 ). We have that (Knj + 1

2j−1B
n
2 ) \G are compact and

∞⋂
j=1

(Knj +
1

2j−1
Bn

2 ) \G = K ∩ (Rn \G) = ∅.

Since the intersection of decreasing family of non-empty compact sets is non-empty, from
some point onwards we must have

Knj ⊆ Knj +
1

2j−1
Bn

2 ⊆ G ⊆ K + εBn
2 .

Since K ⊆ Knj + εBn
2 and Knj ⊆ K + εBn

2 we get dH(K,Knj) ≤ ε for large j.
�

Proposition 6. For any K1, . . . , Km there is a sequence of vectors u1, u2, . . . such that

Suk . . . Su2Su1Ki →k→∞

(
|K|
|Bn

2 |

)1/n

Bn
2 , i = 1, . . . ,m.

Proof. It is enough to prove the claim only for one convex body, since due to (iii) once
some of the bodies are already close to a ball, they will stay close after applying arbitrary
symmetrizations. We then apply standard diagonal argument.

We consider the class of bodiesK obtained by successive symmetrizations ofK. IfK ⊆ rBn
2

for some r, then all the members of K are contained in rBn
2 . Let

R0 = inf{circumradius(K) : K ∈ K}.
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Take a sequence in K with circumradi converging to R0 and by Blaschke selection principle
pass to a subsequence such that Kj → L for some convex body L. It is easy to see (by the
definition of Hausdorff distance) that R0 is the circumradius of L. We claim that L = R0B

n
2 .

Suppose ∂L misses some cup

C = ∂(R0B
n
2 ) ∩ {〈x, y〉 ≥ R0 − ε}, |u| = 1.

It is not hard to see that there is a sequence of hyperplanes H1, . . . , Hk such that

∂(R0B
n
2 ) =

k⋃
i=1

SHi(C).

Indeed if we want to cover some point x ∈ ∂(R0B
n
2 ) by a mirror image of C, it suffices to use

hyperplane Hx perpendicular to x− x0, where x0 in the center of C. We then choose a finite
subcovering by compactness. If L misses the cap C then SHx(L) misses both C and SHx(C).
Thus L0 = S(L) where S = SHk ◦ . . . ◦ SH1 misses all the ∂(R0B

n
2 ). Since L0 is compact we

have L0 ⊆ (R0 − ε)Bn
2 for some ε > 0. Suppose Bn

2 ⊆ t0L0 and define

ε̃ =

(
R0 − ε/2
R0 − ε

− 1

)
1

t0
.

Suppose L1 ∈ K is ε̃-close to L0. Then

L1 ⊆ L0 + ε̃Bn
2 ⊆ L0 + ε̃t0L0 = (1 + ε̃t0)L0 ⊆ (1 + ε̃t0)(R0 − ε)Bn

2 = (R0 − ε/2)Bn
2 .

This contradicts the definition of R0. �

We are ready to give a proof of the BM inequality for convex sets.

Proof of the BM inequality. Take u1, u2, . . . a sequence given by Proposition 4(iv) for K1 = K
and K2 = L. From Proposition 3(vi) and (iv) we get that

|Suk . . . Su2Su1K + Suk . . . Su2Su1L| ≤ |K + L|,
whereas |Suk . . . Su2Su1K| = |K| and |Suk . . . Su2Su1L| = |L|. From Proposition 4(i) and (ii)
we infer that

|Suk . . . Su2Su1K + Suk . . . Su2Su1L| →

∣∣∣∣∣
(
|K|
|Bn

2 |

)1/n

Bn
2 +

(
|L|
|Bn

2 |

)1/n

Bn
2

∣∣∣∣∣ = (|K|1/n + |L|1/n)n.

Thus,

(|K|1/n + |L|1/n)n ≤ |K + L|.
�

1.6. Applications of Steiner symmetrization and BM inequality.

Urysohn’s inequality. Let K be a convex body in Rn. We define the support function
hK : Sn−1 → R via

hK(u) = max
x∈K
〈x, u〉 .

The mean width is defined via the formula

ω(K) =

∫
Sn−1

hK(u)dσ(u),

where σ in the uniform probability measure on Sn−1.
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Theorem 7. For any convex body in Rn we have

ω(K) ≥
(
|K|
|Bn

2 |

)1/n

.

Clearly in the above inequality we have equality for centered Euclidean balls. Since Steiner
symmetrization does not change volume due to Proposition 6, it suffices to prove the following
lemma.

Lemma 1. For any convex body K in Rn and any θ ∈ Sn−1 we have ω(Sθ(K)) ≤ ω(K).

Proof. Without loss of generality we assume θ = en. Then

Sθ(K) =

{(
x,
t1 − t2

2

)
: (x, t1), (x, t2) ∈ K

}
.

This is due to the fact that Steiner symmerization of an interval I on the real line is equal
to 1

2
(I − I). For u = (u1, . . . , un) ∈ Sn−1 we take u′ = (u1, . . . , un−1,−un). then

hSθ(K)(u) = max

{〈(
x,
t1 − t2

2

)
, u

〉
: (x, t1), (x, t2) ∈ K

}
≤ 1

2
max {〈(x, t1), u〉 : (x, t1) ∈ K}+

1

2
max {〈(x, t2), u′〉 : (x, t2) ∈ K}

=
1

2
hK(u) +

1

2
hK(u′).

Thus,

ω(Sθ(K)) =

∫
Sn−1

hSθ(K)(u)dσ(u) ≤ 1

2

∫
Sn−1

hK(u)dσ(u) +
1

2

∫
Sn−1

hK(u′)dσ(u)

=

∫
Sn−1

hK(u)dσ(u) = ω(K).

�

Blashke-Santalo inequality. For a compact set K in Rn we define

K◦ = {y ∈ Rn : sup
x∈K
〈x, y〉 ≤ 1}.

We prove the following theorem.

Theorem 8. If K is a centrally symmetric convex body in Rn then

|K| · |K◦| ≤ |Bn
2 |2.

Again it suffices to prove monotonicity under Steiner symmetrization.

Lemma 2. For any centrally symmetric convex body K and any θ ∈ Sn−1 we have |K◦| ≤
|Sθ(K)◦|.

Indeed if we denote v(K) = |K| · |K◦| then v(K) ≤ v(SuK) and due to Proposition 6 we
can find a sequence of directions u1, . . . , un such that (Sun ◦ . . .◦Su1(K) converges to a certain
ball B and thus

v(K) ≤ v(Sun ◦ . . . ◦ Su1(K))→ v(B) = v(Bn
2 ).

Note that we have used the fact that the convergence Kn → B implies K◦n → B◦ which
can we easily seen by dualizing the inclusion (r − ε)Bn

2 ⊆ Kn ⊆ (r − ε)Bn
2 (see the proof
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of Proposition 4(iii)). Note also that the last equality is a consequence of the fact that v
is linear invariant, which follows from the fact that for any invertible linear map T we have
T (A)◦ = ((T ∗)−1)(A◦) (exercise) and thus

v(TK) = |TK| · |(TK)◦| = | det(T )|| det(T ∗)−1| · |K| · |K◦| = |K| · |K◦| = v(K).

Proof of Lemma 2. Without loss of generality we can assume that θ = en. Again we have

Sθ(K) =

{(
x,
s− t

2

)
: (x, s), (x, t) ∈ K

}
.

We get

(SθK)◦ = {(y, r) : 〈x, y〉+
1

2
r(s− t) ≤ 1, (x, s), (x, t) ∈ K}.

Define A(r) = {x ∈ Rn−1 : (x, r) ∈ A}. We have

1

2
(K◦(r) +K◦(−r)) =

{
y + z

2
: 〈x, y〉+ sr ≤ 1, 〈w, z〉 − tr ≤ 1, (x, s), (w, t) ∈ K

}
⊆
{
y + z

2
:

1

2
〈x, y + z〉+

s− t
2

r ≤ 1, (x, s), (w, t) ∈ K
}

=

{
v : 〈x, v〉+

s− t
2

r ≤ 1, (x, s), (x, t) ∈ K
}

= (Sθ(K))◦(r).

If A = K◦ then clearly A = −A and

A(−r) = {x : (x,−r) ∈ A} = {x : (−x, r) ∈ A} = {−y : (y, r) ∈ A} = −A(r).

In particular, voln−1(A(r)) = voln−1(A(−r)). By BM we get

voln−1

(
K◦(r) +K◦(−r)

2

)
≥ voln−1(K◦(r))1/2 voln−1(K◦(−r))1/2 = voln−1(K◦(r)).

We arrive at

voln(Su(K)◦) =

∫ +∞

−∞
voln−1(Su(K)◦(r))dr ≥

∫ +∞

−∞
voln−1

(
K◦(r) +K◦(−r)

2

)
dr

≥
∫ +∞

−∞
voln−1(K◦(r))dr = voln(K◦).

�

Rogers-Sheppard inequality. Note that the BM inequality implies

|K −K| ≥ (|K|1/n + | −K|1/n)n = 2n|K|.
Equality holds for convex bodies having centre of symmetry. We shall prove the reverse
bound.

Theorem 9. Let K be a convex body in Rn. Then

|K −K| ≤
(

2n

n

)
|K|.

We need the following lemma.
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Lemma 3. Let K,L be convex bodies in Rn. Then the function

f(x) = voln((x+ L) ∩K)1/n

is concave on its support K − L.

Proof. We check that K − L is indeed the support of f . If (x + L) ∩K 6= ∅ then are l ∈ L
and k ∈ K such that x+ l = k. Thus, x = k − l ∈ K − L.

It is straightforward to check that

λ((x+ L) ∩K) + (1− λ)((y + L) ∩K) ⊆ (λx+ (1− λ)y + L) ∩K.

Thus, by Brunn-Minkowski

f(λx+ (1− λ)y) = |λ((x+ L) ∩K) + (1− λ)((y + L) ∩K)|1/n

≥ |λ((x+ L) ∩K) + (1− λ)((y + L) ∩K)|1/n

≥ λ|(x+ L) ∩K)|1/n + (1− λ)|(y + L) ∩K)|1/n

= λf(x) + (1− λ)f(y).

�

Proof of the Rogers-Sheppard inequality. For x ∈ K −K take the radial function

ρK−K(θ) = max{t > 0 : tθ ∈ K −K}, θ ∈ Sn−1.

Take

f(x) = |K ∩ (x+K)|1/n, g(x) = f(0)

(
1− r

ρK−K(θ)

)
, x = rθ.

We have f(0) = g(0). Moreover, both f and g vanish on the boundary of K −K (that is,
when r = ρK−K(θ)). Thus, since f is concave and g is linear in the radial coordinate, we get
f ≥ g on K −K. Let κn = voln(Bn

2 )| =. Then voln−1(Sn−1) = nκn. We get∫
K−K

|K ∩ (x+K)|dx =

∫
K−K

fndx ≥
∫
K−K

gndx

= f(0)nnκn

∫
Sn−1

∫ ρK−K(θ)

0

rn−1

(
1− r

ρK−K(θ)

)n
drdσn−1(θ)

= |K|nκn
∫
Sn−1

ρK−K(θ)ndσn−1(θ)

∫ 1

0

tn−1(1− t)ndt

= |K| · |K −K|nΓ(n)Γ(n+ 1)

Γ(2n+ 1)
=

(
2n

n

)−1

|K| · |K −K|.

Here we have used the fact that

|K| = κn

∫
Sn−1

ρnK(θ)dσn−1(θ),

which follows from the fact that for a spherical cone we have

voln(dθ) = κnr
ndσn−1(θ).
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On the other hand we have∫
K−K

|K ∩ (x+K)|dx =

∫
Rn
|K ∩ (x+K)|dx =

∫
Rn

∫
Rn

1K(y)1K+x(y)dydx

= |K|
∫
Rn

1K(y)dy = |K|2.

�

1.7. Spherical isoperimetry. Let x0 ∈ Sn and let H be a n-dimensional hyperplane in
Rn+1, not passing through x0. Then Rn+1\H is a sum of two open halfspaces: H+ containing
x0 and H− not containing x0. Let iH be the reflection through H. For a measurable f : Sn →
R we define:

fH(x) =

 max{f(x), f(iHx)} x ∈ H+

min{f(x), f(iHx)} x ∈ H−
f(x) x ∈ H

Let σn be the uniform measure on Sn. Let distσn(f) be the distribution of f under σn. We
have the following lemma.

Lemma 4. We have

(i) distσn(fH) = distσn(f),
(ii) if f is L-Lipschitz then fH is also L-Lipschitz,

(iii)
∫
Sn
d(x, x0)f(x)dσn(x) ≥

∫
Sn
d(x, x0)fH(x)dσn(x); moreover if f is continuous the

equality holds if and only if f = fH .

Proof. The first part is obvious. To prove the second part we first observe that since the
minimum and maximum of two L-Lipschitz functions is L-Lipschitz, the function fH is
L-Lipschitz of H+ and on H−. It suffices to show that a continuous function f which is
L-Lipschitz on H+ and H− is also L-Lipschitz on Sn. Suppose x ∈ H+ and y ∈ H−. Take
z ∈ H lying in the shortest geodesic between x and y. We have

|f(x)− f(y)| ≤ |f(x)− f(z)|+ |f(z)− f(y)| ≤ L(|x− z|+ |z − y|) = L|x− y|.
To prove (iii) we observe that

f(x) + f(iHx) = fH(x) + fH(iHx)

and thus

f(iHx)− fH(iHx) = fH(x)− f(x).

Thus∫
Sn
d(x0, x)(f(x)− fH(x))dσn(x) =

∫
Sn∩H+

d(x0, x)(f(x)− fH(x))dσn(x)

+

∫
Sn∩H−

d(x0, x)(f(x)− fH(x))dσn(x)

=

∫
Sn∩H+

d(x0, x)(f(x)− fH(x))dσn(x) +

∫
Sn∩H+

d(x0, iHx)(f(iHx)− fH(iHx))dσn(x)

=

∫
Sn∩H+

(d(x0, x)− d(x0, iHx))(f(x)− fH(x))dσn(x) ≥ 0,

since on H+ we have f(x) ≤ fH(x) and d(x0, x) ≤ d(x0, iHx). �
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Fix x0 ∈ Sn. We say that g : Sn → R is radial if d(x, x0) ≤ d(y, x0) implies g(x) ≥ g(y).
Moreover, the function f ∗ is said to be the radial symmetrization of f if f ∗ is radial and
distσn(f) = distσn(f ∗).

Lemma 5. The radial symmetrization f ∗ always exists. Moreover, f ∗ = f if and only if
fH = f for any H.

Proof. Let F (t) = σn(f ≤ t) be the distribution function of f . It is a standard exercise to
show that the function

f0(s) = sup{u : F (u) < s}, s ∈ (0, 1)

defines a non-decreasing function which, viewed as a function f0 : (0, 1)→ R defined on (0, 1)
with Lebesgue measure, defines a random variable whose distribution function is equal to F .
Let T be a radial map pushing forward σn onto Leb[0,1]. This map is defined via

x→ σn({y : d(y, x0) ≤ d(x, x0)}).
The function f ∗ = f0 ◦ (1 − T ) is the desired radial symmetrization. Indeed f ∗ is radially
non-increasing and 1− T also pushes forward σn onto Leb[0,1]. Thus

σn(f ∗ ≤ t) = |{f0 ≤ t}| = F (t) = σn(f ≤ t).

To prove the second claim we first observe that if f is radial, then clearly f = fH for
any H. To prove the other implication assume that f is not radial. Then there are point
x, y ∈ Sn such that d(x0, x) ≤ d(x0, y) and f(x) < f(y). Take the segment [x, y] and bisect
it with the hyperplane H. Clearly x ∈ H+ and y ∈ H−. We have

fH(x) = max(f(x), f(iHx)) = max(f(x), f(y)) = f(y) > f(x).

Thus fH 6= f . �

We need yet another lemma.

Lemma 6. Let us fix an L-Lipschitz function f : Sn → R. Define

A = {g : Sn → R : distσn(g) = distσn(f), g is L− Lipschitz}
Take m = infg∈A

∫
Sn
d(x0, x)g(x)dσn(x). Then

(i) There is a sequence (gk) ⊂ A and a function g ∈ A such that gk → g uniformly and

lim
k→∞

∫
Sn
d(x0, x)gk(x)dσn(x) = m.

(ii) We have
∫
Sn
d(x0, x)g(x)dσn(x) = m.

(iii) We have g = f ∗.

Proof. Clearly there is a sequence (gk) such that

lim
k→∞

∫
Sn
d(x0, x)gk(x)dσn(x) = m.

Part (i) follows from Arzela-Ascoli theorem (equicontinuity follows from the fact that the
members of A are L-Lipschitz and pointwise boundedness from the fact that for any g ∈ A
we have distσn(g) = distσn f) and f is bounded). Clearly g is L-Lipschitz as a pointwise limit
of L-Lipschitz functions. Let 1gn<t(x)→ 1g<t(x) for any x we get by the Lebesgue dominated
convergence theorem (and Lemma 4 (i)) that σn(f < t) = σn(gn < t) → σn(g < t), which
implies distσn(g) = distσn(f).

Part (ii) follows by the Lebesgue dominated convergence theorem. �
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To prove part (iii), in view of Lemma 5, it suffices to prove that g = gH for any H. If
g 6= gH for some H then by continuity of g we get (Lemma 4 (iii))

m =

∫
Sn
d(x0, x)g(x)dσn(x) >

∫
Sn
d(x0, x)gH(x)dσn(x).

This contradicts the minimality of m.
We are ready to prove the spherical isoperimetric inequality. A set C ⊆ Sn of the form

Cx0,t = {x ∈ Sn : d(x0, x) ≤ t} is called a spherical cup.

Theorem 10. Suppose A is a compact set. Let C be a spherical cup such that σn(A) =
σn(C). Then σn(At) ≥ σn(Ct).

Proof. Define f(x) = max{t− d(x,A), 0}. The set {t ≥ f > 0} is the open t-enlargement of
A. We have

σn(At) = σn({t ≥ f > 0}) = σn({t ≥ f ∗ > 0})
Let A∗ be the spherical cup centred at x0 given by A∗ = {f ∗ = t}. We have

σn(A∗) = σn(f ∗ = t) = σn(f = t) = σn(A).

If x ∈ A∗ then f ∗(x) = t and since by Lemma 6 the function f ∗ is 1-Lipschitz (as f was
1-Lipschitz) we get that d(x,A∗) < t implies f ∗(x) > 0. We arrive at

σn(At) = σn({t ≥ f > 0}) = σn({t ≥ f ∗ > 0}) ≥ σn((A∗)t).

�

We shall deduce the Gaussian isoperimetric inequality from the spherical isoperimetry.

Theorem 11. Suppose A is a compact set in Rk. Let H be a half-space satisfying γk(A) =
γk(H). Then γk(At) ≥ γk(Ht).

We need the following well-known lemma.

Lemma 7. Let σ̃n−1 be the uniform measure on
√
nSn−1. Let πk,n(x1, . . . , xn) = (x1, . . . , xk)

be the standard projection Rn → Rk. Define µk,n = πk,nσ̃n−1, that is

µk,n(A) = σ̃n−1(π−1
k,n(A)).

Then µk,n → γk in the sense of distribution.

Proof. Let g1, g2, . . . be independent standard normal real random variables. Since

σn−1 ∼
(g1, . . . , gn)

|(g1, . . . , gn)|
=

(g1, . . . , gn)

(g2
1 + . . .+ g2

n)1/2
,

we have

πk,nσ̃n−1 ∼
√
n

(g1, . . . , gk)

(g2
1 + . . .+ g2

n)1/2
= αn(g1, . . . , gk),

where

αn =

(
g2

1 + . . .+ g2
n

n

)1/2

→ 1 a.s.

The assertion follows. �
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Sketch of the proof of Gaussian isoperimetry. We can assume that H is of the form H =
{x1 ≥ r}. Since πk,n is 1-Lipschitz, it is easy to verify that (π−1

k,n(A))t ⊆ π−1
k,n(At). Thus

γk(A) ≥ lim sup
n→∞

µk,n(A) = lim sup
n→∞

σ̃n−1(π−1
k,n(At)) ≥ lim sup

n→∞
σ̃n−1((π−1

k,n(A))t).

Since σ̃n−1(π−1
k,n(A)) = σ̃n−1(π−1

k,n(H)) we get from the spherical isoperimetry that

lim sup
n→∞

σ̃n−1((π−1
k,n(A))t) ≥ lim sup

n→∞
σ̃n−1((π−1

k,n(H))t) = lim sup
n→∞

µk,n(Ht+εn) = γk(Ht),

where εn → 0 is some explicitly computable sequence. �

Corollary 12. Suppose A is a compact set in Rn. Let H = {x1 ≤ r} be such that γn(A) =

γn(H) = Φ(r), where Φ(r) = 1√
2π

∫ r
−∞ e

−x2/2dx. Then

γn(At) ≥ Φ(rt) = Φ
(
Φ−1(γn(A)) + t

)
.

In particular,

γn(A) ≥ 1/2 =⇒ γn(At) ≥ Φ(t).

Taking the derivative in t at t = 0 we get

γn(∂A) ≥ Φ′
(
Φ−1(γn(A)) + t

)
= ϕ

(
Φ−1(γn(A))

)
= I(γn(A)),

where I = ϕ ◦ Φ−1 and ϕ(x) = 1√
2π
e−x

2/2.

Theorem 13 (Bobkov’s inequality). Suppose f : Rn → [0, 1] is a smooth function. Then

I

(∫
fdγn

)
≤
∫ √

I(f)2 + |∇f |2dγn.

Proof. Let

A = {(x, y) : x ∈ Rn, y ∈ R, Φ(y) < f(x)}.

Let g = Φ−1 ◦ f . Then

γn+1(A) =

∫
Rn

∫ g(x)

−∞
dγ1(y)dγn(x) =

∫
Rn

Φ(g(x))dγn(x) =

∫
Rn
fdγn.

Moreover, if ϕn(x) = (2π)−n/2e−|x|
2/2 then

γn+1(∂A) =

∫
Rn
ϕn(x)ϕ(g(x))

√
1 + |∇g|2dx =

∫ √
ϕ(g)2 + ϕ(g)2|∇g|2

=

∫ √
ϕ(g)2 + |∇Φ ◦ g|2 =

∫ √
I(f)2 + |∇f |2.

Thus the assertion follows from the Gaussian isoperimetric inequality γn+1(∂A) ≥ I(γn+1(A)).
�
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1.8. Prékopa-Leindler inequality. We are going to prove the following fundamental the-
orem.

Theorem 14. (Prekopa-Leindler, ’88) Let f, g,m be nonnegative measerable functions
on Rn and let λ ∈ [0, 1]. If for all x, y ∈ Rn we have

m((1− λ)x+ λy) ≥ f(x)1−λg(y)λ,

then

(6)

∫
Rn
m ≥

(∫
Rn
f

)1−λ(∫
Rn
g

)λ
.

We first give two proof of this fact in dimension n = 1.

First proof of Prékopa-Leinlder in dimension one. We start with proving (B-M) inequality
in dimension 1. Let A,B be compact sets in R. Observe that the operations A → A + v1,
B → B + v2 where v1, v2 ∈ R does not change the volumes of A,B and (1 − λ)A + λB
(adding a number to one of the sets only shifts all of this sets). Therefore we can assume
that supA = inf B = 0. But then, since 0 ∈ A and 0 ∈ B, we have

(1− λ)A+ λB ⊃ (1− λ)A ∪ (λB).

But (1− λ)A and (λB)are disjoint, up to the one point 0. Therefore

|(1− λ)A+ λB| ≥ |(1− λ)A|+ |λB|,

hence we have proved (B-M) in dimension 1.
Let us now justify the Prekopa-Leindler inequality in dimension 1. We can assume, con-

sidering f1f≤M and g1g≤M instead of f and g, that f, g are bounded. Note also that this
inequality possesses some homogenity. Indeed, if we multiply f, g,m by numbers cf , cg, cm
satisfying

cm = c1−λ
f cλg ,

then the hyphotesis and the thesis do not change. Therefore, taking cf = ‖f‖−1
∞ , cg = ‖g‖−1

∞
and cm = ‖f‖−(1−λ)

∞ ‖g‖−λ∞ we can assume (since we are in the situation when f and g are
bounded) that ‖f‖∞ = ‖g‖∞ = 1. But then∫

R
m =

∫ +∞

0

|{m ≥ s}| ds,

∫
R
f =

∫ 1

0

|{f ≥ r}| dr,

∫
R
g =

∫ 1

0

|{g ≥ r}| dr.

Note also that if x ∈ {f ≥ r} and y ∈ {g ≥ r} then by the assumption of the theorem we
have (1− λ)x+ λy ∈ {m ≥ r}. Hence,

(1− λ){f ≥ r}+ λ{g ≥ r} ⊂ {m ≥ r}.
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Moreover, the sets {f ≥ r} and {g ≥ r} are non-empty for r ∈ [0, 1). This is very important
since we want to use 1 dimensional (B-M) inequality! We have∫

m =

∫ +∞

0

|{m ≥ r}| dr ≥
∫ 1

0

|{m ≥ r}| dr ≥
∫ 1

0

|(1− λ){f ≥ r}+ λ{g ≥ r}| dr

≥ (1− λ)

∫ 1

0

|{f ≥ r}| dr + λ

∫ 1

0

|{g ≥ r}| dr = (1− λ)

∫
f + λ

∫
g

≥
(∫

f

)1−λ(∫
g

)λ
.

Observe that we have proved ∫
m ≥ (1− λ)

∫
f + λ

∫
g,

but this inequality does not have the previous homogeneity, hence it requires the assumption
‖f‖∞ = ‖g‖∞ = 1. �

For the second proof we shall assume that f, g,m are strictly positive and smooth.

Second proof of Prékopa-Leinlder in dimension one. Assume without loss of generality that∫
f = F > 0 and

∫
g = G > 0. Define x, y : [0, 1]→ R such that x(t), y(t) are the infima of

numbers satisfying

1

F

∫ x(t)

−∞
f(s)ds =

1

G

∫ y(t)

−∞
g(s)ds = t.

The functions x, y are differentiable due to our assumptions. Define z(t) = λx(t)+(1−λ)y(t).
Differentiating the above equalities we get

f(x(t))x′(t)

F
=
g(y(t))y′(t)

G
= 1.

Thus, using the assumption of Prékopa-Leindler together with AM-GM we get∫
h ≥

∫ 1

0

h(z(t))z′(t)dt ≥
∫ 1

0

h(λx(t) + (1− λ)y(t))(λx′(t) + (1− λ)y′(t))

≥
∫ 1

0

f(x(t))λg(y(t))1−λx′(t)λy′(t)1−λ

=

∫ 1

0

(f(x(t))x′(t))λ(g(y(t))y′(t))1−λ

= F λG1−λ =

(∫
f

)λ(∫
g

)1−λ

.

�

Proof of Prékopa-Leindler in dimension n > 1. Suppose our inequality in true in dimension
n− 1. We will prove it in dimension n. Suppose we have a numbers y0, y1, y2 ∈ R satisfying
y0 = (1− λ)y1 + λy2. Define my0 , fy1 , gy2 : Rn−1 → R+ by

my0(x) = m(y0, x), fy1(x) = f(y1, x), gy2(x) = (y2, x),
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where x ∈ Rn−1. Note that since y0 = (1− λ)y1 + λy2 we have

my0((1− λ)x1 + λx2) = m((1− λ)y1 + λy2, (1− λ)x1 + λx2)

≥ f(y1, x1)1−λg(y2, x2)λ = fy1(x1)1−λgy2(x2)λ,

hence my0 , fy1 and gy2 satisfies the assumption of the (n − 1)-dimensional Prekopa-Leindler
inequality. Therefore we have∫

Rn−1

my0 ≥
(∫

Rn−1

fy1

)1−λ(∫
Rn−1

gy2

)λ
.

Step 4. Define new functions M,F,G : R→ R+

M(y0) =

∫
Rn−1

my0 , F (y1) =

∫
Rn−1

fy1 , G(y2) =

∫
Rn−1

gy2 .

We have seen (the above inequality) that when y0 = (1− λ)y1 + λy2 then there holds

M((1− λ)y1 + λy2) ≥ F (y1)1−λG(y2)λ.

Hence, by 1-dimensional (P-L) inequality we get∫
R
M ≥

(∫
R
F

)1−λ(∫
R
G

)λ
.

But ∫
R
M =

∫
Rn
m,

∫
R
F =

∫
Rn
f,

∫
R
G =

∫
Rn
g,

so we shown that ∫
Rn
m ≥

(∫
Rn
f

)1−λ(∫
Rn
g

)λ
.

�

Definition 1. A function f : Rn → R is called log-concave if f = e−V for some convex
function V : Rn → R ∪ {+∞}.

We can now give a proof of generalization of BM inequality.

Theorem 15. Suppose µ is a measure with log-concave density. Then

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ.

Proof. Let A,B be measurable in Rn and let h be the density of µ. Define f = 1Ah, g = 1Bh
and m = 1λA+(1−λ)Bh. Then these function clearly satisfy m(λx + (1 − λ)y) ≥ f(x)λg(y)λ.
Thus

|λA+ (1− λ)B| =
∫
m ≥

(∫
f

)λ(∫
g

)1−λ

= |A|λ|B|1−λ.

�

Fact 16. Suppose f : Rn × Rm → R is log-concave. Then F (x) =
∫
Rm f(x, y)dy is also

log-concave.
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Proof. Define fx(y) = f(x, y), fx : Rm → R. Take x1, x2 ∈ Rn. The functions fλx1+(1−λ)x2 , fx1 , fx2
satisfy

fλx1+(1−λ)x2(λy1 + (1− λ)y2) ≥ fx1(y1)λfx2(y2)1−λ.

Thus by Prékopa-Leindler

F (λx1 + (1− λ)x2) =

∫
fλx1+(1−λ)x2 ≥

(∫
fx1

)λ(∫
fx2

)1−λ

= F (x1)λF (x2)1−λ.

�

Fact 17. Let f, g be log-concave on Rn. Then f ∗ g is also log-concave.

Proof. The function (x, y)→ f(y)g(x− y) is clearly log concave. Thus it suffices to integrate
it in y and use Fact 16. �

Fact 18. Let f be log-concave on Rn and let v ∈ Rn be a fixed vector.

R 3 t 7−→
∫
〈x,v〉≥t

f(x)dx

is also log-concave.

Proof. The function (x, t) 7→ f(x)1〈x,v〉≥t is log-concave (the function (x, t) 7→ 1〈x,v〉≥t is log-
concave as it is of the form 1K for a convex K with K being a half-space). It suffices to use
Fact 16. �

Gaussian concentration. We shall prove the following fact.

Theorem 19. Let A ⊂ Rn and let γn be the Gaussian measure. Then

(7)

∫
exp

(
d(x,A)2

4

)
dγn(x) ≤ 1

γn(A)
.

Moreover, if γn(A) ≥ 1/2 then

(8) γn(Aε) ≥ 1− 2 exp(−ε2/4).

Proof. Let

f(x) =
1

(2π)n/2
exp(d(x,A)2/4) exp(−|x|2/2),

g(y) =
1

(2π)n/2
1A(y) exp(−|y|2/2)

and

h(z) =
1

(2π)n/2
exp(−|z|2/2).

We show that

h

(
x+ y

2

)
≥
√
f(x)

√
g(y).

Indeed, it suffices to consider the case when y ∈ A. In this case we have d(x,A) ≤ |x − y|2
and therefore

(2π)nf(x)g(y) ≤ exp

(
|x− y|2

4
− |x|

2

2
− |y|

2

2

)
= exp

(
−|x+ y|2

4

)
= (2π)n

(
h

(
x+ y

2

))2

.
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By the Prékopa-Leindler inequality we obtain

1 =

(∫
h

)2

≥
(∫

f

)(∫
g

)
= γn(A)

∫
exp

(
d(x,A)2

4

)
dγn(x).

The second part of the statement follows from Markov’s inequality. Indeed, if γn(A) ≥ 1/2
then ∫

exp(d(x,A)2/4)dγn(x) ≤ 2,

hence

γn(d(x,A) ≥ ε) ≤ exp(−ε2/4)

∫
exp

(
d(x,A)2

4

)
dγn(x) ≤ 2 exp(−ε2/4).

�

Corollary 20. If M is a γn median of a 1-Lipschitz function f , then

γn({f ≥M + ε}) ≤ 2 exp(−ε2/4), γn({f ≤M − ε}) ≤ 2 exp(−ε2/4),

and
γn({|f −M | ≥ ε}) ≤ 4 exp(−ε2/4).

Proof. Let A = {f ≤M}. Then γn(A) ≥ 1/2. Since f is 1-Lipschitz we have {f ≥M +ε} ⊂
Acε. Therefore,

γn({f ≥M + ε}) ≤ γn(Acε) ≤ 2 exp(−ε2/4).

The second inequality is proven identically, taking A = {f ≤M}. �

One can provide a nice estimate of the volume of a cup.

Fact 21. Let σn−1 be the uniform probability measure on Sn−1. Take

C(ε) = Sn−1 ∩ {x1 ≥ ε}.
Then σn−1(ε) ≤ e−nε

2/2.

Proof. Case 1. Assume ε ∈ [0, 1/
√

2]. Let C = conv(0, C(ε)). Notice that and let C ⊆
B(ε,

√
1− ε2). We thus have

σn−1(C(ε)) =
voln(C)

voln(Bn
2 )
≤ B(ε,

√
1− ε2)

voln(Bn
2 )

= (1− ε2)n/2 ≤ e−nε
2/2.

If ε ∈ [1/
√

2, 1] then C ⊆ B( 1
2ε
, 1

2ε
) and thus

σn−1(C(ε)) =
voln(C)

voln(Bn
2 )
≤
B( 1

2ε
, 1

2ε
)

voln(Bn
2 )

=

(
1

2ε

)n
≤ e−nε

2/2.

The last inequality follows from ex
2/2 < 2x for x ∈ [1/

√
2, 1], which is easy to verify. In fact

due to the convexity of ex
2/2 it is enough to check it for x = 1/

√
2 and x = 1. In these two

cases the inequality easily reduces to e < 4. �

Fact 22. Suppose X is a random vector having values in Rn, whose density is of the form

g(x) = exp

(
−1

2
〈Bx, x〉 − V (x)

)
,

where B ≥ 0 is a n× n matrix and V is convex. Then

cov(X) ≤ B−1.
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In other words, of X is more log concave than a Gaussian vector Y then cov(X) ≤ cov(Y ).

Proof. Writing X = B−1/2X̃ we clearly see that one can assume the case B = I. Indeed, X̃
has density

g̃(x) = det(B−1/2)g(B−1/2x) = det(B−1/2) exp

(
−1

2
|x|2 − V (B−1/2x)

)
and cov(X̃) = B cov(X) = BB−1 = I.

Let Λ(y) = logEe〈y,X〉. We have

∂2

∂yiyj
Λ(y) =

EXiXje
〈y,X〉Ee〈y,X〉 − EXie

〈y,X〉EXje
〈y,X〉

(Ee〈x,X〉)2

Thus ∂2

∂yiyj
Λ(y)

∣∣
y=0

= cov(Xi, Xj). Thus ∇2Λ(0) = cov(X). Let us define

f(x) = 〈a, x〉 − 1

2
|x|2 − V (x)

g(y) = −〈a, y〉 − 1

2
|y|2 − V (y)

m(z) = −1

2
− V (z).

We shall verify the inequality

1

2
f(x) +

1

2
g(y) ≤ 1

2
|a|2 +m

(
x+ y

2

)
.

Indeed, due to convexity of V it is enough to check

1

2
〈a, x〉 − 1

4
|x|2 − 1

2
〈a, y〉 − 1

4
|y|2 ≤ 1

2
|a|2 − 1

2

∣∣∣∣x+ y

2

∣∣∣∣2 .
This is〈

a,
x− y

2

〉
≤ 1

4
|x|2 +

1

4
|y|2 +

1

2
|a|2 − 1

8
|x+ y|2 =

1

2
|a|2 +

1

8
|x|2 +

1

2
|y|2 − 1

4
〈x, y〉

=
1

2
|a|2 +

1

2

∣∣∣∣x− y2

∣∣∣∣2 .
The inequality follow by applying Cauchy-Schwarz and AM-GM,〈

a,
x− y

2

〉
≤ |a|

∣∣∣∣x− y2

∣∣∣∣ ≤ 1

2
|a|2 +

1

2

∣∣∣∣x− y2

∣∣∣∣2 .
Thus √

ef(x)eg(y) ≤ e
1
2
|a|2em(x+y2 ).

Thus by Prékopa-Leindler we get(∫
ef
)1/2(∫

eg
)1/2

≤ e
1
2
|a|2
∫
em,

which is equivalent to
1

2
Λ(a) +

1

2
Λ(−a)− Λ(0) ≤ 1

2
|a|2.
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If we Taylor expand the left hand side we get〈
∇2Λ(0)a, a

〉
+ o(|a|2) ≤ |a|2

and after comparing the leading terms we get 〈∇2Λ(0)a, a〉 ≤ |a|2 which shows that I−Λ(0) ≥
0. �

1.9. Knothe map.

1.10. Brenier map.

1.11. Ehrhard inequality. Recall that γn is the standard Gaussian measure on Rn and
Φ(t) =

∫
ϕ(s)ds, there ϕ is the density of γ1. The main goal of this section is to prove the

following theorem, known as Ehrhard inequality.

Theorem 23. Suppose A,B are Borel sets in Rn. Suppose α, β > 0 are such that α+β ≥ 1
and |α− β| ≤ 1. Then we have

Φ−1(γn(αA+ βB)) ≥ αΦ−1(γn(A)) + βΦ−1(γn(B)).

Let us introduce the functional form of this inequality. Define the operator

(Qtf)(x) =

∫
Rn
f(x+

√
tz)dγn(z).

Note that

(Q1f)(0) =

∫
fdγn.

Moreover, let us observe that f ≥ c implies Qtf ≥ c and f ≤ C implies Qtf ≤ C.

Theorem 24. Suppose α, β > 0 are such that α+ β ≥ 1 and |α− β| ≤ 1. Let f, g, h : Rn →
(0, 1) be Borel functions such that

Φ−1(h(αx+ βy)) ≥ αΦ−1(f(x)) + βΦ−1(g(y)).

Then

(9) Φ−1(Qth(αx+ βy)) ≥ αΦ−1(Qtf(x)) + βΦ−1(Qtg(y)).

In particular, taking x = y = 0 and t = 1 yields

Φ−1

(∫
hdγn

)
≥ αΦ−1

(∫
fdγn

)
+ βΦ−1

(∫
gdγn

)
.

It is not hard to show that this theorem implies Ehrhard inequality. However, we shall not
need this implication. We first show that Erhard inequality implies Theorem 24.

Theorem 23 implies 24. Consider a Borel set

Bx
f = {(s, z) ∈ R× Rn : s ≤ Φ−1(f(x+

√
tz))}.

Similarly we define By
g and Bαx+βy

h . Observe that

γn+1(Bx
f ) =

∫
f(x+

√
tz)dγn(z) = Qtf(z).

Thus, our goal (9) is equivalent to

Φ−1(γn+1(Bαx+βy
h )) ≥ αΦ−1(γn+1(Bx

f )) + βΦ−1(γn+1(By
g )).
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But Ehrhard inequality gives

Φ−1(γn+1(αBx
f + βBy

g )) ≥ αΦ−1(γn+1(Bx
f )) + βΦ−1(γn+1(By

g )).

Thus, it is enough to verify

αBx
f + βBy

g ⊆ Bαx+βy
h .

If (s1, z1) ∈ Bx
f and (s2, z2) ∈ By

g then from our assumptions we get

αs1 + βs2 ≤ αΦ−1(f(x+
√
tz1)) + βΦ−1(g(y +

√
tz2)) ≤ Φ−1(h(αx+ βy +

√
t(αz1 + βz2))),

which show that α(s1, z1) + β(s2, z2) = (αs1 + βs2, αz1 + βz2) ∈ Bαx+βy
h . �

Now our goal is to show that Theorem 24 for nice functions implies Ehrhard inequality.
Let us first specify that we mean by nice functions. Take parameters a > 0, 0 < 2ε < ρ < 1.
Define

δε,ρ = max
{

Φ(αΦ−1(2ε) + βΦ−1(ρ)),Φ(αΦ−1(ρ) + βΦ−1(2ε))
}

and

Na,ε,ρ =
{

(f, g, h) : f, g, h : Rn → (0, 1) are C∞ smooth

f, g = ε outside B(0, a)

f, g ≤ ρ everywhere

h ≥ δε,ρ everywhere
}
.

Suppose we know Theorem 24 for these classes of functions. We now show how to deduce
Ehrhard inequality.

Theorem 24 for Na,ε,ρ implies Theorem 23. By a standard reasoning similar to that discussed
in the context of classical Brunn-Minkowski shows that we can restrict ourselves to compact
sets. Take 0 < 2ε < ρ < 1 and some η > 0. There are smooth functions f, g, h such that

f =

{
ρ on A
ε on Acη

, g =

{
ρ on B
ε on Bc

η
, h =

{
Φ((α + β)Φ−1(ρ)) on αAη + βBη

δε,ρ on (αAη + βBη)
c
η
,

with intermediate values elsewhere. Since 2ε < ρ we immediately get δε,ρ ≤ Φ((α+β)Φ−1(ρ)),
which gives h ≥ δε,ρ. Since A,B are compact, for big enough a the functions f, g are equal ε
outside B(0, a). Thus, for big a we have (f, g, h) ∈ Na,ε,ρ.

We shall verify that

Φ−1(h(αx+ βy)) ≥ αΦ−1(f(x)) + βΦ−1(g(y)).

If x ∈ Aη and y ∈ Bη we get αx+ βy ∈ αAη + βBη and thus

αΦ−1(f(x)) + βΦ−1(g(y)) ≤ αΦ−1(ρ) + βΦ−1(ρ) = Φ−1Φ((α + β)Φ−1(ρ)) = h(αx+ βy).

since always f(x), g(y) ≤ ρ. If x /∈ Aη or y /∈ Aη then

αΦ−1(f(x)) + βΦ−1(g(y)) ≤ max
{

Φ(αΦ−1(ε) + βΦ−1(ρ)),Φ(αΦ−1(ρ) + βΦ−1(ε))
}

≤ δε,ρ ≤ h(αx+ βy),

since always h ≥ δε,ρ. Using Theorem 24 we get

Φ−1

(∫
hdγn

)
≥ αΦ−1

(∫
fdγn

)
+ βΦ−1

(∫
gdγn

)
≥ αΦ−1 (ργn(A)) + βΦ−1 (ργn(B)) .
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Taking ε→ 0+ and η → 0+ we get δε,ρ → 0 and thus

Φ−1

(∫
hdγn

)
→ Φ−1

(
Φ((α + β)Φ−1(ρ))γn(αA+ βB)

)
.

Therefore

Φ−1
(
Φ((α + β)Φ−1(ρ))γn(αA+ βB)

)
≥ αΦ−1 (ργn(A)) + βΦ−1 (ργn(B)) .

Now we take ρ→ 1− and observe that then Φ((α+ β)Φ−1(ρ))→ 1 and thus we arrive at the
desired inequality

Φ−1(γn(αA+ βB)) ≥ αΦ−1(γn(A)) + βΦ−1(γn(B)).

�

We shall now prove Theorem 24 for nice triples of functions (f, g, h).

Proof of Theorem 24 for Na,ε,ρ.
Step 1. We derive a PDE for Qt. It is not surprising that we shall get the heat equation.

Indeed, integration by parts gives

∂

∂t
Qtf(x) =

∂

∂t

∫
f(x+

√
tz)dγn(z) =

1

2

∫
1√
t
∇f(x+

√
tz) · zdγn(z)

= −1

2

∫
1√
t
∇f(x+

√
tz) · ∇ϕn(z)dz =

1

2

∫
∆f(x+

√
tz)ϕn(z)dz

=
1

2
∆

∫
f(x+

√
tz)dγn(z) =

1

2
∆Qtf(x).

Step 2. Suppose u = u(t, x) satisfies ∂u
∂t

= 1
2
∆u. We would like to derive an equation for

U = Φ−1(u). We have u = Φ(U). Thus,

∂u

∂t
= Φ′(U)

∂U

∂t
= ϕ(U)

∂U

∂t

and

∇u = ϕ(U)∇U, ∆u = ϕ(U)∆U + ϕ′(U)|∇U |2 = ϕ(U)∆U − Uϕ(U)|∇U |2.

We get

ϕ(U)∇U =
∂u

∂t
=

1

2
∆u =

1

2

(
ϕ(U)∆U − Uϕ(U)|∇U |2

)
.

Cancelling ϕ(U) > 0 we get

∂U

∂t
=

1

2

(
∆U − U |∇U |2

)
.

Step 3. Define

C(t, x, y) = Φ−1(Qth(αx+ βy))− αΦ−1(Qtf(x))− βΦ−1(Qtg(y)).

Since Q0 is the identity operator, our assumption reads C(0, x, y) ≥ 0 for all x, y and the
assertion is C(t, x, y) ≥ 0 for all x, y and t ≥ 0. The idea is now to derive certain evolutionary
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equation satisfied by C and prove an appropriate maximum principle for this equation. To
simplify our notation we will be using

F = F (t, x) = Φ−1(Qtf(x))

G = G(t, y) = Φ−1(Qtg(y))

H = H(t, αx+ βy) = Φ−1(Qth(αx+ βy)).

Let us remember that in the upcoming computations F and all its derivatives will always be
evaluated at (t, x), G and all its derivatives at (t, y) and H together with all its derivatives
at (t, αx+ βy). Clearly F does not depend on y and G does not depend on x. We have

C = H − αF − βG.

We have

∇xC = α(∇H −∇F )

∇yC = β(∇H −∇G).

and

∆xC = α2∆H − α∆F

∆yC = β2∆H − β∆G.

Moreover, ∑
1≤i≤n

∂2C

∂xi∂yi
= αβ∆H.

Let us define the operator

L =
1

2

(
∆x + ∆y +

1− α2 − β2

αβ

∑
1≤i≤n

∂2

∂xi∂yi

)
.

Clearly,

LC =
1

2
(∆H − α∆F − βG).

From Step 2 we get

∂F

∂t
=

1

2
∆F − 1

2
F |∇F |2

∂G

∂t
=

1

2
∆G− 1

2
G|∇G|2

∂H

∂t
=

1

2
∆H − 1

2
H|∇H|2.
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Thus,

LC =
∂H

∂t
+

1

2
H|∇H|2

− α∂F
∂t
− 1

2
αF |∇F |2

− β∂G
∂t
− 1

2
βG|∇G|2

=
∂C

∂t
+ Ψ,

where

Ψ =
1

2

(
H|∇H|2 − αF |∇F |2 − βG|∇G|2

)
.

Now

|∇F |2 = |∇H|2 + (∇F −∇H) · (∇F +∇H) = |∇H|2 − 1

α
∇xC · (∇F +∇H)

|∇G|2 = |∇H|2 + (∇G−∇H) · (∇G+∇H) = |∇H|2 − 1

β
∇yC · (∇G+∇H).

Thus we can rewrite Ψ as

Ψ =
1

2
|∇H|2(H − αF − βG) +

1

2
(∇xC · (∇F +∇H)F +∇yC · (∇G+∇H)G)

=
1

2
|∇H|2C +

1

2
(∇xC · (∇F +∇H)F +∇yC · (∇G+∇H)G)

=
1

2
|∇H|2C +∇x,yC ·Θ,

where Θ is a vector field in R2n given by

Θ =
1

2
((∇F +∇H)F, (∇G+∇H)G).

We arrive at

(10) LC =
∂C

∂t
+

1

2
|∇H|2C +∇x,yC ·Θ.

Step 4. We now show that C attains its infimum on the sets of the form [0, T ]×Rn ×Rn.
Recall that we dealing with the class Na,ε,ρ. Fix T > 0. Take r such that γn(B(0, r)) = 1− ε
and define R = a + r

√
T . If |x| > R and t ≤ T then for |z| ≤ r we have x +

√
tz /∈ B(0, a)

and thus f(x+
√
tz) ≤ ε, so for t ∈ [0, T ] we get

(Qtf)(x) =

∫
|z|≤r

f(x+
√
tz)dγn(z) +

∫
|z|>r

f(x+
√
tz)dγn(z)

≤ ε(1− ε) + ερ < 2ε.

By the same argument (Qtg)(y) < 2ε. Since h ≥ δε,ρ then also Qth ≥ δε,ρ. Thus if |x| > R
or |y| > R then either (Qtf)(x) < 2ε or (Qtg)(y) < 2ε and thus (since Qtf(x), Qtg(y) ≤ ρ as
f, g ≤ ρ)

αQtf(x) + βQtg(y) ≤ max
{

Φ(αΦ−1(2ε) + βΦ−1(ρ)),Φ(αΦ−1(ρ) + βΦ−1(2ε))
}

= δε,ρ ≤ Qth(αx+ βy).

Thus C is non-negative on [0, T ]× (B(0, R)×B(0, R))c.
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Step 5. Suppose C(t, x, y) is negative at some point (T, x, y). From Step 4 we know that

0 > inf
[0,T ]×Rn×Rn

C(t, x, y) = inf
[0,T ]×B×B

C(t, x, y),

where B = B(0, R). Since C is continuous (in fact C is C∞ smooth with all partial derivatives
of all orders uniformly bounded) we get that on the set [0, T ]×B×B the function C attains
its negative infimum −M . Define Cθ(t, x, y) = C(t, x, y) + tθ where θ = M/2T . We have

inf
[0,T ]×Rn×Rn

Cθ(t, x, y) ≤ −M + T ·M/2T = −M/2

and since Cθ ≥ C we see that Cθ on the set [0, T ] × Rn × Rn attains its infimum in certain
point (t0, x0, y0) ∈ [0, T ]×B ×B and in that point C(t0, x0, y0) ≤ Cθ(t0, x0, y0) < 0.

Due to our assumption Cθ(0, x, y) ≥ 0 and so the infimum is not attained on {0}×B×B.
Also the infimum in not attained on [0, T ] × (∂B × B ∪ B × ∂B) since on these points the
function Cθ is non-negative. So, the infimum is attained on (0, T ) × int(B) × int(B) or on
{T} × int(B)× int(B).

Let us analyse the first case. At the minimal values we have

∇x,yCθ = 0,
∂Cθ
∂t

= 0, Hessx,y Cθ ≥ 0, Cθ < 0,

which gives

∇x,yC = 0,
∂C

∂t
= −θ < 0, Hessx,y C ≥ 0, C < 0,

We shall soon verify

claim: Hessx,y C ≥ 0 =⇒ LC ≥ 0.

Using (10) we get

0 ≤ LC =
∂C

∂t
+

1

2
|∇H|2C +∇x,yC ·Θ ≤ −θ,

which is a contradiction.
If the infimium of Cθ is attained on {T}× int(B)× int(B) then the same equations for the

critical point are satisfied, except for equations ∂Cθ
∂t

= 0 which now has to be replaced by the

inequality ∂Cθ
∂t
≤ 0, leading to the same contradiction.

Step 6. We shall verify the claim. Let A be a 2n× 2n matrix with n diagonal 2× 2 blocks

A0 =

[
1 1−α2−β2

2αβ
1−α2−β2

2αβ
1

]
.

It is straightforward to observe that

2LC = [1, . . . , 1] · (A ∗ Hessx,y C) ·

 1
...
1

 ,
where ∗ denotes the Hadamard product of two matrices, namely (A ∗ B) = (aijbij)ij. It is
therefore enough to verify that A∗Hessx,y C is positive semi-definite. Since Hessx,y C itself is
positive semi-definite and the Hadamard product of two positive semi-definite matrices (see
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lemma below) is positive semi-definite, it is enough to verify that A is positive semi-definite,
which amounts to proving that A0 is positive semi-definite. The matrix

A0(d) =

[
1 d
d 1

]
is positive semi-definite iff |d| ≤ 1, which leads to the condition |1− α2 − β2| ≤ 2αβ. This is

−2αβ ≤ 1− α2 − β2 ≤ 2αβ,

which is (α + β)2 ≥ 1 and (α− β)2 ≤ 1. These are the assumptions of Theorem 24. �

Lemma 8. Hadamard product of two symmetric positive semi-definite matrices is positive
semi-definite.

Proof. Let A = (aij)
n
i,j=1 and B = (bij)

n
i,j=1. We have A ∗ B = (aijbij)

n
i,j=1. Since B is

symmetric and positive semi-definite, where is an orthogonal matrix U such that B = UDUT

where D = diag(λ1, . . . , λn) is diagonal. All the entries of D (eigenvalues of B) are non-

negative as B was positive semi-definite. Let
√
Ddiag(

√
λ1, . . . ,

√
λn). Define C = U

√
DUT .

We have B = C2. Thus if v = (v1, . . . , vn) then

〈(A ∗B)v, v〉 =
∑
i,j

viaijbijvj =
∑
i,j

viaijbjivj =
∑
i,j,k

viaijcjkckivj =
∑
i,j,k

ckiviaijvjcjk.

The last expression in equal to tr(CV AV C), where V = diag(v1, . . . , vn). The operation
A→ SAS preserves positive semi-definiteness as for any vector u we have (setting w = Su)

〈SASu, u〉 = 〈ASu, Su〉 = 〈Aw,w〉 ≥ 0.

It suffices to use this fact twice for S = V and S = C. �

We now formulate some corollaries of the Ehrhard inequality.

Corollary 25. Let K be convex in Rn. Then for all t ≥ 1 we have

Φ−1(γn(tK)) ≥ tΦ−1(γn(K)).

Proof. Using Ehrhard inequality with A = B = K and α = β = t/2 yields the desired
inequality. Note that t

2
K + t

2
K = tK due to the convexity of K. �

Corollary 26. Let A be Borel and let K be convex. Suppose α, β > 0, α + β ≥ 1 and
α− β ≤ 1. Then we have

Φ−1(γn(αA+ βK)) ≥ αΦ−1(γn(A)) + βΦ−1(γn(K)).

Proof. If additionally β−α ≤ 1 then the assumptions of the Ehrhard inequality are satisfied,
so the desired inequality follows. Suppose that β

α+1
> 1. Let us use Ehrhard inequality with

α and β = 1 + α with the sets A and β
α+1

K. We get

Φ−1(γn(αA+ βK)) = Φ−1

(
γn(αA+ (α + 1) · β

α + 1
K)

)
≥ αΦ−1(γn(A)) + (α + 1)Φ−1

(
γn

(
β

α + 1
K

))
.

Now it suffices to use Corollary 25 with t = β
α+1

> 1 to get

(α + 1)Φ−1

(
γn

(
β

α + 1
K

))
≥ βΦ−1 (γn (K)) .
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�

Our last application is the Gaussian isoperimetric inequality. Before we prove it let us
establish the following simple lemma.

Lemma 9. We have

sup
r>0

1

r
Φ−1(γ(rBn

2 )) = lim
r→∞

1

r
Φ−1(γ(rBn

2 )) = 1.

Proof. We have , by de l’Hospital

1− Φ(r) =
1√
2π

∫ ∞
r

e−s
2/2ds ∼r→∞

1√
2π

1

r
e−r

2/2.

Thus ln(1 − Φ(r)) ∼r→∞ −r2/2 and therefore, taking x = Φ(r) → 1, we get Φ−1(x) ∼x→1√
−2 ln(1− x). As a consequence Φ−1(γ(rBn

2 )) ∼r→∞
√
−2 ln(1− γn(rBn

2 )) ∼r→∞ r since

1− γn(rBn
2 ) =

n|Bn
2 |√

2π
n

∫ ∞
r

sn−1e−s
2/2ds ∼r→∞

n|Bn
2 |√

2π
n r

n−2e−r
2/2,

again by de l’Hospital. This shows the second inequality.
Now it suffices to observe that

Φ−1(γn(rBn
2 )) ≤ Φ−1({x1 ≤ r}) = Φ−1(Φ(r)) = r.

�

Proof of Gaussian isoperimetry. By Corollary 26 we get

Φ−1(γn(Aε)) = Φ−1
(
γn

(
A+

ε

r
· rBn

2

))
≥ Φ−1(γn(A)) +

ε

r
Φ−1(γn(rBn

2 )) −−−→
r→∞

Φ−1(γn(A)) + ε.

�

1.12. Brascamp-Lieb inequality. In this section we will be using the following notation.
Let S+(Rn) be n× n positive definite matrices. For a m× n matrix B we denote by B∗ its
n × n transposition. The space of all linear maps Rn → Rni will be denoted by L(Rn,Rni).
If A ∈ S+(Rk) then GA(x) = exp(−〈Ax, x〉) be the corresponding Gaussian function. Note
that ∫

Rk
GA(x)dx = πk/2 det(A)−1/2.

Let L+
1 (Rn) be the space of non-negative functions from L1(Rn). For a function m : Rn → R+

we put ∫ ↓
m = sup

{∫
m̃ : m̃ ≤ m, m is measurable

}
.

Theorem 27. Let m ≥ n be positive integers and let c1, . . . , cm > 0 be real numbers. Let
n1, . . . , nm ≤ n be positive integers such that n =

∑m
i=1 cini. Suppose Bi ∈ L(Rn,Rni) be

surjective. Assume
⋂m
i=1 ker(Bi) = {0}. For fi ∈ L+

1 (Rni) , i = 1, . . . ,m set us define

J(f1, . . . , fm) =

∫
Rn

m∏
i=1

f cii (Bix)dx
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and

I(f1, . . . , fm) =

∫ ↓
Rn

sup

{
m∏
i=1

f cii (yi) : x =
m∑
i=1

ciB
∗
i yi, yi ∈ Rni

}
dx.

Let E,F be best constants in the inequalities

I(f1, . . . , fm) ≥ E ·
m∏
i=1

(∫
Rni

fi

)ci
, J(f1, . . . , fm) ≤ F ·

m∏
i=1

(∫
Rni

fi

)ci
Let

Eg =

∫ {
I(GA1 , . . . , GAm)∏m
i=1

(∫
Rni GAi

)ci : Ai ∈ S+(Rni), i = 1, . . . ,m

}
,

Fg = sup

{
J(GA1 , . . . , GAm)∏m
i=1

(∫
Rni GAi

)ci : Ai ∈ S+(Rni), i = 1, . . . ,m

}
be the corresponding best constants for Gaussian functions. Let D be the best constant in
the inequality

(11) det

(
m∑
i=1

ciB
∗
iAiBi

)
≥ D

m∏
i=1

det(Ai)
ci .

Then

E = Eg =
√
D, and F = Fg =

1√
D
.

Remark 1. The condition
⋂m
i=1 ker(Bi) = {0} ensures that

∑m
i=1 ciB

∗
iAiBi is non-singular.

Otherwise the theorem still holds true with D = 0.

Remark 2. The condition n =
∑m

i=1 cini is the condition needed for the homogeneity of (11)
under Ai → λAi.

Remark 3. By using approximations similar to those described in the transportation proof
of Prékopa-Leindler we can assume that the functions f1, . . . , fm are of the form fi = f̃i1Ωi ,

where Ωi is some open Euclidean ball in Rni , the function f̃i is Lipschitz and satisfies 0 <
ci ≤ f̃i ≤ Ci for some positive finite constants ci, Ci. We shall denote this class of functions
fi by CL(Rni). The proof of Theorem 27 uses the following regularity theorem.

Theorem 28. Suppose f, h ∈ CL(Rn) be probability densities with open domains Ωf ,Ωh

and let µf , µg be the corresponding probability measures. Then there is a C2(Ωh) convex
function φ such that µh = Tµf , where T = ∇φ. Moreover, the following transport equation
is satisfied,

det(DT (x))f(Tx) = h(x).

Lemma 10. We have Fg = 1√
D

.

Proof. We have

J(GA1,..., GAm) =

∫
Rn

m∏
i=1

exp(−ci 〈AiBix,Bix〉)dx =

∫
Rn

exp

(
−

m∑
i=1

ci 〈AiBix,Bix〉

)
dx

=

∫
Rn

exp

(
−

〈
m∑
i=1

ciB
∗
iAiBix, x

〉)
dx = πn/2 det

(
m∑
i=1

ciB
∗
iAiBi

)−1/2

.
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Moreover,
m∏
i=1

(∫
Rni

GAi

)ci
=

m∏
i=1

πcini/2 det(Ai)
−ci/2

= π
1
2

∑m
i=1 cini

m∏
i=1

det(Ai)
−ci/2 = πn/2

m∏
i=1

det(Ai)
−ci/2.

Thus

Fg = sup
A1,...,Am

(
det (

∑m
i=1 ciB

∗
iAiBi)∏m

i=1 det(Ai)ci

)−1/2

=

(
inf

A1,...,Am

det (
∑m

i=1 ciB
∗
iAiBi)∏m

i=1 det(Ai)ci

)−1/2

= D−1/2.

�

Lemma 11. We have EgFg = 1.

Proof. Let

Q =
m∑
i=1

ciB
∗
iAiBi, and Q(y) = 〈Qy, y〉 ,

where we slightly abused notation. This matrix is symmetric positive definite since

〈Qy, y〉 =
m∑
i=1

ci 〈AiBiv,Biv〉 ≥ 0

and its is equal zero only if Biv = 0 for i = 1, . . . ,m, which means that v ∈
⋂m
i=1 ker(Bi) = {0}

by our assumptions. In particular det(Q) > 0. We saw in the proof of Lemma 10 that

(12)
J(GA1 , . . . , GAm)∏m
i=1

(∫
Rni GAi

)ci =

(∏m
i=1 det(Ai)

ci

det(Q)

)1/2

.

We define the dual of this quadratic form as

Q∗(x) =
∑
{| 〈x, y〉 | : Q(y) ≤ 1}.

Claim 1. Q∗(x) = 〈Q−1x, x〉.

Proof of Claim 1. We observe that

| 〈x, y〉 |2 ≤
〈
Q−1x, x

〉
〈Qy, y〉

with equality for y = Q−1x. Indeed, we have

| 〈x, y〉 |2 = |
〈
Q−1/2x,Q1/2y

〉
|2 ≤ |Q−1/2x|2 · |Q1/2y|2 =

〈
Q−1x, x

〉
〈Qy, y〉 .

Here we have used the fact that

|Q1/2y|2 =
〈
Q1/2y,Q1/2y

〉
=
〈
Q1/2Q1/2y, y

〉
= 〈Qy, y〉 .

�

Now we define

R(x) =

∫ { m∑
i=1

ci
〈
A−1
i yi, yi

〉
: x =

m∑
i=1

ciB
∗
i yi, yi ∈ Rni , i = 1, . . . ,m

}
.
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Note that R is highly relevant to the computation of I(f1, . . . , fm), namely

I(GA−1
1
, . . . , GA−1

m
) =

∫
Rn

exp(−R(x))dx.

Claim 2. We have R = Q∗. In particular, using Claim 1 we get R(x) = 〈Q−1x, x〉.
Proof of Claim 2. Suppose x =

∑m
i=1 ciB

∗
i yi, for some yi ∈ Rni . Then we have

| 〈x, y〉 |2 =

∣∣∣∣∣
〈

m∑
i=1

ciB
∗
i yi, y

〉∣∣∣∣∣
2

=

∣∣∣∣∣
m∑
i=1

〈
√
ciyi,
√
ciBiy〉

∣∣∣∣∣
2

=

∣∣∣∣∣
m∑
i=1

〈√
ciA

−1/2
i yi,

√
ciA

1/2
i Biy

〉∣∣∣∣∣
2

=

∣∣∣∣∣
m∑
i=1

|
√
ciA

−1/2
i yi| · |

√
ciA

1/2
i Biy|

∣∣∣∣∣
2

≤

(
m∑
i=1

|
√
ciA

−1/2
i yi|2

)(
m∑
i=1

|
√
ciA

1/2
i Biy|2

)

=

(
m∑
i=1

ci
〈
yi, A

−1
i yi

〉)〈 m∑
i=1

ciB
∗
iAiBiy, y

〉
=

(
m∑
i=1

ci
〈
A−1
i yi, yi

〉)
Q(y)

Taking the infimum with respect to yi gives

| 〈x, y〉 |2 ≤ R(x)Q(y).

In particular R ≥ Q∗. To see that we actually have equality it suffices to show that for every
fixed x there is y with | 〈x, y〉 |2 = R(x)Q(y). Take

y = Q−1x, and xi = AiBiy.

We have

R(x) ≤
m∑
i=1

ci
〈
xi, A

−1
i xi

〉
=

m∑
i=1

ci 〈AiBiy,Biy〉 =
m∑
i=1

ci 〈B∗iAiBiy, y〉 = Q(y)

and thus
| 〈x, y〉 |2 = | 〈Qy, y〉 |2 = Q(y)2 ≥ R(x)Q(y) ≥ | 〈x, y〉 |2,

so we must have R(x)Q(y) = | 〈x, y〉 |2. �

Using Claim 2 we get

I(GA−1
1
, . . . , GA−1

m
) =

∫
Rn

exp(−R(x))dx =

∫
Rn

exp(−
〈
Q−1x, x

〉
)dx

= πn/2 det(Q−1)−1/2 = πn/2 det(Q)1/2.

Therefore,

I(GA−1
1
, . . . , GA−1

m
)∏m

i=1

(∫
Rni GA−1

i

)ci =
πn/2 det(Q)1/2∏m

i=1 π
cini/2 det(A−1

i )ci/2
= det(Q)1/2

m∏
i=1

det(Ai)
−ci/2.

Combining this with (12) gives

J(GA1 , . . . , GAm)∏m
i=1

(∫
Rni GAi

)ci =

 I(GA−1
1
, . . . , GA−1

m
)∏m

i=1

(∫
Rni GA−1

i

)ci
−1

Taking the supremum of both sided gives Fg = 1/Eg. �

We shall also need the following lemma.
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Lemma 12. Suppose fi, hi ∈ CL(Rni), i = 1, . . . ,m satisfy
∫
Rni fi =

∫
Rni hi = 1. Then

I(f1, . . . , fm) ≥ DJ(h1, . . . , hm).

Proof. We can assume D > 0, since otherwise there is nothing there to prove. Recall that
hi are restriction of some positive Lipschitz function to some open domains Ωhi . Take the
Brenier maps Ti transporting the probability measure with density hi onto the probability
measure with density fi. By the Brenier-Cafarelli theorem we have Ti = ∇φi, where φi is a
convex C2(Ωh) function. Thus, DTi is positive semi-definite. Moreover, we have the following
transport equation

det(DTi(x))fi(Tix) = hi(x).

Since hi(x) > 0 on Ωhi , we get that det(DTi) > 0 and thus DTi is positive definite. Define
S =

⋂m
i=1 B

−1
i (Ωhi) ⊆ Rn and consider Θ : S → Rn given by

Θ(y) =
m∑
i=1

ciB
∗
i Ti(Biy).

We have

DΘ(y) =
m∑
i=1

ciB
∗
iDTi(Biy)Bi.

Thus, DΘ(y) is positive definite (we argue similarly to the proof of Lemma 11). alternatively
we could write that

det(DΘ(y)) = det

(
m∑
i=1

ciB
∗
iDTi(Biy)Bi

)
≥ D

m∏
i=1

det(DTi(Biy))ci > 0.

Thus, 〈DΘ(y)v, v〉 for any v 6= 0 and so

〈y − x,Θ(y)−Θ(x)〉 =

〈
y − x,

∫ 1

0

d

dt
Θ(ty + (1− t)x)dt

〉
=

〈
y − x,

∫ 1

0

DΘ(ty + (1− t)x)(y − x)dt

〉
=

∫ 1

0

〈DΘ(ty + (1− t)x)(y − x), y − x〉 dt > 0.

Thus, Θ is an injective map.
We have∫

Rn

n∏
i=1

hcii (Biy)dy =

∫
S

n∏
i=1

hcii (Biy)dy =

∫
S

n∏
i=1

(fi(Ti(Biy)) det(DTi(Biy)))ci dy

≤ 1

D

∫
S

n∏
i=1

(fi(Ti(Biy)))ci det(
m∑
i=1

ciB
∗
iDTi(Biy)Bi)dy

≤ 1

D

∫
S

(
sup

Θ(y)=
∑m
i=1 ciB

∗
i yi

m∏
i=1

fi(yi)
ci

)
det(Θ(y))dy

≤ 1

D

∫
Rn

sup
x=

∑m
i=1 ciB

∗
i yi

m∏
i=1

fi(yi)
ci .
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Here the last equality is a change of variables and the second inequality is

m∏
i=1

(fi(Ti(Biy)))ci ≤ sup
Θ(y)=

∑m
i=1 ciB

∗
i yi

m∏
i=1

f(yi)
ci ,

which follows from the fact that yi = Ti(Biy) satisfies

m∑
i=1

ciB
∗
i yi =

m∑
i=1

ciB
∗
i Ti(Biy) = Θ(y).

Note that we have used the usual integral instead of the inner integral since the function

x 7→ sup
x=

∑m
i=1 ciB

∗
i yi

m∏
i=1

fi(yi)
ci

is measurable (due to the continuity of fi’s on their support one can replace the sup with a
supremum on the dense countable subset of the space {(y1, . . . , ym) : x =

∑m
i=1 ciB

∗
i yi}; see

the discussion before the transportation proof of Prékopa-Leindler inequality). �

Proof of BL and RBL. Note that due to the invariance under scaling fi → λifi we have

Eg ≥ E = inf{I(g1, . . . , gm), gi − centered Gaussian densitites}
≥ D sup{J(g1, . . . , gm), gi − centered Gaussian densitites}
= DFg = Eg,

where the second inequality follows from Lemma 12 and the last equality from Lemma 10
and Lemma 11. �

Example 1. Take n1 = . . . = nm = n and ci > 0, i = 1, . . . ,m such that
∑m

i=1 ci = 1.
Moreover, let B1 = . . . = Bm = I. Then the BL inequality reads∫

Rn

m∏
i=1

fi(x)ci ≤ F
m∏
i=1

(∫
Rn
fi

)ci
,

which is Hölder inequality. We know that the best constant in Hölder inequality is F = 1
and thus we expect that D = 1. To check it we have to prove that

det(
m∑
i=1

ciAi) ≥
m∏
i=1

det(Ai)
ci , Ai ∈ S+(Rn).

We proceed by induction on m. Suppose we can prove it for m ≥ 2. For the induction steps
we write

det

(
m+1∑
i=1

ciAi

)
= det

(
m−1∑
i=1

ciAi +

(
cm

cm + cm+1

Am +
cm+1

cm + cm+1

Am+1

)
(cm + cm+1)

)

≥
m−1∏
i=1

det(Ai)
ci det

(
cm

cm + cm+1

Am +
cm+1

cm + cm+1

Am+1

)cm+cm+1

≥
m∏
i=1

det(Ai)
ci ,

where the last inequality follows from the case m = 2. To prove the assertion for m = 2 we
assume without loss of generality that A is invertible (otherwise approximate A by invertible
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matrices). Assume we know how to prove the inequality for A = I. Then

det(λA+ (1− λ)B) = det(A) det(λ+ (1− λ)A−1B) ≥ det(A) det(A−1B)1−λ

= det(A)λ det(A)1−λ det(A−1B)1−λ = det(A)λ det(B)1−λ.

If A = I then by applying orthogonal transformation we can assume that B is diagonal with
positive eigenvalues a1, . . . , an. Then the inequality reads

m∏
i=1

(λ+ (1− λ)ai) ≥
m∏
i=1

a1−λ
i .

Clearly it suffices to prove it for m = 1. then it reads λ + (1 − λ)a ≥ a1−λ, which is the
concavity of the logarithm,

log(λ+ (1− λ)a) ≥ λ log(1) + (1− λ) log a = (1− λ) log a = log(a1−λ).

The RBL inequality for this choice of ni and Bi reads as follows: Whenever
∑m

i=1 ci = 1
then ∫ ↓

Rn
sup

{
m∏
i=1

fi(yi)
ci : x =

m∑
i=1

ciyi, yi ∈ Rn

}
dx ≥

m∏
i=1

(∫
Rn
fi

)ci
.

This is a generalization of Prékopa-Leindler inequality for the case of m functions.

Example 2. We shall prove the following theorem

Theorem 29. Suppose p, q, r ≥ 1 with 1
p

+ 1
q

= 1
r

+ 1. Assume f ∈ Lp(Rn) and g ∈ Lq(R).

Then

(13) ‖f ∗ g‖r ≤
(
CpCq
Cr

)n
‖f‖p ‖g‖q , C2

s =
s1/s

s′1/s′
,

1

s
+

1

s′
= 1.

To see the connection to Brascamp-Lieb inequality let us state an alternative equivalent
form of the above inequality.

Theorem 30. Suppose p, q, r ≥ 1 with 1
p

+ 1
q

+ 1
r

= 2. Assume f ∈ Lp(Rn), g ∈ Lq(Rn) and

h ∈ Lr(Rn). Then∫
Rn

∫
Rn
f(x− y)g(y)h(x)dxdy ≤ (CpCrCr)

n ‖f‖p ‖g‖q ‖h‖r .

To see the equivalence of Young’s inequality and the above theorem we observe that

sup

{
‖f ∗ g‖r
‖f‖p ‖g‖q

: f ∈ Lp(Rn), g ∈ Lq(Rn)

}

= sup

{∫
Rn
∫
Rn f(x− y)g(y)h(x)dxdy

‖f‖p ‖g‖q ‖h‖r′
: f ∈ Lp(Rn), g ∈ Lq(Rn), h ∈ Lr′(Rn)

}
.

Note that 1
p

+ 1
q

+ 1
r′

= 1 + 1
r

+ 1
r′

= 2. Moreover Cr′ = 1/Cr.
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For n = 1 we also have

sup

{∫
Rn
∫
Rn f(x− y)g(y)h(x)dxdy

‖f‖p ‖g‖q ‖h‖r′
: f ∈ Lp(Rn), g ∈ Lq(Rn), h ∈ Lr′(Rn)

}

= sup


∫
Rn
∫
Rn f

1
p (x− y)g

1
q (y)h

1
r′ (x)dxdy(∫

Rn f
) 1
p
(∫

Rn g
) 1
q
(∫

Rn h
) 1
r′

: f, g, h ∈ L+
1 (R)


= sup


∫
R

∫
R f

1
p ((x, y) · (1,−1))g

1
q ((x, y) · (0, 1))h

1
r′ ((x, y) · (1, 0))dxdy(∫

R f
) 1
p
(∫

R g
) 1
q
(∫

R h
) 1
r′

: f, g, h ∈ L+
1 (R)

 .

This relates the problem to the quantity studied by Brascamp and Lieb. We can now give a
proof in dimension n = 1 using BL inequality.

Proof of Young’s inequality for n = 1. Suppose p, q, r ≥ 1 with 1
p

+ 1
q

+ 1
r

= 2. From BL

inequality the best constant F in the inequality∫
R

∫
R
f

1
p (x− y)g

1
q (y)h

1
r (x)dxdy ≤ F

(∫
R
f

) 1
p
(∫

R
g

) 1
q
(∫

R
h

) 1
r

is 1/
√
D, where D is the best constant in the inequality

det
(
c1a1(1,−1)T (1,−1) + c2a2(0, 1)T (0, 1) + c3a3(1, 0)T (1, 0)

)
≥ ac11 a

c2
2 a

c3
3 ,

where c1 = 1/p, c2 = 1/q and c3 = 1/r. Note that c1 + c2 + c3 = 2. The determinant of the
matrix on the left hand side is equal to

det

(
c1a1 + c3a3 −c1a1

−c1a1 c1a1 + c2a2

)
= (c1a1 + c3a3)(c1a1 + c2a2)− c2

1a
2
1

= c1c2a1a2 + c2c3a2a3 + c3c1a3a1.

Thus, we ask for the best constant in

c1c2a1a2 + c2c3a2a3 + c3c1a3a1 ≥ ac11 a
c2
2 a

c3
3 .

Without loss of generality we can assume that p, q, r > 1 and thus c1, c2, c3 < 1. By AM-GM
we have

c1c2a1a2 + c2c3a2a3 + c3c1a3a1 = (1− c3)
c1c2a1a2

1− c3

+ (1− c1)
c2c3a2a3

1− c1

+ (1− c2)
c3c1a3a1

1− c2

≥ c1c2

1− c3

1−c3 c2c3

1− c1

1−c1 c3c1

1− c2

1−c2
a2−c2−c3

1 a2−c1−c3
2 a2−c1−c2

3

=
c1c2

1− c3

1−c3 c2c3

1− c1

1−c1 c3c1

1− c2

1−c2
ac11 a

c2
2 a

c3
3 .

The equality holds for a1, a2, a3 such that

c1c2

1− c3

a1a2 =
c2c3

1− c1

a2a3 =
c3c1

1− c2

a3a1.
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Solving this system of equations is straightforward (we leave is as an exercise). It suffices to
observe that

c1c2

1− c3

1−c3 c2c3

1− c1

1−c1 c3c1

1− c2

1−c2
= (p′)

1
p′ (q′)

1
q′ (r′)

1
r′ c2−c2−c3

1 c2−c1−c3
2 c2−c1−c2

3

= (p′)
1
p′ (q′)

1
q′ (r′)

1
r′ cc11 c

c2
2 c

c3
3 =

(p′)
1
p′

p
1
p

(q′)
1
q′

q
1
q

(r′)
1
r′

r
1
r

= (CpCqCr)
−2.

�

We now show that Young’s inequality in dimension n = 1 implies Young’s inequality in
any dimension. Note that ‖f ∗ g‖∞ ≤ ‖f‖r ‖g‖r′ and thus, with h̃(x) = h(−x), we have

sup
h

‖f ∗ g ∗ h‖∞
‖f‖p ‖g‖q ‖h‖r′

≤ ‖f ∗ g‖r
‖f‖p ‖g‖q

= sup
h

∫
Rn f(x− y)g(y)h(x)dxdy

‖f‖p ‖g‖q ‖h‖r′
.

On the other hand,∫
Rn
f(x− y)g(y)h(x)dxdy =

∫
Rn

(f ∗ g)(x)h(x)dx =

∫
Rn

(f ∗ g)(x)h̃(−x)dx

= f ∗ g ∗ h̃(0) ≤
∥∥∥f ∗ g ∗ h̃∥∥∥

∞
.

Thus

sup
h

‖f ∗ g ∗ h‖∞
‖f‖p ‖g‖q ‖h‖r′

≤ ‖f ∗ g‖r
‖f‖p ‖g‖q

≤ sup
h

∥∥∥f ∗ g ∗ h̃∥∥∥
∞

‖f‖p ‖g‖q ‖h‖r′
= sup

h

‖f ∗ g ∗ h‖∞
‖f‖p ‖g‖q ‖h‖r′

.

Therefore Young’s inequality is equivalent to the following theorem.

Theorem 31. Suppose p, q, r ≥ 1 with 1
p

+ 1
q

+ 1
r

= 2. Assume f ∈ Lp(Rn), g ∈ Lq(Rn) and

h ∈ Lr(Rn). Then
‖f ∗ g ∗ h‖∞ ≤ (CpCrCr)

n ‖f‖p ‖g‖q ‖h‖r .

This inequality easily tensorizes. To see this suppose that such an inequality is true on Rn

with constant C(n) and on Rn with constant C(m). Then on Rn+m we can write

(f ∗ g ∗ h)(x1, x2) =

∫
Rn

∫
Rm

f(x1 − y1 − z1, x2 − y2 − z2)g(y1, y2)h(z1, z2)dy2dz2dy1dz1

≤ C(m)

∫
Rn

(∫
Rm

f(x1 − y1 − z1, t)
pdt

)1/p(∫
Rm

g(y1, t)
qdt

)1/q (∫
Rm

h(z1, t)
rdt

)1/r

dy1dz1

≤ C(n)C(m) ‖f‖p ‖g‖q ‖h‖r .
Thus if the inequality holds true on R with some constant C(1) then C(n) ≤ C(1)n. To see
that in fact the optimal constants satisfy C(n) = C(1)n it suffices to take product functions.

2. Entropy power inequality

Let f be a density of a random vector X having values in Rn. Take p > 0. We define the
Rényi entropy via

hp(X) =
1

1− p
ln

(∫
fp
)

=
p

1− p
ln ‖f‖p .
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Here we will be always assuming that the integrals are finite. We also define

h(X) = lim
p→1

hp(X) = −
∫
f ln f.

Suppose A is an invertible map. We claim that

(14) hp(AX) = hp(X) + ln | det(A)|.
Indeed, the density of AX is fAX(x) = 1

| det(A)|f(A−1x). Thus

hp(AX) =
1

1− p
ln

∫
fpAX =

1

1− p
ln

∫ (
1

| det(A)|
f(A−1x)

)p
dx

=
1

1− p
ln

∫ (
1

| det(A)|
f(y)

)p
| det(A)|dy =

1

1− p
ln

∫
f + ln | detA|

= hp(X) + ln | detA|.
Suppose f is the density of X and g is the density of Y with X, Y independent. Suppose

p, q, r > 1 with 1
p

+ 1
q

= 1
r

+ 1. Then taking the logarithm of 13 we get

ln ‖f ∗ g‖r ≤ n ln

(
CpCq
Cr

)
+ ln ‖f‖p + ‖g‖q .

Note that f ∗ g is the density of X + Y . Thus the above is equivalent to

1− r
r

hr(X + Y ) ≤ n ln

(
CpCq
Cr

)
+

1− p
p

hp(X) +
1− q
q

hq(Y ).

This is (remember that r > 1)

(15) hr(X + Y ) ≥ − r

r − 1
n ln

(
CpCq
Cr

)
+

r

r − 1
· p− 1

p
hp(X) +

r

r − 1
· q − 1

q
hq(Y ).

Let us fix λ ∈ (0, 1) and r > 1. Define

p =
1

1− λ+ λ
r

, q =
1

λ+ 1−λ
r

.

These numbers clearly satisfy 1
p

+ 1
q

= 1
r

+ 1. We have

r

r − 1
· p− 1

p
= λ

r

r − 1
· q − 1

q
= 1− λ.

We got

hr(X + Y ) ≥ − r

r − 1
n ln

(
CpCq
Cr

)
+ λhp(X) + (1− λ)hq(Y ).

Using the scaling (14) and taking
√
λX and

√
1− λY instead of X and Y , we obtain

hr(
√
λX +

√
1− λY ) ≥ − r

r − 1
n ln

(
CpCq
Cr

)
+ λhp(

√
λX) + (1− λ)hq(

√
1− λY )

= − r

r − 1
n ln

(
CpCq
Cr

)
+ λhp(X) + (1− λ)hq(Y )

+
n

2
(λ lnλ+ (1− λ) ln(1− λ)) .
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Rewriting gives

hr(
√
λX+

√
1− λY )−λhp(X)−(1−λ)hq(Y ) ≥ − r

r − 1
n ln

(
CpCq
Cr

)
+
n

2
(λ lnλ+ (1− λ) ln(1− λ)) .

Remember that p = p(λ, r) and q = q(λ, r). If λ is fixed and r → 1+ we get p → 1+ and
q → 1+. The left hand side converges to

h(
√
λX +

√
1− λY )− λh(X)− (1− λ)h(Y ).

We claim that the right hand side converges to 0. It suffices to verify that

lim
r→1+

r

r − 1
ln

(
CpCq
Cr

)
=

1

2
(λ lnλ+ (1− λ) ln(1− λ)) .

In other words, using the definition of Cp, Cq and Cr, we have to show that

lim
r→1+

r

r − 1
ln

(
p1/pq1/q

p′1/p′q′1/q′
· r
′1/r′

r1/r

)
= lim

r→1+

r

r − 1
ln

(
p1/pq1/q

r1/r

)
+ lim

r→1+

r

r − 1
ln

(
r′1/r

′

p′1/p′q′1/q′

)
.

Since p′ = r′/λ and q′ = r′/(1− λ), we have

r

r − 1
ln

(
r′1/r

′

p′1/p′q′1/q′

)
=

r

r − 1
ln

 r′1/r
′

( r
′

λ
)
λ
r′
(

r′

1−λ

) 1−λ
r′

 =
r

r − 1
· 1

r′
(λ lnλ+ (1− λ) ln(1− λ))

= λ lnλ+ (1− λ) ln(1− λ).

We also have
r

r − 1
ln

(
p1/pq1/q

r1/r

)
=

r

r − 1

(
1

p
ln p+

1

q
ln q

)
− ln r

r − 1
.

We have ln r
r−1
→ 1 when r → 1+. Moreover,

r

1− r

((
1− λ+

λ

r

)
ln

(
1− λ+

λ

r

)
+

(
λ+

1− λ
r

)
ln

(
λ+

1− λ
r

))
∼r→1+

r

1− r

((
1− λ+

λ

r

)(
−λ+

λ

r

)
+

(
λ+

1− λ
r

)(
−1 + λ+

1− λ
r

))
=

(
1− λ+

λ

r

)
· λ+

(
λ+

1− λ
r

)
· (1− λ) −−−→

r→1+
λ+ (1− λ) = 1.

The claim is now established and we arrive at

h(
√
λX +

√
1− λY ) ≥ λh(X) + (1− λ)h(Y ).

This is the linear form of the so-called entropy power inequality. Let us define

N(X) =
1

2πe
exp

(
2h(X)

n

)
.

Suppose X is a Gaussian vector with the covariance matrix KX . Then the density of this
vector is equal to

ϕG(x) =
1

2π
√

detKG

ϕn(|K−1/2
G |).

In other words, X = (KX)1/2G, where G ∼ N (0, I). Thus h(X) = h(G) + 1
2

ln detKX and

N(X) = det(KX)1/nN(G) = det(KX)1/n
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since N(G) = 1 as

h(G) = −
∫
ϕn lnϕn = −

∫
ϕn ln

(
(2π)−n/2 exp(−|x|2/2)

)
=
n

2
ln(2π) +

n

2
.

We give three equivalent formulations of the entropy power inequality.

Theorem 32. Let X, Y be independent random variables having values is Rn. We have

(i) We have
N(X + Y ) ≥ N(X) +N(Y )

or equivalently

e
2
n
h(X+Y ) ≥ e

2
n
h(X) + e

2
n
h(Y ).

(ii) For any λ ∈ [0, 1] we have

h(
√
λX +

√
1− λY ) ≥ λh(X) + (1− λ)h(Y ).

(iii) If GX and GY are independent multiples of a standard Gaussian such that h(GX) =
h(X) and h(GY ) = h(Y ) then

N(X + Y ) ≥ N(GX +GY ) or h(X + Y ) ≥ h(GX +GY ).

Proof. To show that (iii) implies (ii) we observe that ifKX andKY are the covariance matrices
of GX and GY then

h(
√
λX +

√
1− λY ) ≥ h(

√
λGX +

√
1− λGY ) ≥ λh(GX) + (1− λ)hG(Y ),

where the last inequality is equivalent to

N(
√
λGX +

√
1− λGY ) ≥ N(GX)λN(GY )1−λ

follows from
det(λGX + (1− λ)GY ) ≥ det(GX)λ det(GY )1−λ.

We now show that (ii) implies (i). Replacing X with X/λ and Y with Y/(1 − λ) in (ii)
gives

h(X + Y ) ≥ λh(X) + (1− λ)h(Y )− n

2
(λ lnλ+ (1− λ) ln(1− λ))

We shall optimize the right hand side with respect to λ ∈ [0, 1]. Computing the derivative
gives

(16) h(X)− h(Y ) =
n

2
ln

(
λ

1− λ

)
,

which yields

λ =
e

2
n
h(X)

e
2
n
h(X) + e

2
n
h(Y )

.

Note that (16) is equivalent to h(X)− n
2

lnλ = h(Y )− n
2

ln(1−λ). Thus for optimal lambda
we have

h(X + Y ) ≥ λh(X) + (1− λ)h(Y )− n

2
(λ lnλ+ (1− λ) ln(1− λ))

= λ
(
h(X)− n

2
lnλ
)

+ (1− λ)
(
h(Y )− n

2
ln(1− λ)

)
= h(X)− n

2
lnλ =

n

2
ln
(
e

2
n
h(X) + e

2
n
h(Y )
)
.

Rearranging gives (i).
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To show that (i) implies (iii) we observe that

N(X + Y ) ≥ N(X) +N(Y ) = N(GX) +N(GY ) = det(KX)1/n + det(KY )1/n

= det(KX +KY )1/n = N(GX +GY ),

where the third equality follows from the fact that KX and KY are multiples of the identity
matrix. �

2.1. Geometric Brascamp-Lieb inequality. There is a setting of Brascamp-Lieb type
inequality where the optimal constant is D = 1.

Theorem 33. Let n,m ≥ 1 and let u1, . . . , um ∈ Sn−1, c1, . . . , cm > 0 be such that I =∑m
j=1 cjuj ⊗ uj. If f1, . . . , fm : R→ R+ are integrable functions then

(17)

∫
Rn

m∏
j=1

(fj(〈x, uj〉))cj dx ≤
m∏
j=1

(∫
R
fj

)cj
.

Remark 4. The condition on ci’s in the Brascamp-Lieb inequality is satisfied in the above
setting. Indeed, we have n1 = . . . nm = 1 and

n = tr(I) =
m∑
j=1

cjtr(uj ⊗ uj) =
m∑
j=1

cj|uj|22 =
m∑
j=1

cj =
m∑
j=1

cjnj.

Remark 5. The condition

(18) I =
m∑
j=1

cjuj ⊗ uj

is equivalent to

∀x ∈ Rn, x =
m∑
j=1

cj 〈x, uj〉uj or equivalently to ∀x ∈ Rn, |x|22 =
m∑
j=1

cj 〈x, uj〉2 .

We can easily construct examples of vectors satisfying condition (18). Let H be an n-
dimensional subspace of Rm. Let e1, . . . , em be the standard orthonormal basis in Rm and
let P : Rm → H be the orthogonal projection onto H. Clearly, IRm =

∑m
j=1 ej ⊗ ej and

x =
∑m

j=1 〈x, ej〉 ej, hence Px =
∑m

j=1 〈x, ej〉Pej. If x ∈ H then Px = x and 〈x, ej〉 =

〈Px, ej〉 = 〈x, Pej〉, therefore x =
∑m

j=1 〈x, Pej〉Pej. Thus IH≈Rn =
∑m

j=1 cjuj ⊗ uj, where

cj = |Pej|2 and uj = Pej/|Pej|.

To prove Theorem 33 it suffice to prove that D = 1 in the Brascamp-Lieb setting. Namely,
to show that the condition

m∑
i=1

vi ⊗ vi = In

for some v1, . . . , vm in Rn implies

det

(
m∑
i=1

aivi ⊗ vi

)
≥

m∏
i=1

a
|vi|2
i , a1, . . . , am > 0.

We then use it with vi =
√
ciui to verify that the optimal constant D in the formulation of

BL is equal 1.
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Using Cauchy-Binet formula we have for any n×m matrix A and m× n matrix B that

det(AB) =
∑
|I|=n

det(AI) det(BI),

where the sums rums over all subsets I ⊆ {1, . . . ,m} of cardinality n and AI is obtained by
keeping only the columns indexed by elements of I, whereas BI is obtained by keeping only
the rows indexed by elements of I. Since

m∑
i=1

aivi ⊗ vi =

 | |√
a1v1 . . .

√
amvm

| |

 ·
 —

√
a1v1 —
...

—
√
amvm —


we get

det

(
m∑
i=1

aivi ⊗ vi

)
=
∑
|I|=n

aIdI

where
dI = (det((vi)i∈I))

2 and aI =
∏
i∈I

ai.

Taking a1 = . . . = am = 1 gives
∑
|I|=n dI = det(

∑
vi ⊗ vi) = det(I) = 1. Thus, by AM-GM

we get ∑
|I|=n

aIdI ≥
∏
|I|=n

adII =
m∏
i=1

a
∑
I:i∈I,|I|=n dI

i .

But ∑
I:i∈I

dI =
∑
|I|=n

dI −
∑

I:i/∈I,|I|=n

dI = 1− det

(∑
k 6=i

vk ⊗ vk

)
= 1− det(In − vi ⊗ vi) = 1− det(In − vivTi ) = 1− det(I1 − vTi vi)
= 1− (1− vTi vi) = |vi|2.

Note that we have used the Sylvester identity.

Lemma 13. Suppose X is a m× n matrix and Y is a n×m matrix. Then

det(Im +XY ) = det(In + Y X).

Proof. To prove this, let us first observe that we have the identity(
In −Y
X Im

)
·
(
In Y
0 Im

)
=

(
In 0
X XY + Im

)
.

We have

det

((
In −Y
X Im

)
·
(
In Y
0 Im

))
= det

(
In 0
X XY + Im

)
= det(XY + Im)

Since det(AB) = det(BA), the left hand side is the same as

det

((
In Y
0 Im

)
·
(
In −Y
X Im

))
= det

(
In + Y X 0

X Im

)
= det(In + Y X).

�



41

2.2. John’s ellipsoid theorem. We shall prove the following classical fact.

Theorem 34. Let K be a convex body (compact convex set with non-empty interior). Then

(i) There exists a unique ellipsoid EK ⊆ K with maximal volume.
(ii) If Bn

2 ⊂ K is the ellipsoid of maximal volume contained in a symmetric convex body
K ⊂ Rn then there exist c1, . . . , cm > 0 and contact points u1, . . . , um ∈ Rn such that
|uj|2 = ‖uj‖K = ‖uj‖K◦ = 1 for 1 ≤ j ≤ m and

(19) IRn =
m∑
j=1

cjuj ⊗ uj.

(iii) For symmetric convex body K we have EK ⊆ K ⊆
√
nEK .

(iv) If Bn
2 ⊆ K and there exist contact points u1, . . . , um of Bn

2 and K, and numbers
c1, . . . , cm such that (19) is satisfied, then EK = Bn

2 .

Remark 6. Let K be symmetric. One can define contact points of Bn
2 with K as points

satisfying u ∈ ∂K ∩ Sn−1. In other words, this means |u| = ‖u‖K = 1. We claim that in
this situation also ‖u‖K◦ = 1. Let us take a contact point u and let H be a supporting
hyperplane of K at u. We claim that H = {x : 〈x, u〉 = 1}. From the inclusion Bn

2 ⊆ K
and from the fact that u ∈ ∂K ∩ ∂Bn

2 we see that H is also a supporting hyperplane of
Bn

2 at u. Thus H is unique and equal to {x : 〈x, u〉 = 1}, which is clearly the supporting
hyperplane for the ball Bn

2 . It follows that K ⊆ {x : 〈x, u〉 ≤ 1} and by symmetry of K we
get K ⊆ {x : | 〈x, u〉 | ≤ 1}. Since this is true for any contact point, we in fact get

K ⊆
m⋂
i=1

{x : | 〈x, ui〉 | ≤ 1},

which we shall use in the sequel.
For any u in Rn we have

‖u‖K◦ = sup {| 〈x, u〉 | : x ∈ K} .

If u is a contact point then by the fact that K ⊆ {x : | 〈x, u〉 | ≤ 1} we get ‖u‖K◦ ≤ 1. In
fact we have equality by taking x = u ∈ K and using the fact that |u| = 1.

Proof. (i) By applying a suitable linear transformation we can assume that Bn
2 is the ellipsoid

of maximal volume. Suppose there is some other ellipsoid E contained in K and having the
same volume. There is an invertible linear transformation T and a vector x0 such that
E = TBn

2 + x0. Note that

E − x0 = T{〈x, x〉 ≤ 1} = {x :
〈
T−1x, T−1x

〉
≤ 1} = {x :

〈
T−1x, T−1x

〉
≤ 1}

= {x :
〈
x, (T−1)∗T−1x

〉
≤ 1} = {x :

〈
((T−1)∗T−1)1/2x, ((T−1)∗T−1)1/2x

〉
≤ 1}

= (((T−1)∗T−1)1/2)−1Bn
2 = (TT ∗)1/2Bn

2 ,

where we have used the fact that a positive definite map (T−1)∗T−1 has a square root. Thus,
we can assume that the map T is positive definite.

Consider the ellipsoid

E0 =
x0

2
+
I + T

2
Bn

2 ⊆
Bn

2 + TBn
2 + x0

2
⊆ K,
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where the last inclusion follows by the convexity of K and the fact that both Bn
2 and E are

subsets of K. We shall show that the volume of E0 is strictly bigger that the volume of Bn
2 .

This will be a contradiction. Note that

|E0| = det

(
I + T

2

)
|Bn

2 | ≥
√

det(A)|Bn
2 | = |Bn

2 |,

since |Bn
2 | = |E| = det(T )|Bn

2 | and thus det(T ) = 1. The above inequality is the concavity
of the determinant proved earlier. By maximality of Bn

2 we see that there has to be equality
in the above bound, which gives A = I. Thus, E = Bn

2 + x0. we have E1 := Bn
2 + x0

2
=

1
2
Bn

2 + 1
2
E ⊆ K. Since conv(Bn

2 , E) ⊆ K, it is easy to see that one can dilate E1 a bit in the
direction of [0, x0] to get a bigger ellipsoid contained in K. This is a contradiction.

(ii) Step 1. Since (19) implies that
∑m

i=1 ci = n, we have to show that In
n
∈ conv(C), where

C = {u⊗ u : |u| = ‖u‖K = 1}.

Assume by contradiction that it is not possible. If we view C as a subset of the space Rn2
,

the set conv(C) is compact and convex. Thus, if In
n
/∈ convC, we can find a functional φ

(viewed as a n× n matrix) and a real number r such that

(20)

〈
φ,
In
n

〉
< r < 〈φ, u⊗ u〉

for all u such that |u| = ‖u‖K . Here
〈
(aij)

n
i,j=1, (bij)

n
i,j=1

〉
=
∑n

i,j=1 aijbij.
Step 2. We can assume that φ is a symmetric matrix. Indeed, for symmetric A we have
〈φ,A〉 = 〈φ∗, A〉, where φ∗ is the transpose of φ. Thus, if φ is not symmetric, we can replace
φ with φ+φ∗

2
, not changing (20).

Step 3. Since tr( In
n

) = 1 = tr(u ⊗ u), we can add cI to the matrix φ, not changing the
separation property (take s = r+ c instead of r). Thus, we can assume that tr(φ) = 0, which
means that φ(In) = 0. Thus, we found a functional matrix B and a real number s such that
for all contact point

〈B, u⊗ u〉 > s > 0 and tr(B) = 0.

Note that

0 < s < 〈B, u⊗ u〉 =
n∑

j,k=1

Bjk(u⊗ u)jk =
n∑

j,k=1

Bjkujuk = u∗Bu = 〈Bu, u〉 .

Step 4. Define
Eδ = {x ∈ Rn : 〈(In + δB)x, x〉 ≤ 1} .

For small δ > 0 this is an ellipsoid approaching Bn
2 when δ → 0+. We shall show that for

small δ > 0 this ellipsoid is contained in K and |Eδ| > |Bn
2 |.

Step 5. We verify that indeed |Eδ| > |Bn
2 |. For an invertible symmetric matrix A the set

{〈Ax, x〉 ≤ 1} is an image of Bn
2 under A−1/2. Indeed

{〈Ax, x〉 ≤ 1} = {
〈
A1/2x,A1/2x

〉
≤ 1} = A−1/2Bn

2 .

Thus

|Eδ| =
|Bn

2 |
det(In + δB)1/2

.

However, by AM-GM we have

det(In + δB)1/n <
tr(In + δB)

n
= 1,
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since tr(B) = 0. The inequality is strict since not all the eigenvalues of B are equal (otherwise
tr(B) = 0 would imply that all the eigenvalue are zero, which would mean that B = 0).

Step 6. Let U be the set of contact points. We define

S+ =

{
v ∈ Sn−1 : dist(v, U) ≤ s

4‖B‖

}
, S− =

{
v ∈ Sn−1 : dist(v, U) ≥ s

4‖B‖

}
.

Clearly S+ ∪ S− = Sn−1. Our goal is to show that (for small δ > 0) ∂K 3 v/ ‖v‖K /∈ Eδ for
all unit vector v, which easily implies that Eδ ⊆ K.

Step 7. We first check it for v ∈ S−. By compactness there is ε > 0 such that dist(∂K, S−) ≥
ε > 0 and thus

dist

({
v

‖v‖K
, v ∈ S−

}
, Bn

2

)
≥ ε > 0.

Thus

dist

({
v

‖v‖K
, v ∈ S−

}
,
(

1 +
ε

2

)
Bn

2

)
≥ ε

2
> 0

The assertion follows by observing that for sufficiently small δ > 0 we have Eδ ⊆
(
1 + ε

2

)
Bn

2 .
Step 8. The case v ∈ S+ is more delicate. By Step 3, for every u ∈ U we have

(21) 〈(In + δB)u, u〉 ≥ 1 + δs.

Furthermore, if v ∈ S+ then

|〈(In + δB)v, v〉 − 〈(In + δB)u, u〉| = δ |〈Bv, v〉 − 〈Bu, u〉|
≤ δ |〈Bv, v〉 − 〈Bv, u〉|+ δ |〈Bv, u〉 − 〈Bu, u〉|

≤ 2δ‖B‖|u− v| ≤ 1

2
sδ.

This together with (21) yields 〈(In + δB)v, v〉 ≥ 1 + 1
2
δs > 1 and thus v /∈ Eδ. Since

v ∈ Bn
2 ⊆ K, we have ‖v‖K ≤ 1 and thus also v/ ‖v‖K /∈ Eδ.

This finishes the proof of point (ii).
(iii) Without loss of generality, by applying linear transformation we can assume that
EK = Bn

2 . Then

K ⊆
m⋂
i=1

{| 〈x, ui〉 | ≤ 1}.

Thus, if x ∈ K then

|x|2 =
m∑
i=1

ci 〈x, ui〉2 ≤
m∑
i=1

ci = n.

Thus |x| ≤
√
n, which means that x ∈

√
nBn

2 .
(iv) Clearly by uniqueness of maximal ellipsoid EK is symmetric if the body is symmetric.

Take an ellipsoid

E = {x :
n∑
i=1

〈x, ej〉2

α2
j

≤ 1},

where (ej) is some orthonormal basis. Suppose u ∈ {u1, . . . , um} be a contact point. Take a
point y =

∑n
j=1 αj 〈u, ej〉 ej. We claim that y ∈ E . Indeed, 〈y, ej〉 = αj 〈u, ej〉 and thus

n∑
i=1

〈y, ej〉2

α2
j

=
n∑
i=1

〈u, ej〉2 = |u|2 = 1.
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Since
n∑
j=1

αj 〈u, ej〉 ej = y ∈ E ⊆ K ⊆
m⋂
i=1

{x : | 〈x, ui〉 | ≤ 1} ⊆ {x : | 〈x, u〉 | ≤ 1},

we get 〈
n∑
j=1

αj 〈u, ej〉 ej, u

〉
=

n∑
j=1

αj 〈u, ej〉2 ≤ 1.

But, using (19), this means that

n∑
j=1

α2
j =

n∑
j=1

α2
j |ej|2 =

n∑
j=1

α2
j

m∑
i=1

ci 〈ui, ej〉2 =
m∑
i=1

ci

n∑
j=1

α2
j 〈ui, ej〉

2 ≤
m∑
i=1

ci = n.

Thus (
|E|
|Bn

2 |

)2/n

=

(
n∏
i=1

α2
i

)1/n

≤ 1

n

n∑
j=1

α2
j ≤ 1.

�

Example 3. If K = Bn
∞ then EK = Bn

2 . Indeed, it follows from point (iv) of John’s theorem
as ±ei are contact points and I = 1

2

∑n
i=1 ei ⊗ ei + 1

2

∑n
i=1(−ei)⊗ (−ei).

2.3. Reverse isoperimetric inequality. Let us state the reverse isoperimetric inequality.

Theorem 35. Let K be a symmetric convex body in Rn. Then there exists an affine

transformation K̃ of K such that

(22) |K̃| = |Bn
∞|, and |∂K̃| ≤ |∂Bn

∞|

or equivalently

(23)
|∂K|
|K|n−1

n

≤ |∂Bn
∞|

|Bn
∞|

n−1
n

= 2n.

Before we give a proof of Theorem 35 we introduce the notion of the volume ratio.

Definition 1. Let K ⊂ Rn be a convex body. The volume ratio of K is defined as

vr(K) = inf

{(
|K|
|E|

)1/n

, E ⊂ K is an ellipsoid

}
.

The ellipsoid of maximal volume contained in K is called the John ellipsoid. If the John
ellipsoid of K is equal to Bn

2 then we say that K is in the John position.

We have the following theorem.

Theorem 36. For every symmetric convex body K ⊂ Rn we have

(24) vr(K) ≤ vr(Bn
∞) =

2

(|Bn
2 |)

1/n
.
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Theorem 34 =⇒ Theorem 36. The quantity vr(K) is invariant under invertible linear trans-
formations.We let as an exercise to check that the ellipsoid of maximal volume contained in
K is unique. Therefore we may assume that the John ellipsoid of K is Bn

2 . Using Theorem
34 we find numbers c1, . . . , cm > 0 and unit vectors u1, . . . , um ∈ Rn on the boundary of K
such that

IRn =
m∑
j=1

cjuj ⊗ uj.

Since uj ∈ ∂Bn
2 ∩ ∂K and K is symmetric we get

K ⊂ K ′ := {x ∈ Rn, |〈x, uj〉| ≤ 1, for all 1 ≤ j ≤ m} .

Let fj(t) = 1[−1,1](t) for 1 ≤ j ≤ m. Note that fj = f
cj
j , 1 ≤ j ≤ m. From Theorem 33 we

have

|K| ≤ |K ′| =
∫
Rn

m∏
j=1

f
cj
j (〈x, uj〉) dx ≤

m∏
j=1

(∫
fj

)cj
= 2

∑m
j=1 cj = 2n = |Bn

∞|.

From Example 3 we know that Bn
2 is the John ellipsoid for the cube Bn

∞. Therefore

vr(Bn
∞) =

2

(|Bn
2 |)

1/n
.

�

We now show that Theorem 36 implies Theorem 35.

Proof of Theorem 35. Let K̃ be the linear image of K such that Bn
2 ⊂ K̃ is the John ellipsoid

of K̃. By Theorem 36 we have |K̃| ≤ 2n. Hence,

|∂K̃| = lim inf
ε→0+

|K̃ + εBn
2 | − |K̃|
ε

≤ lim inf
ε→0+

|K̃ + εK̃| − |K̃|
ε

= n|K̃| = n|K̃|
n−1
n · |K̃|

1
n ≤ 2n|K̃|

n−1
n .

This finishes the proof as the ratio |∂K|
|K|

n−1
n

is affine invariant. �

We state yet another application of the geometric Brascamp-Lieb inequality.

Theorem 37. If K is a symmetric convex body in the John position then E ‖G‖K ≥ E|G|∞,
where G is the standard Gaussian vector in Rn, i.e. the vector (g1, . . . , gn) where (gi)i≤n are
independent standard Gaussian random variables.

Proof. As in the proof of Theorem 35 we consider numbers c1, . . . , cm > 0 and vectors
u1, . . . , um satisfying the assertion of the Theorem 34. Note that

K ⊂ K ′ = {x ∈ Rn, | 〈x, uj〉 | ≤ 1 1 ≤ j ≤ m} .

Clearly,

‖G‖K ≥ ‖G‖K′ = max
1≤j≤m

| 〈G, uj〉 |.

Moreover,

E ‖G‖K′ =

∫ +∞

0

P
(

max
j
|〈G, uj〉| ≥ t

)
dt.
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We have |G|∞ = max1≤j≤m | 〈G, ej〉 | so that

E|G|∞ =

∫ +∞

0

P
(

max
j
|〈G, ej〉| ≥ t

)
dt =

∫ +∞

0

(1− P (|g| ≤ t)n) dt,

where g is the standard Gaussian random variable. To get the conclusion, it suffices to prove

P
(

max
j
|〈G, uj〉| ≤ t

)
≤ (P (|g| ≤ t))n .

Take

hj(s) = 1[−t,t](s)
e−s

2/2

√
2π

, fj(s) = 1[−t,t](s).

Since

|x|22 =
m∑
j=1

cj 〈x, uj〉2 ,

Theorem 33 implies that

P
(

max
j
|〈G, uj〉| ≤ t

)
=

∫
Rn

1{(maxj |〈x,uj〉|)≤t}
1

(2π)n/2
e−|x|

2
2/2 dx

=

∫
Rn

m∏
j=1

f
cj
j (〈x, uj〉)

1

(2π)n/2
exp

(
−| 〈x, uj〉 |

2

2

)cj
dx

=

∫
Rn

m∏
j=1

hj (〈x, uj〉)cj dx

≤
m∏
j=1

(∫
hj

)cj
=

(∫ t

−t

1√
2π
e−u

2/2 du

)n
= (P (|g| ≤ t))n ,

where we have used the fact that
∑m

j=1 cj = n. �

3. KLS localization

3.1. Topological vector spaces. Let us define topological vector spaces.

Definition 2. A vector space X (over R) which is also equipped with some topology τ
(family of open sets) is called a topological vector space if the singletons {x} are closed sets
and the operations X×X → X given by (x, y)→ x+y and R×X → X given by (a, x)→ ax
are continuous (the product spaces are equipped with product topologies and R is equipped
with the usual topology).

Note that it immediately follows that translations and multiplications by non-zero scalars
are homeomorphisms of X. Thus, the topology τ is translation invariant – U is open if and
only if x+ U is open for ant x ∈ X.

Recall that a neighbourhood of x ∈ X is any open set containing x. The collection τ ′ ⊂ τ
is a base for τ if every member of τ is a union of elements from τ ′. A collection ω of
neighbourhoods of x ∈ X is a local base if every neighbourhood of x contains a member of ω.
Note that by the translation invariance of τ the topology τ consists of all possible translates
of neighbourhoods of 0.
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Fact 38 (W. Rudin, Functional Analysis, 1.10). Suppose K is compact and C is closed in
some t.v.s. and K ∩ C = ∅. Then there is a neighbourhood V of 0 such that

(K + V ) ∩ (C + V ) = ∅.

Proof. If W is a neighborhood of 0 then there is a symmetric neighborhood U of 0 such that
U + U ⊆ W . Indeed, since the addition is continuous, there are neighborhood V1, V2 of 0
such that V1 + V2 ⊆ W . So it suffices to take U = V1 ∩ V2 ∩ (−V1) ∩ (−V2).

Applying the same trick for U we can get a symmetric neighborhood of 0 such that

U + U + U + U ⊆ W

and in particular U + U + U ⊆ W .
Now, we can assume that K 6= ∅. Take x ∈ K. We know that x /∈ C. Using the

translation invariance of the topology and the fact that W = X \ C is a neighborhood of
x, we get asymmetric neighborhood Vx of x such that x + Vx + Vx + Vx ⊆ X \ C and thus
(x + Vx + Vx + Vx) ∩ C = ∅. By the symmetry of Vx we get (x + Vx + Vx) ∩ (C + Vx) = ∅.
By compactness one can find x1, . . . , xn in K such that

K ⊆ (x1 + Vx1) ∪ . . . ∪ (xn + Vxn).

Take V = Vx1 ∩ . . . ∩ Vxn . Then

K + V ⊆
n⋃
i=1

(xi + Vxi + V ) ⊆
n⋃
i=1

(xi + Vxi + Vxi)

But for any i

(xi + Vxi + Vxi) ∩ (C + V ) = (xi + Vxi + Vxi) ∩ (C + Vx1 ∩ . . . ∩ Vxn)

= (xi + Vxi + Vxi) ∩ (C + Vx1) ∩ . . . ∩ (C + Vxn)

⊆ (xi + Vxi + Vxi) ∩ (C + Vxi) = ∅.
Thus (K + V ) ∩ (C + V ) = ∅. �

Since C + V is a union of sets of the form c + V , c ∈ C, this set is open. Thus it is also
true that

(K + V ) ∩ (C + V ) = ∅.
In particular

(K + V ) ∩ C = ∅.
Taking K = {x} (clearly they are compact by definition of compactness) we get the following
fact.

Fact 39. Every neighbourhood of 0 contains a closure of some other neighbourhood of 0. In
particular, every member of a local base at 0 contains a closure of some other member of a
local base at 0.

Taking K and C to be singletons in the Fact 38 we get the following fact.

Fact 40. Every topological vector space is a Hausdorff space. In particular, every compact
subset of a topological vector space is closed.

Fact 41. Let X be a t.v.s. and let A,B ⊆ X. Suppose λ is a real number. Then

(i) λA = λA,
(ii) A+B ⊆ A+B,
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(iii) if A is convex then A is also convex.

Proof. (i) If λ = 0 this is obvious. If λ 6= 0 it follows from the fact that f(x) = λx is a

homeomorhpism as for homeomorhpism we always have f(A) = f(A).
(ii) Let a ∈ A and b ∈ B and let W be a neighbourhood of a + b. Then there are

neighbourhoods Wa,Wb of a and b such that Wa +Wb ⊆ W . By the definition of the closure
of A (intersection of closed supersets of A) we immediately get that any neighbourhood of
a must have a non-empty intersection with A. Thus there exist points x ∈ A ∩ Wa and
y ∈ B ∩Wb. Thus

x+ y ∈ (A+B) ∩ (Wa +Wb) ⊆ (A+B) ∩W.
In particular (A+B) ∩W 6= ∅. Since W was arbitrary, we get that a+ b ∈ A+B.

(iii) From the first two points we get

λA+ (1− λ)A = λA+ (1− λ)A ⊆ λA+ (1− λ)A = A.

�

We will also need the notion of the convex hull. For K being a subset of a vector space X
we define

conv(K) =

{
n∑
i=1

λixi : xi ∈ K, λi ≥ 0,
n∑
i=1

λi = 1, n ≥ 1

}
.

This is clearly the smallest convex set which contains K.

Fact 42. Suppose A1, . . . , An are convex compact subsets of a t.v.s. X. Then conv(A1 ∪
. . . ∪ An) is compact.

Proof. Let

S = {(s1, . . . , sn) : si ≥ 0, i = 1, . . . , n, s1 + . . .+ sn = 1}.
Take A = A1 × . . . × An and define f : S × A → X via f(s, a) = s1a1 + . . . + snan. Take
K = f(S × A). This set is clearly compact as an image of a compact set under continuous
map. Clearly K ⊆ conv(A1 ∪ . . .∪An). It is also straightforward to check that K is convex.
Thus since Ai ⊆ K (take si = 1) we get A1 ∪ . . . ∪An ⊆ K and by convexity of K we arrive
at conv(A1 ∪ . . . ∪ An) ⊆ K, which yields conv(A1 ∪ . . . ∪ An) = K and the compactness of
conv(A1 ∪ . . . ∪ An) follows. �

3.2. Locally convex spaces.

Definition 3. A t.v.s. X is called locally convex (l.c.) if it has a local base whose members
are convex.

Theorem 43 (Milman’s theorem). Let X be a l.c.t.v.s. and let K be a compact set such
that conv(K) is also compact. Then ext(conv(K)) ⊆ K.

Proof. Assume there is p ∈ ext(conv(K)) such that p /∈ K. From Fact 38 and Fact 39 we
can find a neighbourhood V of 0 such that (p + V ) ∩ K = ∅. Moreover, by the definition
of l.c. spaces we can assume that V is convex. Furthermore, by taking V ∩ (−V ) instead
of V be can assume that V is symmetric (V = −V ). By compactness of K there are points
x1, . . . , xn ∈ K such that K ⊆

⋃n
i=1(xi + V ). The sets

Ai = conv((xi + V ) ∩K) ⊆ conv(K)
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are closed subsets of compact set and thus they are compact. They are also convex as closures
of convex sets (Fact 41 (iii)). Clearly K ⊆

⋃n
i=1Ai. Thus Fact 42, together with the fact

that in Hausdorff spaces compact sets are closed, yields

conv(K) ⊆ conv

(
n⋃
i=1

Ai

)
= conv

(
n⋃
i=1

Ai

)
.

Since Ai ∈ conv(K) we also have conv (
⋃n
i=1Ai) ⊆ conv(K) and thus

conv(K) = conv

(
n⋃
i=1

Ai

)
.

In particular, p =
∑n

i=1 λiai, where ai ∈ Ai ⊆ conv(K) and λi ∈ [0, 1] sum up to 1. By
extremality of p in conv(K) we get that there is i such that

p ∈ Ai = conv((xi + V ) ∩K) ⊆ xi + V ⊆ K + V .

Here the first inclusion follows from the fact that xi +V are closed and convex. Get get that
p = k + v, where k ∈ K and v ∈ V . Since V is symmetric (since V = −V = −V ) we get
p+ V 3 p− v = k ∈ K and thus (p+ V ) ∩K 6= ∅ contradicting our initial assumption. �
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Theorem 44 (Bauer’s Maximum Principle). Let K be a nonempty compact convex set in
some l.c.t.v.s., and let g : K → R be a convex upper semi-continuous function. Then g
attains its maximum over K at some extreme point of K.

Proof. Step 1. Let m = supx∈K g(x). We first prove that m < ∞. Indeed, take the sets
Mn{x ∈ K : g(x) ≥ n}. Then Mn are closed (since g is upper semi-continuous) and their
intersection is empty. Thus (M c

n)n form an open covering of K and so by compactness of
K there is a finite sub-cover (M c

n′)n′). One of these sets includes the other ones (since the
family is decreasing) and thus for some m we have K = M c

m and thus Mm = ∅. The assertion
follows.

Step 2. Define M = {y ∈ K : g(y) = m}. We claim that this set is non-empty. To prove
it define closed non-empty sets Mn = {x ∈ K : g(x) ≥ m − 1

n
}. We have M =

⋂∞
n=1 Mn

and this intersection is non empty (the argument is similar to the above reasoning; assuming
empty intersection we get that (M c

n) is a cover of K which then has an open sub-cover (M c
n)),

but this means that
⋂
m(M c

m) is empty, this is not possible since the family is decreasing and
all the sets are non-empty).

Step 3. We claim that M is compact. Indeed M = {y ∈ K : g(y) = m} = {y ∈
K : g(y) ≥ m}, which is closed as g is upper semi-continuous. Since M ⊆ K and K is
compact, the assertion follows (recall that closed subsets of compact sets in Hausdorff spaces
are compact).

Step 4. We shall show that M is extremal in K, that is, whenever x ∈M is written in the
form x = λx1 + (1 − λ)x2 for some x1, x2 ∈ K, we must have x1, x2 ∈ M . Indeed, for such
representation we gave, by convexity of g,

m = g(x) = g(λx1 + (1− λ)x2) ≤ λg(x1) + (1− λ)g(x2) ≤ λm+ (1− λ)m = m.

Thus g(x1) = g(x2) = m and so x1, x2 ∈M .
Step 5. We claim that if M ⊆ K is extremal in K then

(25) ext(conv(M)) ⊆M ∩ ext(K).

Since M is compact, the inclusion ext(conv(M)) ⊆M follows from Milman’s theorem (The-
orem 43). Note that in order to use this theorem we need to know that conv(M) is compact
which is true as it is a close subset of K (this follows from the fact that M ⊆ K and K is
closed and convex). Not suppose x ∈ ext(conv(M)). We shall show that x ∈ ext(K). Of
course from Milman x ∈ M ⊆ K. Assume that x = λx1 + (1 − λ)x2 for some x1, x2 ∈ K.
Since M is extremal in K, we get that x1, x2 ∈ M ⊆ conv(M). By the extremality of x in
conv(M) we infer that x1 = x2 = x. This proves that x ∈ ext(K).

Step 6. Now it suffices to use Krain-Milman theorem to claim that ext(conv(M)) is non-
empty (together with the fact that the closure of a convex set is convex, which is Fact
41(iii)). Thus from (25) there is an element in M ∩ ext(K), that is an extremal point such
that g(x) = m.

�

4. KLS localization proof

Let K be a compact set in Rn. The function f : K → R is called upper semi-continuous
if for any sequence (xn) ⊆ K converging to some point x ∈ K we have

lim sup
n→∞

f(xn) ≤ f(x).
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Equivalently, for any y the set {f ≥ y} is closed. In fact we shall use this second definition
to deal with functions defined on arbitrary topological spaces.

Theorem 45. Let P(K) be the set of regular Borel probability measures supported in the
compact set K ⊆ Rn. Suppose f : K → R and φ : P(K) → R are upper semi-continuous.
Define Pf ⊆ P(K) via

Pf =

{
µ : µ is a log concave probability measure in K with

∫
fdµ ≥ 0

}
.

Then supµ∈Pf φ(µ) is attained on ext(conv(Pf )).

Before we give a proof of this fact let us discuss certain preparatory facts. The set conv(Pf )
consists of certain probability measures. We treat it as a subset of the linear space of Borel
regular Radon measures, which is known to be the dual of C(K), the space of continuous
function on K with the sup norm

‖f‖ = sup
x∈K

f(x).

On the dual C(K)∗ we can consider a norm given by

‖µ‖ = sup{µ(f) : f ∈ C(K), ‖f‖ ≤ 1}.
However, we shall equip C(K)∗ with the so-called weak-∗ topology, which is the smallest
topology such that for any f ∈ C(K) the pointwise evaluation functionals Tf : C(K)∗ → R
given by Tf (µ) = µ(f) are continuous. Due to the celebrated Banach-Alaoglu theorem for
any normed space X the unit ball (in the dual norm) in the dual space X∗ is weak-∗ compact.
Thus, the unit ball BC(K)∗ in the space C(K)∗ is weak-∗ compact. The unit ball in this case
consists of all measures µ ∈ C(K)∗ satisfying∣∣∣∣∫ fdµ

∣∣∣∣ ≤ 1, for all f with ‖f‖ ≤ 1.

In particular, we trivially have Pf ⊆ BC(K)∗ .
Note that BC(K)∗ is closed in weak-∗ topology. Indeed, the set of measures satisfying
|
∫
fdµ| ≤ 1 for fixed f is the same as the set of functionals satisfying |µ(f)| ≤ 1 (in the

functional analytic notation), which is closed due to the definition of weak-∗ topology. We
now intersect these sets for all f with ‖f‖ ≤ 1 and get thatBC(K)∗ is closed. As a consequence,
since BC(K)∗ is convex and closed, the set conv(Pf ) is a closed subset of a compact set BC(K)∗

and thus it is itself compact (general easy fact from topology saying that a closed subset of
a compact set is compact).

The claim that the set P(K) is weak-∗ compact. Of course it is a subset of BC(K)∗ . The
only thing we have to show is that P(K) is closed. Let A be a closed subset of K. Define
fε,A(x) = (1 − dist(x,A)/ε)+. From the definition of weak-∗ topology the set of measures
satisfying

∫
fε,Adµ ∈ [0, 1] is closed. Intersecting this for any ε > 0 and any A shows that the

set of measures in C(K)∗ satisfying
∫
fε,Adµ ∈ [0, 1] for any A and any ε > 0 is closed. We

claim that this set is actually equal to the set of measure µ in C(K)∗ satisfying µ(A) ∈ [0, 1]
for any Borel set A ⊆ K. Indeed, for closed sets, by the Lebesgue dominated convergence
theorem for there measures, we have

lim
ε→0+

∫
fε,Adµ =

∫
lim
ε→0+

fε,Adµ = µ(A) ∈ [0, 1].
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Thus, for all closed (and open) sets A we have µ(A) ∈ [0, 1]. The assertion for general Borel
sets follows form the regularity of µ. If we further intersect our set with the set of measures
satisfying µ(K) = 1 (which is again closed as a preimage of the evaluation function for f ≡ 1),
we get that the set P(K) is closed in C(K)∗.

We would like to show that also Pf is compact. Consider continuous functions f, g, h :
K → R. The function

Ψ(µ) =

∫
hdµ−

∣∣∣∣∫ fdµ

∣∣∣∣λ ∣∣∣∣∫ gdµ

∣∣∣∣1−λ
is the superposition of the maps

µ→
(∫

fdµ,

∫
gdµ,

∫
hdµ

)
and Φ(x, y, z) = z − |x|λ|y|1−λ

and thus it is continuous. Thus Ψ−1([0,∞)) is closed. If we intersect this set with the closed
P(K), we get that for any continuous non-negative functions f, g, h the set of probability
Radon measures satisfying ∫

hdµ ≥
(∫

fdµ

)λ(∫
gdµ

)1−λ

is closed and therefore compact. Therefore, the Radon probability measures satisfying the
assertion of Prékopa-Leindler inequality for for continuous functions, that is

h(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ =⇒
∫
hdµ ≥

(∫
fdµ

)λ(∫
gdµ

)1−λ

form a compact set. These are precisely the log-concave measures. Indeed, log-concave
measures satisfy the Prékopa-leindler inequality. On the other hand, if Prékopa-Leindler is
satisfied for continuous f, g, h and the measure µ is regular, then it is also satisfied for general
Borel-measurable functions and thus taking standard function h = 1λA+(1−λ)B, f = 1A and
g = 1B yields the inequality

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ,

which gives the log-concavity of µ (due to the celebrated result of Borel, which we shall not
discuss here, this is the same as the set Pf used by us). We have shown the compactness of
log-concave measures on K. Now, the compactness of Pf follows by observing that the set of
measures in P(K) satisfying

∫
fdµ ≥ 0 for a fixed upper semi-continuous function is closed.

This would follow if we could prove the semi-continuity of the functional µ 7→
∫
fdµ. Upper

semi-continuous functions are known to be monotone non-increasing limits of continuous
functions. Therefore there are continuous functions fn ↘ f . If µ is a Radon probability
measure then

∫
fdµ ≥ 0 is equivalent to

∫
fndµ ≥ 0 for any n ≥ 1, due to the Lebesgue

dominated convergence theorem. The set

∞⋂
i=1

{
µ :

∫
fndµ ≥ 0

}
is compact as the intersection of compact sets and thus we deduce that Pf closed and therefore
compact.

We are now ready go give a proof of Theorem 45.
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Proof of Theorem 45. We already know that Pf is compact. Applying Bauer’s principle
(Theorem 44) to the convex compact set conv(Pf ) we get that Φ attains its maximum at
ext(conv(Pf )). We will show that ext(conv(Pf )) ⊆ ext(conv(Pf )). Indeed, suppose x ∈
ext(conv(Pf )). By Milman’s theorem (Theorem 43) we have x ∈ Pf . Suppose that x =
λx1+(1−λ)x2, λ ∈ (0, 1), x1, x2 ∈ conv(Pf ). Obviously x1, x2 ∈ conv(Pf ) and by extremality
of x in conv(Pf ) we get x = x1 = x2. Thus, x ∈ ext(conv(Pf )). The description of possible
maximizers follows from Theorem 46. �

Remark 7. In the above reasoning it is important to know that x ∈ Pf . Otherwise we would
not be able to use the definition of extremality, which requires the point to be in the convex
set we are dealing with. To understand it better one can attempt to prove a false statement
that A ⊆ B (A,B - convex) implies ext(B) ⊆ ext(A).

4.1. Description of extreme points. Let us mention that the set of extreme points of
the convex hull of log-concave measures on K is the set of all Dirac masses. Indeed, if µ
is log-concave and µ is not a Dirac mass, then there is a hyperplane H dividing Rn into
half-spaces H+ and H− such that µ|H+ and µ|H− are non-zero measures and µ(H) = 0. Thus

µ = µ(H+)
µ|H+

µ(H+)
+ µ(H−)

µ|H−

µ(H−)
,

which is a non-trivial convex combination of log-concave probabilities µ|H+/µ(H+) and
µ|H−/µ(H−). Thus µ is not extreme.

Our goal is to characterize extreme points of convPf . A segment [a, b] ⊂ Rn is the set
{a+ t(b− a) : t ∈ [0, 1]}, where a, b ∈ Rn. We shall discuss the following theorem.

Theorem 46. Let ν be an extreme point of conv(Pf ). Then one of the following holds

(i) ν is a Dirac masses at point x such that f(x) ≥ 0,
(ii) ν is supported on a segment [a, b] ⊂ K such that on that segment the density of ν is

log-affine,
∫
fdν = 0 and

(26)

∫ x

a

fdν > 0, for all x ∈ (a, b) or

∫ c

x

fdν > 0, for all x ∈ (a, b).

Proof. Let us assume that ν is an extreme point in conv(Pf ) which is not a Dirac mass. We
will prove that it is of the form (ii). Clearly we have ν ∈ Pf since otherwise by the definition
of convex hull it is a non-trivial combination of elements of Pf . Let G be the least affine
subspace containing the support of ν.

Step 1. We will prove that dimG = 1. Suppose that dimG ≥ 2. Let x0 be any interior
point (in G) of the support of ν (the support of ν has interior point as it is a convex set of
full dimension (in G). Let E be a two dimensional subspaces such that x0 +E ⊆ G. Take a
unit circle in S1(E) in E and for any u ∈ S1(E) define hyperplane Hu and half-spaces H+

u

and H−u by

Hu = {x ∈ G : 〈x− x0, u〉 = 0}, H±u = {x ∈ G : 〈x− x0,±u〉 ≥ 0}.

Define ϕ : S1(E)→ R by ϕ(u) =
∫
H+
u
fdν− 1

2

∫
fdν. Clearly ϕ(u)+ϕ(−u) = 0, which follows

from the fact that H+
−u = H−u . Thus ϕ(−u) = −ϕ(u) which means that ϕ(u) and ϕ(−u)

are either both zero or have opposite signs. The usual Darboux principle together with the
continuity of ϕ (which follows from the fact that ν(Hu) = 0) shows that there is ϕ(u0) = 0.
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The choice of x0 ensures that ν(H+
u0

) > 0 and ν(H−u0) > 0. Since ϕ(u0) = ϕ(−u0) = 0 we get
that ϕ(u) =

∫
H±u

fdν = 1
2

∫
fdν. Thus, the measures

µ|H+
u0
/µ(H+

u0
), µ|H−u0

/µ(H−u0)

are probability measure belonging to Pf and

µ = µ(H+
u0

)
µ|H+

u0

µ(H+
u0

)
+ µ(H−u0)

µ|H−u0
µ(H−u0)

,

which contradicts extremality of ν.
Step 2. We can therefore assume, without loss of generality, that ν is supported on [a, b] ⊂

R. If the continuous function x 7→
∫ x
a
fdν has a sign on (a, b) then it is either positive or

negative. In the former case the first condition in (26) holds true, whereas in latter case the
second condition has to be satisfied as∫ c

x

fdν =

∫
fdν −

∫ x

a

fdν ≥ −
∫ x

a

fdν ≥ 0.

Thus, suppose that for some x ∈ (a, b) we have
∫ x
a
fdν = 0. Since then

∫ c
x
fdν ≥ 0 we

get that the measures ν1 = ν|[a,x]/ν([a, x]) and ν2 = ν|[x,c]/ν([x, c]) belong to Pf and satisfy
ν = ν[a, x]ν1 + ν[x, c]ν2, which again leads to contradiction. To prove that

∫
fdν = 0 let

us assume that
∫
fdν > 0. By Darboux principle there is x ∈ (a, b) such that

∫ x
a
fdν =

1
2

∫
fdν > 0. The also

∫ c
x
fdν = 1

2

∫
fdν > 0 and defining ν1 and ν2 as before again leads to

contradiction.
Step 3. We shall finally prove that ν is log-affine. Without loss of generality we can assume

that
∫ x
a
fdν > 0 for all x ∈ (a, b). Let ψ be the density of ν. Take any c ∈ (a, b) and define

ϕα(x) = 1
2
ψ(c)eα(x−c). Consider the measures

dµα = (ψ − ϕα)+dx, dνα = min{ψ, ϕα}dx.

Note that since ϕα(x) = 1
2
ψ(c) < ψ(c), the measure µα is non-zero. It is clear that να

is log-concave, as the maximum of convex functions is convex. We claim that also µα is
log-concave. To check it we observe that the support of µα is an interval (the inequality
ψ ≥ ϕα is equivalent to lnψ − lnϕα ≥ 0, where the left hand side is concave). Thus its
support the measure has density ψ−ϕα = ϕα(e−V −1), where V = − ln(ψ/ϕα) is convex and
non-positive. We check that g = e−V − 1 is log-concave. We are to check that gg′′ ≤ (g′)2.
This is equivalent to

(e−V − 1)((V ′)2 − V ′′)e−V ≤ (V ′)2e−2V ,

which is the same as V ′′(1− e−V ) ≤ (V ′)2. This is true as the left hand side is non-positive.
Thus µα is log-concave.

Since
∫
fdν = 0 and

∫ c
a
fdν > 0, we have (by using Lebesgue dominated convergence

theorem)

lim
α→−∞

∫
fdνα =

∫ c

a

fdν > 0, lim
α→+∞

∫
fdνα =

∫ b

c

fdν < 0.

Thus, by continuity of α →
∫
fdνα there is α0 such that fdνα0=0. Clearly µα + να = ν and

thus
∫
fdµα0 =

∫
fdν = 0. Take

ν1 =
µα0

1− λ
, ν2 =

να0

λ
, where λ = να0 [a, b], 1− λ = ν[a, b]− να0 [a, b] = µα0 [a, b].
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We get ν = λν1 + (1 − λ)ν2, where ν1 and ν2 are probability measures in Pf . This is a
contradiction. �

We are ready to deduce the so-called four function theorem.

Theorem 47. Let f1, f2, f3, f4 : Rn → R be nonnegative and such that f1, f2 are upper
semi-continuous and f3, f4 are lower semi-continuous. Suppose α, β > 0. Then the inequality(∫

f1dµ

)α(∫
f2dµ

)β
≤
(∫

f3dµ

)α(∫
f4dµ

)β
holds true for any log-concave measure µ if and only if it holds for Dirac masses and log-affine
measures supported on one-dimensional segments.

Proof. By considering µk = µ|kBn2 one can assume that µ is compactly supported on some

convex compact set K. By considering f3 + 1
n

instead of f3 we can assume that f3 > 0.
Define

f = f1 −
∫
f1dµ∫
f3dµ

f3, Φ(θ) =

(∫
f1dµ∫
f3dµ

)α
β
∫
f2dθ −

∫
f4dθ.

The functional Φ is affine and upper semi-continuous. Indeed by upper semi-continuity of f2

and lower semi-continuity of f4 we have

lim sup
n→∞

∫
f2dµn ≤

∫
f2dµ, lim inf

n→∞

∫
f4dµn ≥

∫
f4dµ

whenever µn ⇒ µ. Clearly µ ∈ Pf . By Theorem ?? we get that there is ν ∈ Pf of the special
form described in Theorem 46 such that Φ(µ) ≤ Φ(ν). Thus,(∫

f1dµ∫
f3dµ

)α
β
∫
f2dµ−

∫
f4dµ ≤

(∫
f1dµ∫
f3dµ

)α
β
∫
f2dν −

∫
f4dν

≤
(∫

f1dν∫
f3dν

)α
β
∫
f2dν −

∫
f4dν ≤ 0,

where the second inequality follows form
∫
fdν ≥ 0 and the last from the assumptions of the

theorem. The assertion follows. �

We shall give several examples of the use of localization lemma.

Example 4. Let us prove the following theorem.

Theorem 48. Suppose HessV ≥ c2I on Rn, where c > 0. Let µ be a probability measure
with density e−V . Then for all measurable sets A we have

(27) µ(Ah) ≥ Φ
(
Φ−1(µ(A)) + ch

)
,

where Φ(s) = (2π)−1/2
∫ s
−∞ e

−x2/2dx and Ah = {x : d(x,A) < h}.

Proof. Step 1. It is enough to consider c = 1. Indeed, let us take the measure ν(A) = µ(A/c).
Then ν has density e−V (y/c)c−n and thus it satisfies our assumption with c = 1. Since
(1
c
A)h = 1

c
Ach we get, by taking 1

c
A instead of A that

Φ
(
Φ−1(ν(A)) + ch

)
≤ µ((

1

c
A)h) = µ(

1

c
Ach) = ν(Ach).

Taking h instead of ch finishes the argument.
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Step 2. To deal with the case c = 1 take a compact convex set A and a number m ∈ (0, 1).
It suffices to show that µ(A) ≥ m implies µ(Ah) ≥ Φ(Φ−1(m) + h). Consider

f = ϕ(1A −m), g = −ϕ(1Ah − Φ(Φ−1(m) + h)).

Here Ah = {x : d(x,A) < h} and thus Ah is open. Thus both f and g are upper semi-
continuous. The inequality µ(A) ≥ m is equivalent to

∫
fdµ ≥ 0, where µ is log-concave.

The functional Φ(µ) =
∫
gdµ is upper semi-continuous. Our goal is to show that Φ(µ) ≤ 0 on

the set Pf . By Theorem ?? the maximal value of this functional is attained on some extreme
point of conv(Pf ). Therefore it suffices to show the inequality Φ(ν) ≤ 0 for ν ∈ ext(conv(Pf )),
that is for ν being log-affine on segments [a, b] ⊂ Rn (and for Dirac masses in which case the
inequality is obvious as δx ∈ Pf implies x ∈ A and thus x ∈ Ah which gives Φ(δx) ≤ 0).

Step 3. Let l be the line containing [a, b]. Since (A ∩ l)h ⊆ Ah ∩ l, we can assume that A
is a subset of the real line and reduce the problem to the case n = 1. We show that every
probability measure µ on the real line whose density is of the form f = ρϕ is a contraction
of γ1. The non-decreasing map T transporting γ1 onto µ satisfies µ(−∞, T (x)) = Φ(x), that
is T (x) = F−1(Φ(x)). Computing the derivative gives

T ′(x) =
Φ′(x)

F ′(F−1(Φ(x)))
=

ϕ(x)

f(F−1(Φ(x)))
.

We would like to show that T ′(x) ≤ 1, which is equivalent to ϕ(x) ≤ f(F−1(Φ(x))). Taking
p = Φ(x) we can rewrite it in the form ϕ(Φ−1(p)) ≤ f(F−1(p)). We shall prove something
more general, namely that every finite measure (non-necessarily probability measure) satisfies
the implication

µ(−∞, x0) ≥ p, µ(x0,∞) ≥ 1− p, p ∈ (0, 1) =⇒ f(x0) ≥ ϕ(Φ−1(p)).

To this end we first assume that our assertion is true for ρ being log-affine on R. We shall
prove it for general ρ. Indeed, let l(x) be the tangent line to the graph of a convex function
U = − ln ρ at x0. Define ρ0 = e−l ≥ ρ and let µ0 be the measure with density ρ0ϕ. If µ, p
and x0 satisfy µ(−∞, x0) ≥ p, µ(x0,∞) ≥ 1 − p for some p ∈ (0, 1), then also µ0 satisfies
the same condition as ρ0 ≥ ρ. Thus f(x0) = f0(x0) ≥ ϕ(Φ−1(p)).

So, it is enough to assume that f(x) = Ceλxϕ(x). The conditions

µ(−∞, x0) =

∫ x0

−∞
Ceλsϕ(s)ds = Ceλ

2/2Φ(x0 − λ) ≥ p,

µ(x0,∞) =

∫ ∞
x0

Ceλsϕ(s)ds = Ceλ
2/2(1− Φ(x0 − λ)) ≥ 1− p

are equivalent to

C ≥ e−λ
2/2 max

{
p

Φ(x0 − λ)
,

1− p
1− Φ(x0 − λ)

}
.

Thus

f(x0) = Ceλx0ϕ(x0) ≥ e−λ
2/2eλx0ϕ(x0) max

{
p

Φ(x0 − λ)
,

1− p
1− Φ(x0 − λ)

}
= ϕ(x0 − λ) max

{
p

Φ(x0 − λ)
,

1− p
1− Φ(x0 − λ)

}
.
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It is therefore enough to show that for every y ∈ R we have

ϕ(y) max

{
p

Φ(y)
,

1− p
1− Φ(y)

}
≥ ϕ(Φ−1(p)).

For y ≤ Φ−1(p) the inequality reduces to pϕ(y)/Φ(y) ≥ ϕ(Φ−1(p)). Here y = Φ−1(p) give
equality. Thus, it suffices to observe that the function ϕ(y)/Φ(y) = (log Φ(y))′ is decreasing.
This follows form the fact that Φ(y) is concave as the tail of log-concave measure (see Lemma
??). The case y ≥ Φ−1(p) follows by the same argument.

Step 4. Now we show that the validity of (27) is reserved under contractions. In general, we
shall show that every inequality of the form

µ(Ah) ≥ Ψ(µ(A), h)

is preserved. Indeed, suppose µ is an image of µ0 under a map T with Lipschitz norm at
most 1. Then

µ(At) = µ(A+ tBn
2 ) = µ0(T−1(A+ tBn

2 )) ≥ µ0(T−1(A) + tBn
2 )

≥ Ψ(µ0(T−1(A)), h) = Ψ(µ(T−1(A)), h).

Here the first inequality follows from the inclusion T−1(A) + tBn
2 ⊆ T−1(A+ tBn

2 ). To show
it observe that it is equivalent to T (T−1(A)+ tBn

2 ) ⊆ A+ tBn
2 . Now take a point x ∈ T−1(A).

We have to show that T (x+ ty) ∈ A+ tBn
2 for every y ∈ Bn

2 . In other words, we shall show
that d(T (x+ ty), A) < t. This is true as T (x) ∈ A and d(T (x+ ty), T (x)) ≤ t|y| < t.

Step 5. The theorem is now established as γ1 satisfies (27) with c = 1 (Gaussian isoperimetric
inequality). If one wants to get (27) only for convex sets, it is enough to check it for γ1 and
interval on the real line. Let us do this. Let us fix m ∈ (0, 1) and consider intervals [a, b]
such that

γ1[a, b] = (2π)−1/2

∫ b

a

e−x
2/2dx = m.

We would like to maximize

ψ(a) := γ1([a, b]h) = γ1[a− h, b+ h] = (2π)−1/2

∫ b+h

a−h
e−x

2/2dx.

Let us consider b = b(a) as a function of a. By symmetry we can assume that a ≤ −b(a).

Differentiating the constrain gives e−a
2/2 = e−b(a)2/2b′(a). We have

ψ′(a) = e−(b(a)+h)2/2b′(a)− e−(a−h)2/2 = e−(b(a)+h)2/2e−a
2/2eb(a)2/2 − e−(a−h)2/2

= e−a
2/2e−h

2/2(e−bh − eah) ≥ 0.

Thus, the minimum is achieved for a = −∞ (which corresponds to half-line) and the maxi-
mum for a = −b(a), which give a symmetric interval. �

Example 5. Using localization one can reduce proving Brunn-Minkowski inequality in Rn

to the case n = 1. Indeed, suppose we want to show that a probability measure µ with
log-concave density supported on some affine subspace of Rn satisfies

µ(λA+ (1− λ)B) ≥ µ(A)λ(µ(B))1−λ, λ ∈ [0, 1]

for every compact sets A,B in Rn. Let us use Theorem 47 with f1 = 1A, f2 = 1B and
f3 = f4 = 1(λA+(1−λ)B)ε . Here the ε-enlargement is considered to be the open enlargement
and thus f3 = f4 is lower semi-continuous. Taking the limit ε → 0+ recovers the desired
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inequality due to the continuity of measure. Now, Theorem 47 allows us to reduce our
inequality (with ε > 0) to the case of µ being log-affine on some segments [a, b] ⊆.

In this case let us prove the inequality for A,B being convex. Let l be the line containing
[a, b]. Since λ(A ∩ l) + (1 − λ)(B ∩ l) ⊆ (λA + (1 − λ)B) ∩ l, we can assume that A,B are
intervals on the real line, which reduces the problem to the casen = 1. In this case we will
prove the desired inequality already for ε = 0. By scaling and translating we can assume
that a = 0 and b = 1. The inequality is invariant under multiplying µ by a constant, so
the assumption of µ being a probability measure is not needed. Therefore, it is enough to
consider dµ(x) = eαx1[0,1](x), α ∈ R. Note that one can assume that inf(A ∪ B) = 0 and
sup(A ∪ B) = 1, since otherwise we can truncate the support of the measure µ without
changing the inequality. We therefore have to consider only two cases: A = [0, c], B = [d, 1]
and A = [0, 1], B = [c, d].

In the first case we have λA+ (1− λ)B = [(1− λ)d, 1− λ+ λc]. Thus, we are to show∫ 1−λ+λc

(1−λ)d

eαxdx ≥
(∫ c

0

eαxdx

)λ(∫ 1

d

eαxdx

)1−λ

.

This is equivalent to ∣∣eα(1−λ+λc) − eα(1−λ)d
∣∣ ≥ |eαc − 1|λ

∣∣eα − eαd∣∣1−λ .
Dividing this by eα(1−λ)d gives∣∣eα(1−λ+λc−(1−λ)d) − 1

∣∣ ≥ |eαc − 1|λ
∣∣eα(1−d) − 1

∣∣1−λ .
Taking x = eαc and y = eα(1−d) gives |xλy1−λ − 1| ≥ |x − 1|λ|y − 1|1−λ, where x, y ≥ 1
(if α ≥ 0) or x, y ≤ 1 (if α ≤ 0). Since this inequality is invariant under changing x →
1/x and y → 1/y, we can assume that x, y ≥ 1, in which case the inequality is simply
ψ(λa+ (1− λ)b) ≥ λψ(a) + (1− λ)ψ(b), where ψ(x) = ln(ex− 1) and a = lnx, b = ln y. The
concavity of ψ can we checked by observing that ψ′(x) = 1/(1− e−x), which is decreasing.

The second case A = [0, 1], B = [c, d] leads to the same computations.

Example 6. We shall prove the following theorem.

Theorem 49. For every symmetric convex compact set K and a log-concave measure µ on
Rn we have

µ(tK) ≥ 1− (1− µ(K))
t+1
2 , t ≥ 1.

Clearly the above inequality cannot be true for arbitrary non-symmetric convex set K.
This creates some difficulties in proving the inequality. We need to modify the definition of
the dilation tK. Let us set

Kt = {x ∈ Rn : there is an interval I 3 x such that |I| ≤ t+ 1

2
|K ∩ I|}.

It turns out that with this definition one can prove the above inequality for general Borel
sets K. Here, for simplicity, we shall give a proof for convex K. We will need the following
lemma.

Lemma 14. Let K be a convex compact set. Then for every t ≥ 1 we have

Kt = K +
t− 1

2
(K −K) =

t+ 1

2
K +

t− 1

2
(−K).

In particular, if K is symmetric then Kt = tK.
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Proof. The second inequality follows by convexity. To prove the first one we prove two
inclusions. Suppose x ∈ Kt \K. Then there is a segment [b, x] such that [b, x] ∩K = [b, c]
and |x − b| ≤ t+1

2
|b − c|. Since c lies between b and x, we can write c = (1 − λ)b + λx for

some λ ∈ (0, 1). Plugging this into this inequality give 1/λ ≤ (t+ 1)/2. Thus,

x = c+

(
1

λ
− 1

)
(c− b) ∈ K +

(
1

λ
− 1

)
(K −K) ⊆ K +

t+ 1

2
(K −K).

To prove the reverse inclusion let us assume that x ∈ t+1
2
K+ t−1

2
(−K). We can assume that

x /∈ K. Let us write x = t+1
2
c+ t−1

2
(−b) where c, b ∈ K. Let d be such that [b, x]∩K = [b, d].

Since x = b+ t+1
2

(c− b), the point x is on the line joining b and c, and |b− c| ≤ |b−x|. Thus,

|[b, x]| = |b− x| = t+ 1

2
|b− c| = t+ 1

2
|b− d| = t+ 1

2
|K ∩ [b, x]|.

This gives x ∈ Kt. �

We are ready to give a proof of the inequality

µ(Kt) ≥ 1− (1− µ(K))
t+1
2 , t ≥ 1.

for convex sets K. In fact it is enough to prove the inequality µ(U) ≥ 1 − (1− µ(K))
t+1
2

for any open set U containing Kt. Let us take f = 1Uc − m and Φ(µ) = µ(A). Both f
and Φ are upper semi-continuous, so they satisfy the assumptions of Theorem ??. Note that
µ ∈ Pf satisfy 1 − µ(U) ≥ m. Our goal is to prove that under this constraint we have

(1− Φ(µ))
t+1
2 ≥ m. Due to Theorem ?? it is enough to check it for log-affine measures ν on

segments [a, b] ⊂ Rn (note that for Dirac masses this inequality is obvious). This is equivalent
to the validity of the inequality

ν(U) ≥ 1− (1− ν(K))
t+1
2 , t > 1.

We shall also use the additional information given by Theorem ??, namely that
∫
fdν = 0

and either
∫

[a,x]
fdν > 0 on (a, b) or

∫
[x,b]

fdν > 0 on (a, b). Without loss of generality we

shall assume that the second case holds true. Namely

(28) ν(U c ∩ [x, b]) > ν(U c)ν([x, b]).

Clearly we can assume that K is one-dimensional (since (K ∩ l)t ⊆ Kt ∩ l) and further that
K ⊆ [a, b] (since the parts of K outside [a, b] do not contribute to µ(K) and can only increase
µ(Kt)).

We claim that without loss of generality one can assume that a ∈ F . Indeed, let a′ = inf K
ans suppose that ν ′ = ν|[a′,b]/ν[a′, b]. We have

ν ′(Kc) =
ν(Kc ∩ [a′, b])

ν[a′, b]
=
ν(Kc)− ν[a, a′]

1− ν[a, a′]
≤ ν(Kc).

Moreover, form (28) we get

ν ′(U c) =
ν(U c ∩ [a′, b])

ν[a′, b]
≥ ν(U c).

Thus, it is harder to verify our assertion for ν ′.
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Let us then assume (using translation invariance )that a = 0 and K = [0, c] ⊆ [0, b]. We
can finally get read of U and simply prove

ν(Kt) ≥ 1− (1− ν(K))
t+1
2 , t > 1.

Or equivalently,

ν((Kt)c) ≤ ν(Kc)
t+1
2 , t > 1.

Note that Kt = [− t−1
2
c, t+1

2
c]. Let T = t+1

2
≥ 1. We are to show ν[Tc,∞) ≤ ν[c,∞)T . Since

[c,∞) = T−1[Tc,∞) + (1− T−1)[0,∞) we get by log-concavity of ν

ν[c,∞) ≥ ν[Tc,∞)T
−1

ν[0,∞)1−T−1

= ν[Tc,∞)T
−1

.

Example 7. We shall prove the following theorem.

Theorem 50. Suppose K1, K2 are two compact disjoint subsets of a compact convex set K
in Rn, such that d(K1, K2) := infa∈K1,b∈K2 d(a, b) > 0. Then

voln(K1) voln(K2) ≤ M1(K)

d(K1, K2) ln 2
voln(K) voln(K \ (K1 ∪K2)),

where

M1(K) =
1

voln(K)

∫
K

|x− b(K)|dx, b(K) =
1

voln(K)

∫
K

xdx.

In particular, taking µK to be the uniform measure on K and K1 = A, K2 = (Aε)
c so that

d(K1, K2) = ε one gets the isoperimetric-type inequality

µK(A)(1− µK(A)) ≤ M1(K)

ln 2
µK(∂A).

Proof. Let d(K1, K2) = ε > 0. Take fi = 1Ki for i = 1, 2 and 1(K1∪K2)c . Also, let us take
f4(x) = |x−u|/ε ln 2, where u is arbitrary vector in Rn. Then f1, f2 are upper semi-continuous
and f3, f4 are lower semi-continuous. The assertion of the theorem is equivalent to∫

K

f1dµ

∫
K

f2dµ ≤
∫
K

f3dµ

∫
K

f4dµ

for µ being the Lebesgue measure restricted to K. We shall prove the above for every
log-concave measure supported on K. Due to Theorem 47 it is enough to consider only
the case of µ being log-affine on a segment [a, b] ⊂ Rn. Clearly, we can assume that [a, b]
intersects both K1 and K2. Also, we can assume that u belongs to the line l containing
[a, b], since otherwise we can shift the whole picture not changing the integrals of f1, f2, f3

and decreasing the integral of f4 (|x − u| changes to the length of the distance between x
and the orthogonal projection of u onto the line containing the segment [a, b]). We can in
fact assume that u ∈ [a, b], since otherwise we can shift the whole picture along l and again
decrease the contribution coming from f4. Now we can restrict our attention to the case
n = 1 by considering K̃i = Ki ∩ l, i = 1, 2 (note that d(K1, K2) ≤ d(K̃1, K̃2)). By rescaling
and canceling multiplicative constants we can assume that the log-affine density of µ is equal
to et. Thus, given two disjoint compact subsets K1, K2 of [a, b], such that d(K1, K2) = ε we
are to show that ∫

K1

etdt

∫
K2

etdt ≤ 1

ε ln 2

∫
[a,b]\(K1∪K2)

etdt

∫ b

a

et|t− u|dt.
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Let us first assume that K1, K2 and K3 := [a, b] \ (K1 ∪K2) are intervals. Note that we can
assume that K3 = [c, d] is an interval of length ε (by considering the worst possible case) and
is between K1 and K2. Without loss of generality we can assume that K1 = [a, c] K3 = [c, d]
and K2 = [d, b] with a < c < d < b and d− c = ε. We are to show∫ c

a

etdt

∫ b

c+ε

etdt ≤ 1

ε ln 2

∫ c+ε

c

etdt

∫ b

a

et|t− u|dt.

Changing variables in the second and third integral we get an equivalent form∫ c

a

etdt

∫ b−c

ε

etdt ≤ 1

ε ln 2

∫ ε

0

etdt

∫ b

a

et|t− u|dt.

The left hand side is equal to

(ec − ea)(eb−c − eε) = eb − eεec − ea+b−c + ea+ε ≤ eb − 2eε/2e(a+b)/2 + ea+ε = (eb/2 − e(a+ε)/2)2.

by the AM-GM inequality. Clearly without loss of generality we can assume that a ≤ u ≤ b
since otherwise one can decrease the right hand side by changing u. We have∫ b

a

et|t− u|dt =

∫ u

a

et(u− t)dt+

∫ b

u

et(t− u)dt = 2eu − u(ea + eb) + ea(a− 1) + eb(b− 1).

The maximum of this function is attained for u = ln((ea + eb)/2) and is equal to

aea + beb − (ea + eb) ln

(
ea + eb

2

)
.

Our goal is to verify

(eb/2 − e(a+ε)/2)2 ≤ eε − 1

ε ln 2

[
aea + beb − (ea + eb) ln

(
ea + eb

2

)]
.

Observe that

aea + beb − (ea + eb) ln

(
ea + eb

2

)
= aea + beb − (ea + eb)(a+ ln

(
1 + eb−a

2

)
= (b− a)eb − (ea + eb) ln

(
1 + eb−a

2

)
.

Thus, dividing the above inequality by ea and denoting z = e(b−a)/2 we get

(z − eε/2)2 ≤ eε − 1

ε ln 2

(
z2 ln z2 − (1 + z2) ln

(
1 + z2

2

))
, z ≥ 1.

Clearly the worst case is ε = 0, which leads to

(z − 1)2 ln 2 ≤ z2 ln z2 − (1 + z2) ln

(
1 + z2

2

)
, z ≥ 1.

This is equivalent to

−2z ln 2 ≤ z2 ln z2 − (1 + z2) ln(1 + z2), z ≥ 1.

For z = 1 this is equality. Differentiating and canceling the constant 2 shows that it suffices
to prove

− ln 2 ≤ z ln z2 − z ln(1 + z2), z ≥ 1.
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Again we have equality for z = 1. We show that the right hand side is monotone in z. Indeed,
the derivative is equal to

− ln

(
1 +

1

z2

)
+

2

1 + z2
≥ − 1

z2
+

2

1 + z2
=
z2 − 1

z2 + 1
≥ 0, z ≥ 1.

To deal with the general case we can assume that K3 = [a, b] \ (K1 ∪ K2) is open in
[a, b]. Thus, it is a union of open intervals. We can assume that these intervals have length
at least ε since otherwise both endpoints either belong to K1 or to K2 and thus we could
add this interval to either K1 or K2, making the inequality tighter. So, let us assume that
K3 =

⋃k
i=1[ci, di], where |ci − di| ≥ ε. Using the previous case we get∫ ci

a

etdt

∫ b

di

etdt ≤ 1

ε ln 2

∫ di

ci

etdt

∫ b

a

et|t− u|dt, i = 1, . . . , k.

Summing over i we get

k∑
i=1

∫ ci

a

etdt

∫ b

di

etdt ≤
k∑
i=1

1

ε ln 2

∫ di

ci

etdt

∫ b

a

et|t− u|dt =

∫
K3

etdt.

Now the inequality
k∑
i=1

∫ ci

a

etdt

∫ b

di

etdt ≥
∫
K1

etdt

∫
K2

dt

follows from the fact that every point x ∈ K1 and every pointy ∈ K2 are separated by at
least one of the intervals (ci, di). To be more precise one can integrate the inequality

k∑
i=1

(
1[a,ci](x)1[di,b](y) + 1[a,ci](y)1[di,b](x)

)
≥ 1K1(x)1K2(y) + 1K1(y)1K2(x).

against exeydxdy and use Fubini. �

5. Log-BM inequality

In this chapter we shall need the following definition.

Definition 4.

(1) We say that a function f : Rn → R is unconditional if for any choice of signs
ε1, . . . , εn ∈ {−1, 1} and any x = (x1, . . . , xn) ∈ Rn we have f(ε1x1, . . . , εnxn) = f(x).

(2) We say that an unconditional function is decreasing if for any 1 ≤ i ≤ n and any real
numbers x1, . . . , xi−1, xi+1, . . . , xn the function

t 7→ f(x1, . . . , xi−1, t, xi+1, . . . , xn)

is non-increasing on [0,∞).
(3) A set A ⊆ Rn is called an ideal if 1A is unconditional and decreasing. In other words,

a set A ⊂ Rn is an ideal if (x1, . . . , xn) ∈ A implies (δ1x1, . . . , δnxn) ∈ A for any choice
of δ1, . . . , δn ∈ [−1, 1]. In other words, an ideal is a union of symmetric coordinate
boxes. The class of all ideals (in Rn) will be denoted by KI . Note that A,B ∈ KI
implies λA+ (1− λ)B ∈ KI .

(4) A set A ⊆ Rn is called symmetric if A = −A. The class of all symmetric convex sets
in Rn will be denoted by KS.
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(5) A measure µ on Rn is called unconditional if it has an unconditional density with
respect to the Lebesgue measure.

Definition 5. We say that a Borel measure µ on Rn satisfies the Brunn-Minkowski inequality
in the class of sets K if for any A,B ∈ K and for any λ ∈ [0, 1] we have

(29) µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n.

Definition 6. Let K be a class of subsets closed under dilations. We say that a family
� = (�λ)λ∈[0,1] of functions K × K → K is a geometric mean if for any A,B ∈ K the set
A �λ B is measurable, satisfies an inclusion A �λ B ⊆ λA + (1 − λ)B, and (sA) �λ (tB) =
sλt1−λ(A�λ B), for any s, t > 0.

Definition 7. We say that a Borel measure µ on Rn satisfies the log-Brunn-Minkowski
inequality in the class of sets K with a geometric mean �, if for any sets A,B ∈ K and for
any λ ∈ [0, 1] we have

µ(A�λ B) ≥ µ(A)λµ(B)1−λ.

Remark 8. We shall use two different geometric means. The first one is the geometric mean
�S : KS ×KS → KS, defined by the formula

A�Sλ B = {x ∈ Rn : 〈x, u〉 ≤ hλA(u)h1−λ
B (u), ∀u ∈ Sn−1}.

Here hA is the support function of A, i.e., hA(u) = supx∈A 〈x, u〉.
The second mean �I : KI ×KI → KI is defined by

A�Iλ B =
⋃

x∈A,y∈B

[−|x1|λ|y1|1−λ, |x1|λ|y1|1−λ]× . . .× [−|xn|λ|yn|1−λ, |xn|λ|yn|1−λ].

It is straightforward to check, with the help of the inequality aλb1−λ ≤ λa + (1 − λ)b,
a, b ≥ 0, that both means are indeed geometric.

We have the following theorem.

Theorem 51. The log-Brunn-Minkowski inequality holds true with the geometric mean �I
for any measure with unconditional log-concave density in the class KI of all ideals in Rn.

Proof. Let A,B ∈ KI and let us take f, g,m : [0,+∞)n → [0,+∞) given by f = 1A∩[0,+∞)n ,
g = 1B∩[0,+∞)n and m = 1(A�IλB)∩[0,+∞)n . Let ϕ be the unconditional log-concave density of
µ. We define

F (x) = f(ex1 , . . . , exn)ϕ(ex1 , . . . , exn)ex1+···+xn , G(x) = g(ex1 , . . . , exn)ϕ(ex1 , . . . , exn)ex1+···+xn ,

M(x) = m(ex1 , . . . , exn)ϕ(ex1 , . . . , exn)ex1+···+xn .

One can easily check, using the definition of KI and the definition of the geometric mean �Iλ,
as well as the inequalities

ϕ(eλx1+(1−λ)y1 , . . . , eλxn+(1−λ)yn)

≥ ϕ(λex1 + (1− λ)ey1 , . . . , λexn + (1− λ)eyn) ≥ ϕ(ex1 , . . . , exn)λϕ(ey1 , . . . , eyn)1−λ,

that the functions F,G,M satisfy the assumptions of the Prékopa-Leindler inequality. As a
consequence, we get µ((A �Iλ B) ∩ [0,+∞)n) ≥ µ(A ∩ [0,+∞)n)λµ(B ∩ [0,+∞)n)1−λ. The
assertion follows from unconditionality of our measure µ and the fact that A,B and A�Iλ B
are ideals. �
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We shall prove that the log-BM inequality implies the BM-inequality.

Proposition 52. Suppose that a Borel measure µ with a radially decreasing density f ,
i.e. density satisfying f(tx) ≥ f(x) for any x ∈ Rn and t ∈ [0, 1], satisfies the log-Brunn-
Minkowski inequality, with a geometric mean �, in a certain class of sets K. Then µ satisfies
the Brunn-Minkowski inequality in the class K.

Proof. Let us first assume that µ(A)µ(B) > 0. From the definition of geometric mean we
have A�p B ⊆ pA+ (1− p)B, for any p ∈ (0, 1). Thus,

µ(λA+ (1− λ)B) = µ

(
p · λ

p
A+ (1− p) · 1− λ

1− p
B

)
≥ µ

((
λ

p
A

)
�p
(

1− λ
1− p

B

))
= µ

((
λ

p

)p(
1− λ
1− p

)1−p

A�p B

)
.

Let t =
(
λ
p

)p (
1−λ
1−p

)1−p
and C = A�pB. From the concavity of the logarithm it follows that

0 ≤ t ≤ 1. We have

(30) µ(tC) =

∫
tC

f(x) dx = tn
∫
C

f(tx) dx ≥ tn
∫
C

f(x) dx = tnµ(C).

Therefore, since µ satisfies the log-Brunn-Minkowski inequality,

µ(λA+ (1−λ)B) ≥ tnµ(A�pB) ≥ tnµ(A)pµ(B)1−p =

[(
λ

p

)p(
1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p.

Taking

(31) p =
λµ(A)1/n

λµ(A)1/n + (1− λ)µ(B)1/n

gives
µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n.

If, say, µ(B) = 0 then by (30), applied for C replaced with A, and the fact that 0 ∈ B we
get

µ(λA+ (1− λ)B)1/n ≥ µ(λA)1/n ≥ λµ(A)1/n = λµ(A)1/n + (1− λ)µ(B)1/n.

�

As a consequence, applying our Proposition 52 we deduce the following theorem.

Theorem 53. Let µ be an unconditional log-concave measure on Rn. Then µ satisfies the
Brunn-Minkowski inequality in the class KI of all ideals in Rn.
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