1 Boolean functions and Walsh-Fourier system

In this chapter we would like to study boolean functions, namely functions f :
{=1,1}" — {—1,1}, using methods of harmonic analysis. Recall that the discrete
cube {—1,1}" is equipped with several structures. One of them is a graph struc-
ture. The points x = (xy,...,x,) and y = (y1,...,y,) are neighbours if and only
if {1 <i<n: x # vy} =1 It means that x and y differ only on one coordi-
nate. It this case if y = (xy,...,2;-1,1 — x;, 11, ..., 2,), so the difference is on i-th
coordinate, we write y = 2. We also write

Another important structure is a structure of measure space. Of course we can
equipped {—1,1}" with many different measure, but the most important one is the
uniform measure,

1
wS) = 5ol81 S {-1,13"

Having a measure p on a discrete cube and a function f : {—1,1}" — R we can
consider the expectation of f,

Ef=s Y fl0)
ze{-1,1}"

and the L, norm

£, = EIfP), p>o0.

We write P(A) = El4. We also have a structure of a Hilbert space Lo({—1,1}", u)
of all functions f: {—1,1}" — R with a scalar product

(F9)=Efg=5 > Fhgl)
ze{-1,1}"

The space Ly({—1,1}", i) has dimension 2" and the functions

1 x=y
form the basis of this space. It is an orthogonal basis. However, we have another
basis, which we will frequently use. Let [n] = {1,...,n}. Namely, we define

wg(T1, ..., x,) = Hxi, SCn], wy=1.

€S



We have wg - wr = wgar. The measure p is a product measure, therefore

It follows that

Bpe _ 1 S=0 . (1 S=T
WSTNV 0 S4D WSAT = 0 §£T

Therefore (wg)scpn) is an orthonormal basis and every function can be written in the

form
E aswg,

Sc[n]

where (as)sc[, are some real coefficients. We have

(f,wr) <Z a ws,wT> =) as (ws, wr) = ar,

Scn] SC[n]

thus

f=> (f,ws)ws

SC[n]

Sometimes we write ag = f(S).

The discrete cube possess a graph structure, namely for z,y € {—1,1}" the point
x is a neighbour of y (which will be denoted by x ~ y) if and only if there exists
1 < i < n such that y = 2%
2 Influences of boolean function
Let v € {—1,1}" and let f:{—1,1}" — {—1,1}. We define the sensitivity of v by

s, f)={1<i<n: f') # f(v)}].

The average sensitivity is simply

as(f) = Es(f) = / s(o, f) dpu(y).

The influence of the i-th variable is defined as
Li(f) =P(f(z) # f(a' !{xe{ L1}" s f(z) # fa')}].
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In other word, I; is the probability that the value of f is undefined if we assigned
values to x; for ¢ # j. The randomness is with respect to the assignment of the
values of ;.

We prove that the sum of the influences is equal to the average sensitivity. Indeed,
we have

ZI’( 2nz|{x z) # (@)} = Z/I{x 27} () dp(y)

/Zl{x F@)£r@y(y) du(y) = /S(y,f) du(y) = as(f).

There is an one-to-one correspondence between boolean functions and subsets of
the discrete cube. Namely, if f: {—1,1}" — {—1,1} then we can define Ay = {z :
flz) =1} If A C {—1,1}" then we also have fu(z) = 2I4(z) — 1. If we have sets
A, B C {—1,1}" with then we define

E(A,B) ={(a,b): a€ A,be B,a~ b}|.
The quantity E(A, A°) is the so-called edge boundary of A. We have

[E(A, A9 _ 21E(A, A9 _ 3o, {z: fa@) # fale
on-1 2n B 2n = ZI

We are now ready to give a crucial definition in this chapter.

Definition 1. The influence (total influence) of a boolean function f: {-1,1}" —
{—1,1} is defined as

_ zn:Ii () = EAAY]

2n71

3 Examples of boolean functions and their influ-
ences

In this section we analyse some basis examples of boolean functions.

e Dictator: Dict,(xy,...,2,) =25, 1 <j<mn,
Clearly, we have
(Dict,) = 4 L (=7 I(Dict,) = 1 E(Dict,) = 0.
7 n 0 'l # j 9 n 9 n



Junta (k-junta): f(x1,...,2,) = gz, ..., x;,), where g : {—1,1}F — {-1,1}
and 1 < k < n.

Parity: Par,(zq,...,2,) =21 ... x,. Note that Parity is equal to the Walsh
function of highest degree, namely wp,).

I;(Par,) =1, I(Par,) =n, E(Par,) = 0.
Majority: Maj,(x1,...,x,) =sgn(zy + ...+ x,), n is odd,

Lot - 5 () =0 () 1wk = 55 () - o
E(Maj, ) = 0.

AND: AND,,(z1,...,x,) = min(zy,...,x,),

n
I;,(AND,) = o1 I(AND,) = = E(AND,) = -1+ 1
OR: OR,(z1, ..., 2,) = max(zy,...,z,)
n 1
]Z(ORn) - 2n—1’ ](ORn) - F’ ]E(ORn) - 1 —_ 2n—1‘

Tribes: take n = mk and divide n variables into m groups (tribes), each of
cardinality k. The value of our function is 1 if and only if there exists a tribe
which says 'yes’. The tribe says ’yes’ if all values of spines in this tribe is 1. So
the Tribes function is OR of ANDs. We can write

Tribesy m (21, ..., 2,) = OR (AND(arl, s T) s ooy AN D(Z (- 1)ket15 -5 xmk))) )

To calculate I; observe that if z; wants to decide then others variables in its
tribe has to take value 1 and in m — 1 other tribes there must be at least 1
variable with value 0 in each tribe. Therefore,

1 1 m—1 km 1 m—1
I;(Tribesy, ) = o1 (1 — ?> . I(Tribesy,,) = o1 (1 — ﬁ) ,

: I
E(Tribesym) =1 — 2 (1 - ﬁ) :



Now we would like to find the value £ = k(n) for which P(Tribes;q,) n_) = p.

IO
Let us take
n

k(n) = log, (m

Of course k(n) and n/k(n) should be integers, but who cares... Since for a
boolean function f we have Ef = 2P(f = 1) — 1, therefore

1\ k)
s = 1) = (1 a 2k(n))

— (1 . (In(1 = p))(logy n))n/k(n).

) — log, log, n.

1— P(Tribesk(n%

n

Let
n

(In(1 — p))(logy )

Clearly, lim,,_,, |a,| = +00. Therefore lim,, (1 + i)an = e. Moreover,

Ay =

lim —" _ i (0 = p))(logyn)

nooo k(n)a, oo log, <7ln(”17p)> — log, log, n

= In(1 — p).

It follows that

lim P(Tribesy(n), »n =1)=1— en=p) — o,

n—00 k(n)

Let us now calculate the asymptotic behaviour of Ii(Tribesk(n%%). We have

1 1 n/k(n)—1
I;(Tribesyny, . n ) = ——— (1 >

k(n) 2k(n)—1 - ?
1 1\ ,
= —2k(n)71 1-— ? <1 — P(Trlbesk(n),ﬁ = 1)>
1 1 log, n
~ (1= 0 20 - ) (1) 2
Therefore,
I(Trib ~ (1 = p)In | —— ) 082"
i (Tri esk(n)yﬁ) ~2(1—p)n T5) 0 n — 0o,



1
Ii(Tribesk(n),k&)) ~2(1—p)ln <1—p) logyn, n — oo.

If p <1/2 then we have

]i(Tribesk(nL%) <Cp

4 Basic estimates of /(f)

We would like to make a connection between classical isoperimetric inequalities an
inequalities in for the discrete cube. We are going to prove the following proposition

Proposition 1. Let f : {—1,1}" — {—1,1} and let u(f) = P(f = 1). Then for
p(f) < 1/2 we have

1

1) 2 2y ()

We first prove the following lemma.

Lemma 1 (Loomis-Whitney inequality). Let A C R™ be an open set in R and let
P, : R™ — R"™! be a projection given by Py(x1,...,%,) = (L1, -, Tio1, Tit1,--->Tn)-
Then

(A" < |P(A)] - [ Pa(A))

To prove this we need an elementary inequality.

Lemma 2 (G(A) > A(G) inequality). Consider an array of nonnegative numbers
(aij)ij=i- Then compute the geometric mean of each row and the arithmetic mean
of each column. Therefore, we have a diagram

ai a2 R a1in — G1 = /a1 ...01n

a1 99 R, Aon — GQ = a1 ...01n

Am1 a99 Amn — Gm: /ai1 *...0Q1n
A — ai1+...+ami A — ai2+...+am2 A — aint...+amn
1 DT 2 e n Ee—

Then the geometric mean of the arithmetic means of columns is not less then the
arithmetic mean of the geometric means of rows, namely

>G1—|—G2+—|—Gm
=z o .

VAAy - - A,




It other words

Adding this inequalities we obtain

G1+Go+..4+Gm

aﬂ m
;;: A, ZW m\"/AlAQ...An'

Since

m n n
ji _ aji mA;
> Z =D T = mn
j=1 i=1 Aj i=1 j=1 i=1 v

we obtain

Gi+Gy+...+Gy
- .

VAAy - A, >
O

Proof of Lemma 1. Tt suffices to prove the following discrete version of this theorem.
Namely, consider a partition of R™ into cubes of size § x ... x 9,

R" = | [0k, 60k + 1)) X ... % [5kn, (K + 1)]

E1,....kn€Z

This will be called a J-partition. Consider a set of N cubes, where each cube is an
element of this partition. If project our cubes using P;, we obtain a new set cubes in
the partition of R™. Some of the cubes may be projected onto the same cube. Let
N; be the number of cubes after projecting. Then

NP < NyNy-...-N,.

Having this discrete version we now prove that this implies the Loomis-Whitney
inequality. For every € > 0 there exists 6 > 0 such that there exists a set A C A
which is a sum of N cubes in the §-partition of R™, such that |[A\A| < . We have

|A|"E = N < (N6 Y - (N, < |PU(A)] - - | Pa(A)].



Now it suffices to take ¢ — 0 and observe that |A] — |A].

Now we prove our discrete version. We use induction. For n = 2 the assertion
is trivial. Let us project our cubes onto the first coordinate. We obtain elements
I, ..., Iy of the J-partition of R. Let T1,Ts,...,T; be the sets of cubes that are
projected onto Iy, I, ..., I, respectively. One can project the cubes from 7T} onto
R"! using P; and obtain the sets T}; of cubes in d-partition of R"~!. Let a; be the
cardinality of 7; and let a;; be the cardinality of 7;;. We have some rather trivial

relations,
k k
E Gi:N, E alj:Nj, aiSNl-
i=1 i=1

The inequality a; < Nj follows from the fact that two different cubes with the same
projection onto the linear subspace V' = Lin(e;) must have different projection onto
the complement of V' (the cube is a product of these two projections). From the
induction hypothesis we have

a’-’_ggaig-...-am, 221,,]{?

1

Combining this with a; < N; we obtain a?’l < Njy-a - ... ay. Therefore, using
G(A) > A(G) inequality

n n k m 1/(n—1)
S SIS 1 O
i=1 =1 i=1 \j=2
m k 1/(n-1) m
1/(n—1 1/(n—1
< N/ (Z aij> ~ [ ve
j=2 \i=1 j=1

This finishes the proof. [
Now we are ready to prove Proposition 1.

Proof. Consider the following family C of cubes in [0, 1]",

€1 1 81:| % % |:€n 1 E_n

C T LA — ..., En 0,1}.
€1,--5En |:272+2 272+ 2:|7 €1, € e{ }

Now we define a subset A = Ay C [0, 1]™ which is an union of some cubes from C by
the following rule: C., . C Aif and only if f(2¢; —1,...,2¢, — 1) = 1. Clearly
w(f) =|A|. Let us fix 1 <7 < n. We have 2"~! pairs

(6517---78i717078i+17---78717Cflv--wgifl7175i+17---75n) ) €1y €i-1,Ei415- -5 En € {07 1}‘
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Suppose a is a number of pairs such that both cubes are not contained in A, b is a
number of pair such that both cubes contained in A and let ¢ be a number of pairs
such that one of the cubes is contained in A and another one is not. We have

b b
W) = 1) = gy + o T=1(1) = 5o IP(A)| = D5
Therefore I
PAA) =) =5+ L= plf) 45 =1

From the Lemma 1 we have

WAy = AP < PR = (4 ) (w4 ).

o < (” 2u[(1f)) (” 2;&))
and therefore

() < (U gm) = () <

It follows that

thus

1) > 20(f) In (ﬁ) .

We would like to prove a better bound. Namely, in the above estimate one can
take log, instead of In.

Proposition 2. Let f : {—-1,1}" — {—1,1} and let u(f) = P(f = 1). Then for
p(f) < 1/2 we have

1f) > 20(f) log, (ﬁ) |

Hence, if pu(f) = 1/2 then we have I(f) > 1. This last inequality is optimal since
I(Dict,,) = 1 and p(Dict,,) = 1/2.

It suffices to prove the following lemma.

Lemma 3. Let A C {—1,1}", |A| = m. Then |E(A, A°)| > m(n — log, m).



Indeed, this lemma implies Proposition 2. Take A = A; and note that p(f) % =
7. Therefore

_B(A A mln —logym) _ m

I<f) on—1 - on—1 - gn—1

To prove Lemma 3 we prove

(n —logy(2"u(f))) = —2u(f)logy u(f).

Lemma 4. Let A C {—1,1}". Let v € A. Take ds(v) = [{u€ A: u ~v}|. Then

e dalv)

|A| > 2¢, where d =
A

This lemma implies Lemma 3. Indeed,

|E(A, A9)| = [{(v,u) : vE Aju € A% v~ u}| :Z]{u: ue A u~ v}

vEA
=> (n—NHu: ueAur~v})=>Y (n—da(v)) =n|A| - dlA.

If m = |A| then m > 2¢. Thus d < log, m. We arrive at

[B(A, A%)| = [A](n — d) = m(n — d) > m(n — log, m).
We are to prove Lemma 4.

Proof o Lemma 4. Tt is easy to check that for n = 1 our assertion is true. We use
induction. Divide {—1,1}" into two subcubes of dimension n — 1, {z; = —1} and
{z1 = 1}. Consider

Aleﬂ{Ilz—]_}, AQZAﬂ{lj:l}

Let m; = |Ai| and my = |As|. Without loss of generality we can assume that
0 < my < mas. Let s be the number of vertices between A; and A,. Clearly s < m;.
For i = 1,2, using Lemma 3 we have

m; logy, m; > Z dy,(v) = (Z dg(v)> —s.

vEA; vEA;

We use the notation 0log, 0 = 0. Summing this inequalities we obtain

my logy my + ma logy, may > (Z dA(v)> — 25 > (Z dA<U)> —2m,.

vEA vEA
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Our goal in to prove

(mq 4+ ma) logy(my + mgy) > ZdA(v).

vEA

If suffices to check that
(mq + ma) logy(my + may) > my logy, my + mo log, ma + 2my, 0 <my < my.

We state this inequality as lemma.

Lemma 5. Let 0 < 2 <y. Then
(x +y)logy(z 4+ y) > xlogy x + ylogy y + 2.

Proof. The inequality is true for z = 0. Therefore we can assume z > 0. Take
v = y/x. We have

(z +y)logy(z +y) — wlogyx — ylogy y = wlogy x(1 + ) + ylogy y(1 +1/7)
= xlogy(1 +7) +ylogy(1+ 1/7) = wlogy(1 + ) + wylogy(1 + 1/7)
> xlogy(1 +7) + wlogy (1 + 1/7) = zlogy (L +7)(1+ 1/7))
= xlogy(y + 1/7 +2) > xlog,y(2 +2) = 2x.

Lemma 4 follows.

5 Parseval’s identity

Recall that we can always write

f = Z asWg,

sC[n]

where (wg)scpn are the so-called Walsh functions. Note that

1715 = <Z asws, ZGTU)T> = asar (wg,wr) =Y _ a3
S T

S, T S
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This is the so-called Parseval’s identity. Recall that fi(x) = f(x) — f(2°). It is easy
to check that ‘s

5 0 !

fi(S)—{ 2f(S) ieS -
Therefore

1fill3 = 4 Z ag.

S:ie8S
On the other hand,

[0 g = s
sl ={y 07 fe

Ifilly = 2"P(f(x) # f(a)) = 27 ,(f).
Taking p = 2 we obtain

Thus

hence we have a crucial identity

I(fy=) Y ai=) |Sla3.

i=1 S:ieS S

connecting the total influence with the spectrum of f.
Let us define

Var#(f) = Euf2 - (]Euf)Z-
Note that we have
Ef = ZaS]EwS = ay.
S

Therefore
Var,(f) = Za% —aj = Z az.
S

S:|S|>1
On the other hand we have

Var,(f) = Euf? — (B, f)> =1 - (B(f = 1) — P(f = 1))’
=1—(2u(f) = 1)* = 4u(f) (1 — p(f)).

Having this facts we can give a simple proof of the that Dict,, has the smallest
influence among all functions with mean 0 (or, in other words, with u(f) = 1/2).
Namely, we have

12



Proposition 3. Let f: {—1,1}" — {—1,1} and let u(f) = P(f = 1). Then we have

I(f) = 4p(f)(A = pu(f)).
In particular, if p(f) = 1/2 we obtain I(f) > 1.

Proof. The inequality is equivalent to I(f) > Var,(f). This is true since

Var,(f) = > ai< > |Sla: =) |Sla% = I(f).
S

S:|S|>1 S:1S>1

6 Hypercontractivity

The cube {—1,1}" possess a group structure. Namely, we can define the group
multiplication by

(Ila s ,ZI}n) ’ <y17 s 7y'fl) = (‘rlyla .- xnvyn)
The measure y is a Haar measure on ({—1,1},), i.e. p(g-A) = pu(A) where g €

{-1,1}"and AC {-1,1}". Here g- A={g-a: a € A}.
Let v be any a measure on {—1,1}". We define a convolution operator 7, by the

formula
- / Flay™) dv(y)

— [ 1) vty

This operator is a weak contraction in every L,({—1,1},u) for p > 1. Indeed, by
triangle inequality an Jensens inequality we have

Il = '/fy vty dute) < [ [ 1760 avly) dute)

— [ [ 15 antw) avty) = [ [ 151 duta) dviw) = 1113

We have used the fact that p is Haar measure on {—1,1}".

Since y~! = y, we can write as well

13



Now take

L (146 14 on
vy = (75{1} + 75{1})

and let Ts =T 5(") = Tl,;. We investigate the action of T on Walsh functions,

Ts(ws)(x) Z/H%‘yi dvg (y) = (H l’z) (H/yz dV&(?ﬁ))

ieS i€s i€s
= wg(z)d5.

Therefore, if f: {—1,1}" — R then we have

Ts(f) = Z a0 lwg, when [ = Z agws.
SC[n] SCn]

The operator Ty possess the following properties

Té(f)Zf7WheanO7

T(S(l) = 17
<f7 T5g> = <T5f7 g);
1T5.fllp < [1f1lp-

We are going to develop one of the most important tools in the theory of boolean
functions, namely prove that Ty is hypercontractive.

Theorem 1 (Bonami-Beckner-Gross). For any f: {—1,1}" — R and any ¢ € [0, 1]
we have

IT5fll2 < [1.f s

We begin with the following abstract lemma.

Lemma 6. Let ¢ > p > 1 and let (4, 1), (€22, p2) be two finite probability spaces.
Let K; : Q; x Q; — R for i = 1,2. We define two operators

L@ = [ Ky dt), =12
Q;
Moreover, for f: €y x 25 — R let us take

(Th @ To)(f) (21, 72) = /Q o (1, y2) Ka (21, 51) Ko (22, y2) dpa(ye) dpa (y1)-

14



Suppose that for + = 1,2 we have

HEfHLq(Qini) < ||fHLp(Qi7Nfi)7 for all f : Qz — R.

Then
||T1 ® T2f||Lq(QIX927H1®M2) < ||f||Lp(Q1XQQ,u1®u2)'

Proof. Take f : €y x 5 — R. The operator T acts on a functions f : Q; — R.
However, we can define its action on functions of two variables by the formula

To(f) (1, 72) :/f(ylayz)fﬁ(@ayz) dpa(y2)-
Now it f: Q; x 29 — R then we have

T @Thf =Ti(Ta(f)).

More precisely,
(T @ T2)(f) (21, 22) = T1 (T2(f) (- 2)) (1)

By the assumption on 7T} we have

1Ty @ To N7, 0 x00 o) = /Q ; Ty (T2(f) (-, 22)) (21)]" dpa (1) dpa(a2)

<[ ([ 1@ dm(yn)q/p dpali).

Now it (X, p), (Y, v) are finite probability spaces and r > 1 then we have the following
Minkowski inequality

(/X (/y 5(@) dy(y))r d“(“”))l/r = /Y (/X g(z,y)" du(l’))l/r dv(y).

If we realize that the integral over Y in the above inequality is simply a finite sums
then we shall see that this inequality means that

1> agill, < aillgill,
i 7

where ¢g; : X — R and (a;) are positive numbers. This in is the usual well known
Minkowski inequality.
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We apply this inequality to the function

9(y1, w2) = [(T2(f) (y1, 22))”

and (X, u) = (Qo, o), (Y,v) = (Q, 1), ¥ = q/p,

( /| ( TS dm(yl))q/p dmm))

< ( [ ( [ @) )l dM2(1’2))p/q dm(zn)) |

p/q

It follow that

/92 ( o [(To(f) (Y1, 22))|” dul(yl))q/p djia(5)

< ( [ ([ e dm(am))p/q dm(yl))

Now we apply our assumption on 75 and obtain

q/p

1/p

( o, [(T2(f) (y1, 22))|* dm(ﬂﬁz))l/q < ( . \f (g1, y2) [P duQ(yz))

Thus,

p/q
/ ( @ dm(fﬂz)) dyn(n)
< / 1)l dialoe) dpa ()

We arrive at

q/p

1Ty @ Tof N7, (0, xg 1 piz) < (/Q A f (v y2)” dpa(y2) dm(m))
1 2

_ q
= ||fHL,,(Q1XQQ,M1®M2)’
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Note that in the case n = 1 we have

T = )+ S = [ ) dut)

- /{—1 n F) (1 + dya™) du(y).

In general,

T (f)(@) = /{ } Fl@yn, o wayn) dvs” (y)...dvs” (y,)
_171 n
- /{ ) Fyn, - yn) (L4 Syrarh) o (L4 Sy ) dp™ (y1)...dp™ (y,)
_1’1 n

— /{ } F, -y Kz, 1) - K (20, yn) dy(l)(yl)...d,u(l)(yn),
—1,1}n

where
K(z,y) =1+ dyz".
Therefore, using induction and Lemma 6 we reduce the proof of the Theorem 1 to

the case n = 1. In this case we have

(Ts)(w) = 1327 @) + 152 ()

Therefore,
P (OR[N (G R (O]
é 9 = :
and -
e = (!f<1>|1+62 ; \f<—1>rl+62>
" 2 .
Let
a = M b— M
2 ’ 5 .

The inequality || T5f||2 < || f|l1+s2 is now equivalent to

_1_
(|a+ bof? + |a — bé|2)1/2 < (|a + 0" + |a — b|1+52> 1
2 - 2 ’
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Since
|a + b0 +]a — bo|* _

2
we have to prove the following lemma.

24 6%,

Lemma 7. For all a,b € R and ¢ € [0, 1] we have an inequality

Ls? |a + b1 4 |a — b1+

2 ¢2
(a® + b*5?) 2 i

Proof. If a = 0 then our inequality has the form |b|"*9*§1+9* < |p|'+9* which is true
since 619" < 11+9° — 1. Therefore we can assume that a # 0. If we divide both sides
of the inequality by |a|'*%* and denote y = b/a we are to prove

9 1+y|1+62—|—|1—y|1+52
|4 o2y < | ,
(14+0%y") = < 5

Both sides of this inequality are even functions of the variable y. Therefore one can
assume that y > 0.
Let us first consider the case y € [0,1). We have the following Taylor expansion

2 = 1462
(14 z)'*° :Z(E >xk z| < 1,

k=0

where

1+6%\  (1+6)(14+6°—1)...(1+6*—k+1)
k B k! '
Thus,

|1+y|”‘52+|1—y!1+52
2

l\DI»—

E R ()]

=0
+ 62\ o (1+6%)6% 1+ 0%\ o
S I Sl v A
O T D VI (P

I
Mg
NE

2k
k=0 k=
1+ 6?) 52
>1+4+ ( +2 ,

since

(1+52> 1400+ -1)... 1+ —2k+1) -0
2k ) (2k)! -
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as in the numerator there are 2 positive term and 2k negative terms. It suffices to
prove

2\ £2
(140225 <1+ @y? (1)
Note that (1 + 2)* < 1+ Az for z > 0 and X € [0,1]. This is called the Bernoulli
inequality. It follows from the fact that g(z) = (1 + 2)* — 1 — \x satisfies g(0) = 0
and ¢/(x) < 0 for z > 0. Taking = = 6%y and A = £ we obtain (1).
The case y = 1 follows from the previous case by continuity.
Let us now consider the case y > 1. Take z = ?% < 1. We are to prove that

2 2 2
1+52 1""25 § ‘1+§‘1+5 +‘1_%|1+5
22 - 2
Multiplying both sides by z!*%* we obtain
L2 1 1462 1 — 14-62
(ZQ+52)+2 S’ + 2| + | z|

2

This follows from the first case, since

A =1+6%2—(1-22)(1—6%) <1+ 6%%

7 KKL Theorem and Talagrand’s theorem

We are now ready to prove the following celebrated KKIL Theorem.

Theorem 2 (Kahn-Kalai-Linial). Suppose f: {—1,1}" — {—1,1} with u(f) =p <
%. Then
z (Inn)?

> L) =

=1

n

Moreover,

1
max [;(f) > C’p%.

1<i<n

19



Proof. Since )
;Ii(f)Q <n (fg%fi(f)) ,

the second inequality follows directly from the first one.
Let fi(z) = f(z) — f(2%) € {—2,0,2}. Hypercontractivity yields

ITsfill2 < fillivs2, 6 €10,1].

. 0 i¢s
fi(S):{ 2f(S) ieS

Recall that

Therefore, if f =) aswg then

fz:2 Z asWg

S:1e8
and
I£:13 =4 a3
S:1e8
Moreover,
T(;fi = 2 Z a5(5|5’|’w5
i: 1€S
and
IT5fill5 = 4 Z agd?l.
S: ieS

On the other hand, for p > 1 we have

Ifilly = 2°P(f (z) # f(2")) = 2°1,
where I; = I;(f). Thus,

_2 2
2 2 2 2 9
137 @ <l = (IA15) ™ = (240°5) ™ =ar.
S: €8
Summing these inequalities for 1 < ¢ < n we obtain

> " agls|o”! < zn: 15

S =1

20



Hence,

SN ARSI < > ad|SIT <Y T ag|SIe <y T
S i=1

S: S|<M S: |S|<M
We have
Za%zl, ag=p—(1—p)=2p—1.
S
Note that
Z az|S| > Z a% — aj.
S: |S|I<M S: |S|1<M
Therefore,
o 2MZI”52 > Z a% — aj.
S: |S|<M
Since

i=1 s
then we also have
ZI > M Z a%.
|S|>M

Summing these two inequalities we obtain

n

2
Z (5—2Mji1+5 +Mli) > Zag_a% =1— (Qp— 1)2 :4p(1 —p) > 2p.
S

i=1

Let A > 0 be a number satisfying """  I7 = ’\72 Suppose, by contradiction, that

A < Cplnn. We show that for small values of C' this in impossible.
We have

Z[z’ﬁ §n<1

i=1

_2
= )\ 1462 nl 1+52 = \1482 6241
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Thus,
D < ; (5 2M[1+52 %[) SN 1+62n<52+i + %

Let M = [A/p]. Then

A
<M<1+-<1+Clnn.

| >
S

Thus,

62-1 A 2 821

2p < 6 2M)\1+252 net+l + — 7S < §201+Cnn) (Cplnn)i+2nsZet 4 p.

This is equivalent to

521

2
1< pﬁéﬁ(”mn”)@’p 1nn)1+%nm.
Taking § = 1/2 and using p < 1/2 we obtain

3/5
1< (%) 22(1+C’lnn)08/5nf%(lnn)8/5 _ 27/508/5n7%+201n2(1nn)8/5.

Take C' < z. Then
1< 27/508/571_%(111 n)¥/> < C¥°¢,

where ¢y is an universal constant. Now it suffices to take sufficiently small C to
obtain a contradiction. O

We prove another theorem of this kind (due to Talagrand) and show that KKL
Theorem follows from this theorem.

Theorem 3. Let f: {—1,1}" — {—1,1} and let u(f) =P(f =1). Then

~ L) 4
> —u(f)(1 = p(f)).
i—1 log <ﬁ> 15

We adopt the notation ; =0 and 1/log(1) = +00. We begin with a lemma.

(1/0)
Lemma 8. Let g : {—1,1}" — R with ||g||3/2 # ||lg|l2, which is equivalent to |g]
being not constant. Then

S5 Lol
S = 2iog (Tglla/l9lls2)

540
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Proof. Using the inequality
1T591l2 < llgll1+62
with 62 = 1/2 we obtain

S: |S|=k

Now take m > 0. We have

Zg i 3 §9(9)? A(S)2<§:2k\|g||3/z
k K.

540 k=1 5: |S|=k S: |S|>m k=1
4-2™(| g3, + llgll3
- m+1 ’

where we have used the inequality

which can be easily proved by induction.
Now we take
m =max{m > 0| 2"||gl3/> < llgll2}-

Then 27 g|[3, > [lg]3. Hence,

m+ 1 >210g( lgllz )

We arrive at

Zg 9)* _ 5lglls _ 5 lgll2
el LI T 210g (|lgll2/llglls/2)

Proof of Talagrand’s theorem. Suppose I;(f) € (0,1). Let g(x) =

follows that |g| is not constant. We have

lgll2 :211'(f)1/2
lgllsz  2L:(f)*/?

= L(f)~/5.

23
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ST a8 <203 SmalS) = 24T, ol < 2 gl
S

Z
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From the lemma we obtain

g(S lgll3 ) 44;(f) Li(f)
=_. =60 .
s;s Z |Sr —2log(ngn2/ugu3/2) 2 og(L()7%) o7 )

The inequality

ISI

Z 41(S)? <60 Li(f)

> 1
S:ieS || 10g(Tf))
is also true when [;(f) € {0,1}. We obtain
4f ~  L(f
61— () = 4Var, () = S afs2 =50 37 M C 050 e
Snel) i=1 S: ieS =1 g L.(f)
The assertion follows. ]

We show that Talagrand result implies KKL Theorem. Let us first observe that

if a € (0,1) and oe7a = ¢ > 0 then a > sclog(1/c). Since (0,1) > a — oeli7a) 18
increasing, it suffices to assume that m = c¢. Then we are to prove
S 1 a | 1 | 1
a>—-—————log|—-log|—-]]).
— 2log(1/a) t\a %\
Taking z = 1/a > 1 we see that this inequality is equivalent to
1 1 1
log(z) > 3 log(xzlog(x)) = 5 log z + 3 log log x.
Thus we are to prove x > logx. It follows from Bernoulli inequality
22 =(14+1)">1+2x>u.
From Talagrand’s inequality we know that there exists ¢ such that
Li(f 1 4
D L - u),
log (I (f))
Now take 1 4
=L(f), =— = 1— :
a=1(f), c=—-ulf)d-nulf))
We have
1 15 1 > 15
—=n-— > 15n.
c 4 p(f) (1= p(f))
We obtain
1 1 4 4 logn
Li(f) 2 5elog(1/e) 2 — - 1o p(f)(L = u(f)) log(15n) 2 1= p(f)(1 = u(f))—

This is the KKL Theorem.
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8 Monotone boolean functions
The function f : {—1,1}* — {—1,1} is called monotone if z; < y;, for 1 < i < n

implies f(z1,...,2,) < f(y1,...,yn). We calculate the influence of a monotone
function f. Note that

. 1 1
f({l}) = Exlf = §Ef(1,$2, . .flfn) — §Ef(—1, To, ... ,an).
Since our function is monotone, the difference

f(xe, . .oxy) — f(—=1,29,...,24)

can have only values 0 and 2. Therefore,

FUIY) = B s 2) = F(1 )

:%.mquwwumg#ﬂ—hmuw%ﬁzhﬁl

Therefore, for a monotone boolean function we have
L(f)=Ff{i}), 1<i<n,  I(f)=>_ F{i}).
i=1
For an arbitrary boolean function f we can write

la;| = % Ef(1,zq,...2,) — f(=1,29,...,2,)]
< %Eym,m,...xn) (=L, 2|
=P(f(1,z9,...2,) # f(—1,22,...,2,)).

Thus
|ai‘ < Ii(f)'

We can now easily prove the following estimate.

Proposition 4. Let f: {—1,1}" — {—1,1} be a monotone boolean function. Then

I(f) < v/n

25



Proof. We have

; ({i}) <\/_Zf{@ Vi) f(9)? =

]

Now we introduce certain symmetrization techniques. Namely we prove the fol-
lowing proposition.

Proposition 5. Let f : {—1,1} — {—1,1}. Then there exists g : {—1,1} — {—1,1}
such that Ef = Eg and L;(f) > I;(g).

Proof. For 1 <1 < n we take the ith symmetrization of f given by the formula
f.((L‘l o ) _ f(xl,...,xn) f(...,xl-,l,—l,xiﬂ,...) Sf(...,.%i,l,—l,xi+1,...)

5 P —f(xl,...,xn) f(...,Ii_17—1,$i+1,...) >f(...,ZEZ‘_1,—].,Ii+1,...>
Clearly I;(f) = Ii(fs,). To check that I;(f) > I;(fs,) for ¢ # j it suffices to consider
1t = 1,5 = 2. Now one has to consider elements

(=1,-1,2),(-1,1,2), (1, —1,2),(1,1,2) € {—1,1}"

and 16 possible values of f in these points. It suffices to observe that the contribution
to Iy will change only when

f(—l,—l,l‘)#f(—l,l) and f(la_lax) #f(l,l,l’)

and I, will decrease.
Now, we construct a sequence of symmetrizations f, fs, , fo.5o = (fs;, )siys - -+ ID
the following way: whenever we have a function f,, , that is not monotone we find

-----

a direction s;,; for which we can do non-trivial symmetrization and then we take
Jor,spsnea- We only have to show that this procedure will stop. But this is clear
since the functional

L= D (+f@)(a+... +x)

ze{-1,1}"
satisfies L(f) < L(fs,) and L(f) < 2n2"~L. O
Take p € [0, 1] and let
iy = (1= )1y +popy) ™"

and let i, (f) = pp({f = 1}). Moreover, let I2(f) = i, (f(x) £ f(a)) and I?(f) =
Yo IP(f). We prove the following famous Margulis-Russo lemma.
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Lemma 9 (Margulis-Russo lemma). Let f: {—1,1} — {—1,1} be monotone. Then
we have

d

d_pﬂp(f) =1°(f).

Proof. Instead of p, let us consider

dpp(f) _ Z Op ..o () = Z[i(p ,,,,, p)(f) _ Z[f(f)

dp i=1

Now we prove our claim. It suffices to take i = 1. Let fi(z) = f(z) — f(a'). We
have

Poyopn (f=1) =Py (f =1L /1 #0) + Py, (f =1, /1 =0).
Let A C {—1,1}""! be defined as follows,
A={ze{-1,1}""| f(1,2) =1, f1i(1,z) = 0}.
If f(1,2) =1 and fi(1,2) =0 then f(—1,2) =1 and fi;(—1,2) = 0. Therefore
{f=0,fi=0}={-1,1} x A.

hence
]Ppl ~~~~~ pn(f = 17f1 = 0) = Pp2 ~~~~~ pn(A)

and therefore it does not depend on p;.
Since f is monotone we have

{f=LA#0={(x1,...,2n) | 21 =1, f(1,...,2,) =1, f(—1,...,2,) = =1, }.
Define B C {—1,1}""! by
B={ze{-11}"""| f(l,z)=1, fi(1,x) #0}.

It follows that
{f=1,fi=0}={1} x B.
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Therefore,
Ppl ----- pn(f = 17f1 7& O) :pl]Pm ----- pn(B)

Note also that

,,,,,,,,,,,,,,,

Show that among all monotone Boolean functions Maj,, is the one with largest
influence. Namely we have

Proposition 6. Let n be odd. Then for every monotone f : {—1,1}" — {—1,1} we
have
I(f) < I(Maj,).

Proof. We use Margulis-Russo lemma,

[P(f) _ dﬂg(f) _ di Z p|S|(1 _p)n7|5\f($)
P p z:f(z)=1
_ 1811 — )l EL_H—WW
x:f(x)ﬂp (1—p) ( S T 1o, flx).

Taking p = % we obtain

s S (@S- ()

z:f(z)=1
To maximize the right hand side one has to take

(1 2/8]=n>0
ﬂ@—{—1mﬂ—n<0‘

Clearly, this function is Mayj,,. ]
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9 Friedgut’s Theorem

We begin this section with the following problem. Suppose we have a boolean func-
tion f: {—1,1}" — {—1,1} and we have a fixed J C [n]. We would like to find the
best approximation of f in the L, norm with a function depending only on variables
x; with j € J.
Suppose we want our approximation g to be real valued. For f : {-1,1}" —
{—1,1} we write
flzy, 29, ... 20) = f(zg,20),

where z; = (zj,,. .. ’xju\) represents the part of the vector x with variables labelled
by the numbers in subset J. The vector x; represents the rest of variables. We have

1

e 3 ) = 9w = oo S5 (Fla ) — )

X J,T g1 Ty Xy

If —allz =

To minimize the expression

> (flwg,xp) = glz)”.

Z gr

One can easily see that, having a real numbers a4, . . ., ay fixed, the quadratic function

has a minimum in a point

Therefore we take

In other words,
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Taking this function g we obtain

If =gl = on (flzrzr) —g(zs)) = Z [y, ep)?=
Tg,% 51 T g,% 51
1
zy)g(®s) + on Z g(x,)?
ZJ,T g1 TJ,T 51

n— 1 n—
=t |J|ZQ($J)2+272 IJ'Z:Q(SCJ)2
2“]'291’] —2"]'2 1— (z)?
—Q‘J‘Zl— xy)) 1+g(xj)).

Let p(z) =P(f = 1|z). Then

g(x) = E(flz) = p(x) = (1 = p(x)) = 2p(z) — 1.

Thus
1f = gll3 =271 " ap(a,) (1 = play)).

zJ

Now we would like to investigate the approximation with {—1,1}-valued func-
tions. Recall that we have

17— g3 = o S (Pl ) — )

Ty T

We are to minimize the expression of the form
N
{-1,1z— Z(ai -
i=1
where ay,...,ay € {—1,1} are fixed. Let k= |{1 <i < N: q; = 1}|. Therefore
> (i —x) =k(1—2)°+ (n—k)(1+2)
Therefore we should take x =1ifn—&k >k and x = —1if n—k < k. Since
1
gut@sr = fleg,zp) =1} =P(f = 1]z,),
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we should take

We arrive at 2
17— o3 =5 Z (Flerar) =) = 57 3 flegap)-
zy)g(xs) + an Z 9(5UJ)2
X g (IJ)
Now
D flasap) =22 (p(xy) = (1= pley)) =277 (2p(z)) - 1)
Therefore,
If=gl3=2- 5= = ! 20V Z 2p(ws) = g(s) =2-271 " (1= (2p(zs) — 1)g(x))
We have
_ [ 1=(2p(as = 1) p(zy) =5
-Gk = ate) = { 1 G0 ) ) 2
:{ 2(1 = p(xs)) pley) =5
2p(z) p(rs) <3
=2min{p(x,),1 — p(x,)}.
We obtain

If =gl =271 4 " min{p(a,), 1 - p(z,)}.

zj

Therefore, we have the following lemma.

Lemma 10. Suppose we have a boolean function f : {—1,1}" — {—1,1} and we
have a fixed J C [n]. Let g (gy) be the best real-valued ({—1,1}-valued) approxi-

mation of f in the L, norm, depending only on variables labelled by elements in J.
Then

If =gl =271 4) " min{p(x,), 1 — p(z,)}

ZJ
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and

1f = all3 =271 4> p(aes)(1 = p(as))},

ZJ

where p(x;) = P(f = 1|x;). Moreover,

1f = gsll3 < If = gll5-
Proof. We have min{p(x;),1 — p(x;)} < 2p(x;)(1 —p(z,)) . O
We prove the following theorem due to E. Friedgut.

Theorem 4 (Friedgut, 98). If f:{—1,1}" — {—1,1} and I(f) = k then for every
e > 0 there exists a boolean function g : {—1,1}" — {—1,1} depending only on
exp ([ck/e]) variables, such that P(f # g) < e.

Note that for boolean f, g we have
If = gll3 = E(f — 9)* = 4P(f # 9).

Thus it suffices to prove the following theorem

Theorem 5 (Friedgut, 98). If f: {—1,1}" — {—1,1} and I(f) = k then for every
e > 0 there exists a boolean function ¢g : {—1,1}" — {—1,1} depending only on
exp ([ck/e]) variables, such that || f — g2 <e.

Proof. We have seen in the proof of KKL Theorem that if f;(z) = f(z) — f(«?) then
| filld = 29I; and by hypercontractivity

2

2 ¢2|5| 1442

g agd ! < I
S: ieS

Let
J={i: I; <exp(—d)}.

We sum these inequalities for ¢ € J and we arrive at

2
Za%(;z\Sl’S N J‘ < ZIZ‘H62'
S

ieJ
We obtain
ZI.”% = Z[i.[,hgj < <ZI> MR < pe i — kexp (d (1 - )) :
i€ ' i€J Z a icJ - bt >
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We therefore have

2
Za%52ISI|SﬂJ| < kexp (d (1 - 1+(52)>

S
and
> ad|S| =k
s
It follows that
> @)
S=4
S: |S|>4&

and

Z aggi.

S: 52lsusml|z%exp(d(1—lﬁ>>

Therefore almost all of the spectrum in concentrated on S such that

o 4k 2
|S|<87 ) |Sﬂ]!<€expd1 o))

Take such an S and let M = 4k/e. If |S N I| # 0 then

2
oM _ 52|
J <5||Sﬁ]|<MeXp(d(1—1+62>).

Let x = 2. We have

2
M
<M dl1-— .
<t (4(1- 7))
It follows that m
d< —"(nM-Muz).
— X

Now we optimize the right hand side with respect to z € [0,1]. We have

1 1 In M 1
d<1fz(1nM—M1nx)gM1fz(I}w —ln:z:):]\/[li_z(a—lnx),
where a = II}VIM . We have
1 1 -1 1 1
+x(a—lnx)§ T a—2 = +$a—|— —I—x‘
l—=x 1—2z T 1—=x T
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. . . . . . _ 1 .
The minimum of the right hand side is attained at = = TEVort We obtain

1

d 1+ = 1%—-—l—; 24+ +/2a
< Lhvia gy Livee a+2+v2a=(2+V2a)(l++/a/2)
T 14v2a 1+v2a 2a

Since a = B < 1. Therefore

M

d

- < (2 + \/2/e> (1 + \/1/(26)) <5
Thus, if & > 5, then |SNI| = 0. Take d = 5M = %. Therefore, if

20k
J=A{i: I; <exp <—%>}

then

2
PR

S: 1SNJ|>0

IA
CNG)

Let us define the function ¢ as follows

o [ F(S) 1SNJ=0
9(5)_{0 ISAJ[#£0

Thus g depends only on the variables in [n]\.J. We have

[n]\J|e™* < k.
Therefore
V] < ket < v (2] < e (2.
Thus A .
If=gll3 =) _(f(S)=4(5)*= > at< 5

S |[SNJ|>0

10 Degree of a boolean function
Let f:{-1,1}" = {-1,1}, f =) gasws. We define the degree of f by
deg(f) =max{0 <k <n |35 |S| =k,as # 0}.
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In other words, since f is a polynomial in the Walsh representation, the degree of f
is simply the degree of this polynomial.

We prove that the boolean function depending on n variables cannot have small
degree.

Proposition 7. Suppose f: {—1,1}" — {—1,1} is a boolean function of degree d
and suppose that f depends on all of its variables, namely I;(f) > 0 fori=1,... n.
Then

n < d2°.

Lemma 11. Suppose f : {—1,1}" — R and suppose deg(f) < d and f is not
identically 0. Then P(f # 0) > 2%

Proof. We prove the lemma by induction on n. For n = 1 if f = ¢ then ¢ # 0 and
the statement follows. If f is not constant, then it is a polynomial of degree 1 and
f(z1) = a+ bxy with b # 0. Therefore, if f(—1) =a—0b=0 then f(1)=a+b#0
and if f(1) =a+b=0 then f(—1) = a — b # 0. Therefore always P(f # 0) > %

Suppose we have f: {—1,1}" — R, deg(f) < d and f is not identically 0. Let us
write f in the form

f(wla"'axn) :xnfl<x17"'7xnfl)+f2(x17--'7$n71)-
Note that deg(f;) <d—1. If f{ — fo =0 then
flzr, . xn) = (L+a,) fi(x, ..o ).

Note that f; is not identically O since f is not identically 0. By the induction
hypothesis we have

-2 (@71 = 9=d,

DN | —

]P)(f 7& O) = ]P)(Zlfn = ]_,fl(fL‘l, e ,l’n_l) 7é 0) = %P(fl 7é 0) Z

In the same way we treat the case when f; + fo = 0.
Now suppose that f; — fo and f;+ fo are not identically 0. Clearly deg(fi—f2) < d
and deg(f1 + f2) < d. Therefore,

—_

P(f£0)=P(fi — fo £ 0,2, =—1)+P(fi + fo # 0,2, = 1) > —2d+%2d=2d.

\V)

]
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Proof of Proposition 7. Suppose f : {—1,1}" — {—1,1} satisfies deg(f) < d. Take
filx) = f(x) — f(z). Since Li(f) > 0 we have that f; is not identically 0. Therefore,
from the lemma we have

L(f) =P(fi #0) > 277
Thus

n2 <L) =1(f) =) a3|S| <d) af=d.
i=1 S S
Thus n < d2¢. O

Now we prove a proposition about the algebraic properties of a spectrum of a
function f: {-1,1}" — Z.
Proposition 8. Suppose f : {—1,1}" — Z satisfies deg(f) < d. Then f(S) =
a(9)27¢, where a(s) € Z.
Proof. Induction on d. If d = 0 then the assertion is trivial. Take f;(z) = f(z) —
f(z"). Then

fi=2 ) f(SU{ibwsugy
SCn)\{d}
Clearly,
rifile) =2 Y f(SU{ihws(x)
Scn)\{d}

and this function has degree at most d — 1. Thus 2f(S U {i}) = a(S)2-@D. We
obtain f(S U {i}) = a(S)27¢. Since every nonempty set S C [n] can we written in

the form S = S"U {i} for some i, our assertion follows for this sets. We also have
f(0) = a(0)274. Indeed,

F0) =7 =3 a(S)2-ws.

S#0
The right hand side clearly is a number in 27Z. O

Note that from the above statement it follows that for every boolean function
f{=1,1}" = {=1,1} with L;(f) > 0 for all 1 <i < n we have n < d4?. Indeed,

we have R
L(f)= Y (5= (2 "2=4"
S: ieS
Thus

n4=? < Z[i(f) = I(f) < d.
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Recall now the general statement of the hypercontractivity.

Theorem 6. Let p > ¢ > 1. Then for 0 < § < ,/Z%} we have

1T/ 1lp < 1 1lg-

Using this theorem we prove the following proposition.

Proposition 9. Let f: {—1,1}" — {—1,1} and deg(f) < d. Then for ¢ € [1,2] we
have

(@ =17 £ll2 < I £l

Moreover, if p > 2 then

11l < (0 = D)¥*Vd + 1| flo.
Proof. Take p =2 and 0 = /g — 1. We then have

(q—Dfl5 =0 ak <> 6"ag = || T5f1I5 < |1 £115.
s S
To prove the second part let us take ¢ =2 and § = \/p#fl, p > 2. Let

Jo= Z asws.

S: |S|=k
Then
(=" felly < (0 = DN filly = 6l felly = | DY dFasws],
S: |S|=k
= | T5flp < || full2-
Thus,
I felly < (0 = V)21 fill2-

Therefore,

n d d

1Al <D Wkl < (0= DY I filla < (p = D72VA+ 1| D [1£l13
k=0 k=0 k=0
= (p—V)"*Vd+1||f]2

since (fi)k=01,..4 are orthogonal. O
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Proposition 10. Let f: {—1,1}" — {—1,0,1}. Then for every ¢ € [0, 1] we have
Z(slsl 2 <P(f #0)7,
Proof. We have

> 80 = T 5 f 13 < IfI3s = P(f #0)755
S

Note that since > ga% = P(f # 0) then for f not identically 0 we have

Zs ag

Therefore, if f has small support, then the spectrum of f cannot be concentrated on
the low-degree Fourier levels. It also follows that

<P(f #0)i%

6% < [supp f| 75,

Therefore, the {—1,0,1}-valued boolean function with a very small support must
have large degree.
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