1 Boolean functions and Walsh-Fourier system

In this chapter we would like to study boolean functions, namely functions f : $\{-1,1\}^{n} \rightarrow\{-1,1\}$, using methods of harmonic analysis. Recall that the discrete cube $\{-1,1\}^{n}$ is equipped with several structures. One of them is a graph structure. The points $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are neighbours if and only if $\left|\left\{1 \leq i \leq n: \quad x_{i} \neq y_{i}\right\}\right|=1$. It means that x and y differ only on one coordinate. It this case if $y=\left(x_{1}, \ldots, x_{i-1}, 1-x_{i}, x_{i+1}, \ldots, x_{n}\right)$, so the difference is on i-th coordinate, we write $y=x^{i}$. We also write

$$
f_{i}(x)=f(x)-f\left(x^{i}\right)
$$

Another important structure is a structure of measure space. Of course we can equipped $\{-1,1\}^{n}$ with many different measure, but the most important one is the uniform measure,

$$
\mu(S)=\frac{1}{2^{n}}|S|, \quad S \subset\{-1,1\}^{n}
$$

Having a measure μ on a discrete cube and a function $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ we can consider the expectation of f,

$$
\mathbb{E} f=\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} f(x)
$$

and the L_{p} norm

$$
\|f\|_{p}=\left(\mathbb{E}|f|^{p}\right)^{1 / p}, \quad p>0
$$

We write $\mathbb{P}(A)=\mathbb{E I}_{A}$. We also have a structure of a Hilbert space $L_{2}\left(\{-1,1\}^{n}, \mu\right)$ of all functions $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with a scalar product

$$
\langle f, g\rangle=\mathbb{E} f g=\frac{1}{2^{n}} \sum_{x \in\{-1,1\}^{n}} f(x) g(x) .
$$

The space $L_{2}\left(\{-1,1\}^{n}, \mu\right)$ has dimension 2^{n} and the functions

$$
\delta_{y}(x)= \begin{cases}1 & x=y \\ 0 & x \neq y\end{cases}
$$

form the basis of this space. It is an orthogonal basis. However, we have another basis, which we will frequently use. Let $[n]=\{1, \ldots, n\}$. Namely, we define

$$
w_{S}\left(x_{1}, \ldots, x_{n}\right)=\prod_{i \in S} x_{i}, \quad S \subset[n], \quad w_{\emptyset} \equiv 1
$$

We have $w_{S} \cdot w_{T}=w_{S \Delta T}$. The measure μ is a product measure, therefore

$$
\mathbb{E} x_{i_{1}} \cdot \ldots \cdot x_{i_{k}}=\mathbb{E} x_{i_{1}} \cdot \ldots \cdot \mathbb{E} x_{i_{k}}=0
$$

It follows that

$$
\mathbb{E} w_{S}=\left\{\begin{array}{ll}
1 & S=\emptyset \\
0 & S \neq \emptyset
\end{array}, \quad \mathbb{E} w_{S \Delta T}=\left\{\begin{array}{ll}
1 & S=T \\
0 & S \neq T
\end{array} .\right.\right.
$$

Therefore $\left(w_{S}\right)_{s \subset[n]}$ is an orthonormal basis and every function can be written in the form

$$
f=\sum_{S \subset[n]} a_{S} w_{S},
$$

where $\left(a_{s}\right)_{s \subset[n]}$ are some real coefficients. We have

$$
\left\langle f, w_{T}\right\rangle=\left\langle\sum_{S \subset[n]} a_{s} w_{S}, w_{T}\right\rangle=\sum_{S \subset[n]} a_{S}\left\langle w_{S}, w_{T}\right\rangle=a_{T},
$$

thus

$$
f=\sum_{S \subset[n]}\left\langle f, w_{S}\right\rangle w_{S} .
$$

Sometimes we write $a_{S}=\hat{f}(S)$.
The discrete cube possess a graph structure, namely for $x, y \in\{-1,1\}^{n}$ the point x is a neighbour of y (which will be denoted by $x \sim y$) if and only if there exists $1 \leq i \leq n$ such that $y=x^{i}$.

2 Influences of boolean function

Let $v \in\{-1,1\}^{n}$ and let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$. We define the sensitivity of v by

$$
s(v, f)=\left|\left\{1 \leq i \leq n: f\left(v^{i}\right) \neq f(v)\right\}\right| .
$$

The average sensitivity is simply

$$
a s(f)=\mathbb{E} s(f)=\int s(v, f) \mathrm{d} \mu(y)
$$

The influence of the i-th variable is defined as

$$
I_{i}(f)=\mathbb{P}\left(f(x) \neq f\left(x^{i}\right)\right)=\frac{1}{2^{n}}\left|\left\{x \in\{-1,1\}^{n}: f(x) \neq f\left(x^{i}\right)\right\}\right|
$$

In other word, I_{i} is the probability that the value of f is undefined if we assigned values to x_{j} for $i \neq j$. The randomness is with respect to the assignment of the values of x_{j}.

We prove that the sum of the influences is equal to the average sensitivity. Indeed, we have

$$
\begin{aligned}
\sum_{i=1}^{n} I_{i}(f) & =\frac{1}{2^{n}} \sum_{i=1}^{n}\left|\left\{x: f(x) \neq f\left(x^{i}\right)\right\}\right|=\sum_{i=1}^{n} \int \mathrm{I}_{\left\{x: f(x) \neq f\left(x^{i}\right)\right\}}(y) \mathrm{d} \mu(y) \\
& =\int \sum_{i=1}^{n} \mathrm{I}_{\left\{x: f(x) \neq f\left(x^{i}\right)\right\}}(y) \mathrm{d} \mu(y)=\int s(y, f) \mathrm{d} \mu(y)=a s(f) .
\end{aligned}
$$

There is an one-to-one correspondence between boolean functions and subsets of the discrete cube. Namely, if $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ then we can define $A_{f}=\{x$: $f(x)=1\}$. If $A \subset\{-1,1\}^{n}$ then we also have $f_{A}(x)=2 \mathrm{I}_{A}(x)-1$. If we have sets $A, B \subset\{-1,1\}^{n}$ with then we define

$$
E(A, B)=|\{(a, b): a \in A, b \in B, a \sim b\}| .
$$

The quantity $E\left(A, A^{c}\right)$ is the so-called edge boundary of A. We have

$$
\frac{\left|E\left(A, A^{c}\right)\right|}{2^{n-1}}=\frac{2\left|E\left(A, A^{c}\right)\right|}{2^{n}}=\frac{\sum_{i=1}^{n}\left|\left\{x: f_{A}(x) \neq f_{A}\left(x^{i}\right)\right\}\right|}{2^{n}}=\sum_{i=1}^{n} I_{i} .
$$

We are now ready to give a crucial definition in this chapter.
Definition 1. The influence (total influence) of a boolean function $f:\{-1,1\}^{n} \rightarrow$ $\{-1,1\}$ is defined as

$$
I(f)=\sum_{i=1}^{n} I_{i}=\mathbb{E} s(f)=\frac{\left|E\left(A, A^{c}\right)\right|}{2^{n-1}} .
$$

3 Examples of boolean functions and their influences

In this section we analyse some basis examples of boolean functions.

- Dictator: $\operatorname{Dict}_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{j}, 1 \leq j \leq n$,

Clearly, we have

$$
I_{i}\left(\operatorname{Dict}_{n}\right)=\left\{\begin{array}{ll}
1 & i=j \\
0 & i \neq j
\end{array}, \quad I\left(\operatorname{Dict}_{n}\right)=1, \quad \mathbb{E}\left(\operatorname{Dict}_{n}\right)=0\right.
$$

- Junta (k-junta): $f\left(x_{1}, \ldots, x_{n}\right)=g\left(x_{i_{1}}, \ldots, x_{i_{k}}\right)$, where $g:\{-1,1\}^{k} \rightarrow\{-1,1\}$ and $1 \leq k<n$.
- Parity: $\operatorname{Par}_{n}\left(x_{1}, \ldots, x_{n}\right)=x_{1} \cdot \ldots \cdot x_{n}$. Note that Parity is equal to the Walsh function of highest degree, namely $w_{[n]}$.

$$
I_{i}\left(\operatorname{Par}_{n}\right)=1, \quad I\left(\operatorname{Par}_{n}\right)=n, \quad \mathbb{E}\left(\operatorname{Par}_{n}\right)=0
$$

- Majority: $\operatorname{Maj}_{n}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{sgn}\left(x_{1}+\ldots+x_{n}\right), n$ is odd,

$$
\begin{aligned}
& I_{i}\left(\operatorname{Maj}_{n}\right)=\frac{1}{2^{n-1}}\binom{n-1}{\frac{n-1}{2}}=O\left(\frac{1}{\sqrt{n}}\right), \quad I\left(\operatorname{Maj}_{n}\right)=\frac{n}{2^{n-1}}\binom{n-1}{\frac{n-1}{2}}=O(\sqrt{n}), \\
& \mathbb{E}\left(\operatorname{Maj}_{n}\right)=0 .
\end{aligned}
$$

- AND: $\operatorname{AND}_{n}\left(x_{1}, \ldots, x_{n}\right)=\min \left(x_{1}, \ldots, x_{n}\right)$,

$$
I_{i}\left(\mathrm{AND}_{n}\right)=\frac{1}{2^{n-1}}, \quad I\left(\mathrm{AND}_{n}\right)=\frac{n}{2^{n-1}}, \quad \mathbb{E}\left(\mathrm{AND}_{n}\right)=-1+\frac{1}{2^{n-1}}
$$

- OR: $\mathrm{OR}_{n}\left(x_{1}, \ldots, x_{n}\right)=\max \left(x_{1}, \ldots, x_{n}\right)$

$$
I_{i}\left(\mathrm{OR}_{n}\right)=\frac{1}{2^{n-1}}, \quad I\left(\mathrm{OR}_{n}\right)=\frac{n}{2^{n-1}}, \quad \mathbb{E}\left(\mathrm{OR}_{n}\right)=1-\frac{1}{2^{n-1}}
$$

- Tribes: take $n=m k$ and divide n variables into m groups (tribes), each of cardinality k. The value of our function is 1 if and only if there exists a tribe which says 'yes'. The tribe says 'yes' if all values of spines in this tribe is 1 . So the Tribes function is OR of ANDs. We can write

$$
\left.\operatorname{Tribes}_{k, m}\left(x_{1}, \ldots, x_{n}\right)=O R\left(\operatorname{AND}\left(x_{1}, \ldots, x_{k}\right), \ldots, A N D\left(x_{(m-1) k+1}, \ldots, x_{m k}\right)\right)\right) .
$$

To calculate I_{i} observe that if x_{i} wants to decide then others variables in its tribe has to take value 1 and in $m-1$ other tribes there must be at least 1 variable with value 0 in each tribe. Therefore,

$$
\begin{aligned}
& I_{i}\left(\operatorname{Tribes}_{k, m}\right)=\frac{1}{2^{k-1}}\left(1-\frac{1}{2^{k}}\right)^{m-1}, \quad I\left(\operatorname{Tribes}_{k, m}\right)=\frac{k m}{2^{k-1}}\left(1-\frac{1}{2^{k}}\right)^{m-1} \\
& \mathbb{E}\left(\operatorname{Tribes}_{k, m}\right)=1-2\left(1-\frac{1}{2^{k}}\right)^{m}
\end{aligned}
$$

Now we would like to find the value $k=k(n)$ for which $\mathbb{P}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}\right)=p$. Let us take

$$
k(n)=\log _{2}\left(\frac{n}{-\ln (1-p)}\right)-\log _{2} \log _{2} n .
$$

Of course $k(n)$ and $n / k(n)$ should be integers, but who cares... Since for a boolean function f we have $\mathbb{E} f=2 \mathbb{P}(f=1)-1$, therefore

$$
\begin{aligned}
1-\mathbb{P}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}=1\right) & =\left(1-\frac{1}{2^{k(n)}}\right)^{n / k(n)} \\
& =\left(1+\frac{(\ln (1-p))\left(\log _{2} n\right)}{n}\right)^{n / k(n)} .
\end{aligned}
$$

Let

$$
a_{n}=\frac{n}{(\ln (1-p))\left(\log _{2} n\right)} .
$$

Clearly, $\lim _{n \rightarrow \infty}\left|a_{n}\right|=+\infty$. Therefore $\lim _{n \rightarrow \infty}\left(1+\frac{1}{a_{n}}\right)^{a_{n}}=e$. Moreover,

$$
\lim _{n \rightarrow \infty} \frac{n}{k(n) a_{n}}=\lim _{n \rightarrow \infty} \frac{(\ln (1-p))\left(\log _{2} n\right)}{\log _{2}\left(\frac{n}{-\ln (1-p)}\right)-\log _{2} \log _{2} n}=\ln (1-p)
$$

It follows that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}=1\right)=1-e^{\ln (1-p)}=p
$$

Let us now calculate the asymptotic behaviour of $I_{i}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}\right)$. We have

$$
\begin{aligned}
I_{i}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}\right) & =\frac{1}{2^{k(n)-1}}\left(1-\frac{1}{2^{k}}\right)^{n / k(n)-1} \\
& =\frac{1}{2^{k(n)-1}}\left(1-\frac{1}{2^{k}}\right)^{-1}\left(1-\mathbb{P}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}=1\right)\right) \\
& \approx \frac{1}{2^{k(n)-1}}(1-p) \approx 2(1-p) \ln \left(\frac{1}{1-p}\right) \frac{\log _{2} n}{n} .
\end{aligned}
$$

Therefore,

$$
I_{i}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}\right) \approx 2(1-p) \ln \left(\frac{1}{1-p}\right) \frac{\log _{2} n}{n}, \quad n \rightarrow \infty
$$

$$
I_{i}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}\right) \approx 2(1-p) \ln \left(\frac{1}{1-p}\right) \log _{2} n, \quad n \rightarrow \infty
$$

If $p \leq 1 / 2$ then we have

$$
I_{i}\left(\operatorname{Tribes}_{k(n), \frac{n}{k(n)}}\right) \leq C p \frac{\log _{2} n}{n}
$$

4 Basic estimates of $I(f)$

We would like to make a connection between classical isoperimetric inequalities an inequalities in for the discrete cube. We are going to prove the following proposition

Proposition 1. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and let $\mu(f)=\mathbb{P}(f=1)$. Then for $\mu(f) \leq 1 / 2$ we have

$$
I(f) \geq 2 \mu(f) \ln \left(\frac{1}{\mu(f)}\right)
$$

We first prove the following lemma.
Lemma 1 (Loomis-Whitney inequality). Let $A \subset \mathbb{R}^{n}$ be an open set in \mathbb{R}^{n} and let $P_{i}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-1}$ be a projection given by $P_{i}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{i-1}, x_{i+1}, \ldots, x_{n}\right)$. Then

$$
|A|^{n-1} \leq\left|P_{1}(A)\right| \cdot \ldots \cdot\left|P_{n}(A)\right| .
$$

To prove this we need an elementary inequality.
Lemma $2(G(A) \geq A(G)$ inequality). Consider an array of nonnegative numbers $\left(a_{i, j}\right)_{i, j=1}^{n, m}$. Then compute the geometric mean of each row and the arithmetic mean of each column. Therefore, we have a diagram

Then the geometric mean of the arithmetic means of columns is not less then the arithmetic mean of the geometric means of rows, namely

$$
\sqrt[n]{A_{1} A_{2} \cdot \ldots \cdot A_{n}} \geq \frac{G_{1}+G_{2}+\ldots+G_{m}}{m}
$$

It other words

$$
\prod_{i=1}^{n}\left(\sum_{j=1}^{m} a_{i j}\right)^{1 / n} \geq \sum_{j=1}^{m}\left(\prod_{i=1}^{n} a_{i j}\right)^{1 / n}
$$

Proof. Using A-G inequality we obtain

$$
\sum_{i=1}^{n} \frac{a_{j i}}{A_{i}} \geq n \cdot \sqrt[n]{\prod_{i=1}^{n} \frac{a_{j i}}{A_{i}}}=\frac{n G_{j}}{\sqrt[n]{A_{1} A_{2} \ldots A_{n}}}, \quad 1 \leq i \leq m
$$

Adding this inequalities we obtain

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} \frac{a_{j i}}{A_{i}} \geq \sum_{j=1}^{m} \frac{n G_{j}}{\sqrt[n]{A_{1} A_{2} \ldots A_{n}}}=n m \frac{\frac{G_{1}+G_{2}+\ldots+G_{m}}{m}}{\sqrt[n]{A_{1} A_{2} \ldots A_{n}}}
$$

Since

$$
\sum_{j=1}^{m} \sum_{i=1}^{n} \frac{a_{j i}}{A_{i}}=\sum_{i=1}^{n} \sum_{j=1}^{m} \frac{a_{j i}}{A_{i}}=\sum_{i=1}^{n} \frac{m A_{i}}{A_{i}}=m n
$$

we obtain

$$
\sqrt[n]{A_{1} A_{2} \cdot \ldots \cdot A_{n}} \geq \frac{G_{1}+G_{2}+\ldots+G_{m}}{m}
$$

Proof of Lemma 1. It suffices to prove the following discrete version of this theorem. Namely, consider a partition of \mathbb{R}^{n} into cubes of size $\delta \times \ldots \times \delta$,

$$
\mathbb{R}^{n}=\bigcup_{k_{1}, \ldots, k_{n} \in \mathbb{Z}}\left[\delta k_{1}, \delta\left(k_{1}+1\right)\right] \times \ldots \times\left[\delta k_{n}, \delta\left(k_{n}+1\right)\right]
$$

This will be called a δ-partition. Consider a set of N cubes, where each cube is an element of this partition. If project our cubes using P_{i}, we obtain a new set cubes in the partition of \mathbb{R}^{n}. Some of the cubes may be projected onto the same cube. Let N_{i} be the number of cubes after projecting. Then

$$
N^{n-1} \leq N_{1} N_{2} \cdot \ldots \cdot N_{n}
$$

Having this discrete version we now prove that this implies the Loomis-Whitney inequality. For every $\varepsilon>0$ there exists $\delta>0$ such that there exists a set $\tilde{A} \subset A$ which is a sum of N cubes in the δ-partition of \mathbb{R}^{n}, such that $|A \backslash \tilde{A}|<\varepsilon$. We have

$$
|\tilde{A}|^{n-1}=N^{n-1} \delta^{n(n-1)} \leq\left(N_{1} \delta^{n-1}\right) \cdot \ldots \cdot\left(N_{n} \delta^{n-1}\right) \leq\left|P_{1}(A)\right| \cdot \ldots \cdot\left|P_{n}(A)\right|
$$

Now it suffices to take $\varepsilon \rightarrow 0$ and observe that $|\tilde{A}| \rightarrow|A|$.
Now we prove our discrete version. We use induction. For $n=2$ the assertion is trivial. Let us project our cubes onto the first coordinate. We obtain elements I_{1}, \ldots, I_{k} of the δ-partition of \mathbb{R}. Let $T_{1}, T_{2}, \ldots, T_{k}$ be the sets of cubes that are projected onto $I_{1}, I_{2}, \ldots, I_{k}$, respectively. One can project the cubes from T_{i} onto \mathbb{R}^{n-1} using P_{j} and obtain the sets $T_{i j}$ of cubes in δ-partition of \mathbb{R}^{n-1}. Let a_{i} be the cardinality of T_{i} and let $a_{i j}$ be the cardinality of $T_{i j}$. We have some rather trivial relations,

$$
\sum_{i=1}^{k} a_{i}=N, \quad \sum_{i=1}^{k} a_{i j}=N_{j}, \quad a_{i} \leq N_{1}
$$

The inequality $a_{i} \leq N_{1}$ follows from the fact that two different cubes with the same projection onto the linear subspace $V=\operatorname{Lin}\left(e_{1}\right)$ must have different projection onto the complement of V (the cube is a product of these two projections). From the induction hypothesis we have

$$
a_{i}^{n-2} \leq a_{i 2} \cdot \ldots \cdot a_{i n}, \quad i=1, \ldots, k .
$$

Combining this with $a_{i} \leq N_{1}$ we obtain $a_{i}^{n-1} \leq N_{1} \cdot a_{i 2} \cdot \ldots \cdot a_{i n}$. Therefore, using $G(A) \geq A(G)$ inequality

$$
\begin{aligned}
N=\sum_{i=1}^{n} a_{i} & \leq \sum_{i=1}^{n}\left(N_{1} \cdot a_{i 2} \cdot \ldots \cdot a_{i n}\right)^{1 /(n-1)}=N_{1}^{1 /(n-1)} \sum_{i=1}^{k}\left(\prod_{j=2}^{m} a_{i j}\right)^{1 /(n-1)} \\
& \leq N_{1}^{1 /(n-1)} \prod_{j=2}^{m}\left(\sum_{i=1}^{k} a_{i j}\right)^{1 /(n-1)}=\prod_{j=1}^{m} N_{j}^{1 /(n-1)}
\end{aligned}
$$

This finishes the proof.
Now we are ready to prove Proposition 1.
Proof. Consider the following family \mathcal{C} of cubes in $[0,1]^{n}$,

$$
\mathcal{C}_{\varepsilon_{1}, \ldots, \varepsilon_{n}}=\left[\frac{\varepsilon_{1}}{2}, \frac{1}{2}+\frac{\varepsilon_{1}}{2}\right] \times \ldots \times\left[\frac{\varepsilon_{n}}{2}, \frac{1}{2}+\frac{\varepsilon_{n}}{2}\right], \quad \varepsilon_{1}, \ldots, \varepsilon_{n} \in\{0,1\}
$$

Now we define a subset $A=A_{f} \subset[0,1]^{n}$ which is an union of some cubes from \mathcal{C} by the following rule: $\mathcal{C}_{\varepsilon_{1}, \ldots, \varepsilon_{n}} \subset A$ if and only if $f\left(2 \varepsilon_{1}-1, \ldots, 2 \varepsilon_{n}-1\right)=1$. Clearly $\mu(f)=|A|$. Let us fix $1 \leq i \leq n$. We have 2^{n-1} pairs

$$
\left(\mathcal{C}_{\varepsilon_{1}, \ldots, \varepsilon_{i-1}, 0, \varepsilon_{i+1}, \ldots, \varepsilon_{n}}, \mathcal{C}_{\varepsilon_{1}, \ldots, \varepsilon_{i-1}, 1, \varepsilon_{i+1}, \ldots, \varepsilon_{n}}\right), \quad \varepsilon_{1}, \ldots, \varepsilon_{i-1}, \varepsilon_{i+1}, \ldots, \varepsilon_{n} \in\{0,1\} .
$$

Suppose a is a number of pairs such that both cubes are not contained in A, b is a number of pair such that both cubes contained in A and let c be a number of pairs such that one of the cubes is contained in A and another one is not. We have

$$
\mu(f)=\mu(f)=\frac{b}{2^{n-1}}+\frac{c}{2^{n}}, \quad I_{i}=I_{i}(f)=\frac{c}{2^{n-1}}, \quad\left|P_{i}(A)\right|=\frac{b+c}{2^{n-1}} .
$$

Therefore

$$
\left|P_{i}(A)\right|=\mu(f)-\frac{I_{i}}{2}+I_{i}=\mu(f)+\frac{I_{i}}{2}, \quad i=1, \ldots, n
$$

From the Lemma 1 we have

$$
\mu(f)^{n-1}=|A|^{n-1} \leq\left|P_{1}(A)\right| \cdot \ldots \cdot\left|P_{n}(A)\right|=\left(\mu(f)+\frac{I_{1}}{2}\right) \ldots\left(\mu(f)+\frac{I_{n}}{2}\right)
$$

thus

$$
\frac{1}{\mu(f)} \leq\left(1+\frac{I_{1}}{2 \mu(f)}\right) \ldots\left(1+\frac{I_{n}}{2 \mu(f)}\right)
$$

and therefore

$$
\ln \left(\frac{1}{\mu(f)}\right) \leq \ln \left(1+\frac{I_{1}}{2 \mu(f)}\right)+\ldots+\ln \left(1+\frac{I_{n}}{2 \mu(f)}\right) \leq \frac{I_{1}+\ldots+I_{n}}{2 \mu(f)}=\frac{I(f)}{2 \mu(f)}
$$

It follows that

$$
I(f) \geq 2 \mu(f) \ln \left(\frac{1}{\mu(f)}\right)
$$

We would like to prove a better bound. Namely, in the above estimate one can take $\log _{2}$ instead of \ln.

Proposition 2. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and let $\mu(f)=\mathbb{P}(f=1)$. Then for $\mu(f) \leq 1 / 2$ we have

$$
I(f) \geq 2 \mu(f) \log _{2}\left(\frac{1}{\mu(f)}\right)
$$

Hence, if $\mu(f)=1 / 2$ then we have $I(f) \geq 1$. This last inequality is optimal since $I\left(\operatorname{Dict}_{n}\right)=1$ and $\mu\left(\operatorname{Dict}_{n}\right)=1 / 2$.

It suffices to prove the following lemma.
Lemma 3. Let $A \subset\{-1,1\}^{n},|A|=m$. Then $\left|E\left(A, A^{c}\right)\right| \geq m\left(n-\log _{2} m\right)$.

Indeed, this lemma implies Proposition 2. Take $A=A_{f}$ and note that $\mu(f)=\frac{|A|}{2^{n}}=$ $\frac{m}{2^{n}}$. Therefore

$$
I(f)=\frac{\left|E\left(A, A^{c}\right)\right|}{2^{n-1}} \geq \frac{m\left(n-\log _{2} m\right)}{2^{n-1}}=\frac{m}{2^{n-1}}\left(n-\log _{2}\left(2^{n} \mu(f)\right)\right)=-2 \mu(f) \log _{2} \mu(f) .
$$

To prove Lemma 3 we prove
Lemma 4. Let $A \subset\{-1,1\}^{n}$. Let $v \in A$. Take $d_{A}(v)=|\{u \in A: u \sim v\}|$. Then

$$
|A| \geq 2^{\bar{d}}, \quad \text { where } \quad \bar{d}=\frac{\sum_{v \in A} d_{A}(v)}{|A|} .
$$

This lemma implies Lemma 3. Indeed,

$$
\begin{aligned}
\left|E\left(A, A^{c}\right)\right| & =\left|\left\{(v, u): v \in A, u \in A^{c}, v \sim u\right\}\right|=\sum_{v \in A}\left|\left\{u: u \in A^{c}, u \sim v\right\}\right| \\
& =\sum_{v \in A}(n-|\{u: u \in A, u \sim v\}|)=\sum_{v \in A}\left(n-d_{A}(v)\right)=n|A|-\bar{d}|A| .
\end{aligned}
$$

If $m=|A|$ then $m \geq 2^{\bar{d}}$. Thus $\bar{d} \leq \log _{2} m$. We arrive at

$$
\left|E\left(A, A^{c}\right)\right|=|A|(n-\bar{d})=m(n-\bar{d}) \geq m\left(n-\log _{2} m\right) .
$$

We are to prove Lemma 4.
Proof o Lemma 4. It is easy to check that for $n=1$ our assertion is true. We use induction. Divide $\{-1,1\}^{n}$ into two subcubes of dimension $n-1,\left\{x_{1}=-1\right\}$ and $\left\{x_{1}=1\right\}$. Consider

$$
A_{1}=A \cap\left\{x_{1}=-1\right\}, \quad A_{2}=A \cap\left\{x_{1}=1\right\}
$$

Let $m_{1}=\left|A_{1}\right|$ and $m_{2}=\left|A_{2}\right|$. Without loss of generality we can assume that $0 \leq m_{1} \leq m_{2}$. Let s be the number of vertices between A_{1} and A_{2}. Clearly $s \leq m_{1}$. For $i=1,2$, using Lemma 3 we have

$$
m_{i} \log _{2} m_{i} \geq \sum_{v \in A_{i}} d_{A_{i}}(v)=\left(\sum_{v \in A_{i}} d_{G}(v)\right)-s
$$

We use the notation $0 \log _{2} 0=0$. Summing this inequalities we obtain

$$
m_{1} \log _{2} m_{1}+m_{2} \log _{2} m_{2} \geq\left(\sum_{v \in A} d_{A}(v)\right)-2 s \geq\left(\sum_{v \in A} d_{A}(v)\right)-2 m_{1}
$$

Our goal in to prove

$$
\left(m_{1}+m_{2}\right) \log _{2}\left(m_{1}+m_{2}\right) \geq \sum_{v \in A} d_{A}(v)
$$

If suffices to check that

$$
\left(m_{1}+m_{2}\right) \log _{2}\left(m_{1}+m_{2}\right) \geq m_{1} \log _{2} m_{1}+m_{2} \log _{2} m_{2}+2 m_{1}, \quad 0 \leq m_{1} \leq m_{2}
$$

We state this inequality as lemma.
Lemma 5. Let $0 \leq x \leq y$. Then

$$
(x+y) \log _{2}(x+y) \geq x \log _{2} x+y \log _{2} y+2 x
$$

Proof. The inequality is true for $x=0$. Therefore we can assume $x>0$. Take $\gamma=y / x$. We have

$$
\begin{aligned}
(x+y) \log _{2} & (x+y)-x \log _{2} x-y \log _{2} y=x \log _{2} x(1+\gamma)+y \log _{2} y(1+1 / \gamma) \\
& =x \log _{2}(1+\gamma)+y \log _{2}(1+1 / \gamma)=x \log _{2}(1+\gamma)+x \gamma \log _{2}(1+1 / \gamma) \\
& \geq x \log _{2}(1+\gamma)+x \log _{2}(1+1 / \gamma)=x \log _{2}((1+\gamma)(1+1 / \gamma)) \\
& =x \log _{2}(\gamma+1 / \gamma+2) \geq x \log _{2}(2+2)=2 x .
\end{aligned}
$$

Lemma 4 follows.

5 Parseval's identity

Recall that we can always write

$$
f=\sum_{s \subset[n]} a_{s} w_{S},
$$

where $\left(w_{S}\right)_{s \subset[n]}$ are the so-called Walsh functions. Note that

$$
\|f\|_{2}^{2}=\left\langle\sum_{S} a_{S} w_{S}, \sum_{T} a_{T} w_{T}\right\rangle=\sum_{S, T} a_{S} a_{T}\left\langle w_{S}, w_{T}\right\rangle=\sum_{S} a_{S}^{2}
$$

This is the so-called Parseval's identity. Recall that $f_{i}(x)=f(x)-f\left(x^{i}\right)$. It is easy to check that

$$
\hat{f}_{i}(S)=\left\{\begin{array}{ll}
0 & i \notin S \\
2 \hat{f}(S) & i \in S
\end{array} .\right.
$$

Therefore

$$
\left\|f_{i}\right\|_{2}^{2}=4 \sum_{S: i \in S} a_{S}^{2}
$$

On the other hand,

$$
\left|f_{i}(x)\right|=\left\{\begin{array}{ll}
0 & f(x)=f\left(x^{i}\right) \\
2 & f(x) \neq f\left(x^{i}\right)
\end{array} .\right.
$$

Thus

$$
\left\|f_{i}\right\|_{p}^{p}=2^{p} \mathbb{P}\left(f(x) \neq f\left(x^{i}\right)\right)=2^{p} I_{i}(f)
$$

Taking $p=2$ we obtain

$$
I_{i}(f)=\sum_{S: i \in S} a_{S}^{2}
$$

hence we have a crucial identity

$$
I(f)=\sum_{i=1}^{n} \sum_{S: i \in S} a_{S}^{2}=\sum_{S}|S| a_{S}^{2}
$$

connecting the total influence with the spectrum of f.
Let us define

$$
\operatorname{Var}_{\mu}(f)=\mathbb{E}_{\mu} f^{2}-\left(\mathbb{E}_{\mu} f\right)^{2}
$$

Note that we have

$$
\mathbb{E} f=\sum_{S} a_{S} \mathbb{E} w_{S}=a_{\emptyset}
$$

Therefore

$$
\operatorname{Var}_{\mu}(f)=\sum_{S} a_{S}^{2}-a_{\emptyset}^{2}=\sum_{S:|S| \geq 1} a_{S}^{2}
$$

On the other hand we have

$$
\begin{aligned}
\operatorname{Var}_{\mu}(f) & =\mathbb{E}_{\mu} f^{2}-\left(\mathbb{E}_{\mu} f\right)^{2}=1-(\mathbb{P}(f=1)-\mathbb{P}(f=-1))^{2} \\
& =1-(2 \mu(f)-1)^{2}=4 \mu(f)(1-\mu(f))
\end{aligned}
$$

Having this facts we can give a simple proof of the that Dict $_{n}$ has the smallest influence among all functions with mean 0 (or, in other words, with $\mu(f)=1 / 2$). Namely, we have

Proposition 3. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and let $\mu(f)=\mathbb{P}(f=1)$. Then we have

$$
I(f) \geq 4 \mu(f)(1-\mu(f))
$$

In particular, if $\mu(f)=1 / 2$ we obtain $I(f) \geq 1$.
Proof. The inequality is equivalent to $I(f) \geq \operatorname{Var}_{\mu}(f)$. This is true since

$$
\operatorname{Var}_{\mu}(f)=\sum_{S:|S| \geq 1} a_{S}^{2} \leq \sum_{S:|S| \geq 1}|S| a_{S}^{2}=\sum_{S}|S| a_{S}^{2}=I(f) .
$$

6 Hypercontractivity

The cube $\{-1,1\}^{n}$ possess a group structure. Namely, we can define the group multiplication by

$$
\left(x_{1}, \ldots, x_{n}\right) \cdot\left(y_{1}, \ldots, y_{n}\right)=\left(x_{1} y_{1}, \ldots x_{n}, y_{n}\right)
$$

The measure μ is a Haar measure on $(\{-1,1\}, \cdot)$, i.e. $\mu(g \cdot A)=\mu(A)$ where $g \in$ $\{-1,1\}^{n}$ and $A \subset\{-1,1\}^{n}$. Here $g \cdot A=\{g \cdot a: a \in A\}$.

Let ν be any a measure on $\{-1,1\}^{n}$. We define a convolution operator T_{ν} by the formula

$$
T_{\nu}(f)(x)=\int f\left(x y^{-1}\right) \mathrm{d} \nu(y)
$$

Since $y^{-1}=y$, we can write as well

$$
T_{\nu}(f)(x)=\int f(x y) \mathrm{d} \nu(y)
$$

This operator is a weak contraction in every $L_{p}(\{-1,1\}, \mu)$ for $p \geq 1$. Indeed, by triangle inequality an Jensens inequality we have

$$
\begin{aligned}
\left\|T_{\nu}(f)\right\|_{p}^{p} & =\int\left|\int f\left(x y^{-1}\right) \mathrm{d} \nu(y)\right|^{p} \mathrm{~d} \mu(x) \leq \iint\left|f\left(x y^{-1}\right)\right|^{p} \mathrm{~d} \nu(y) \mathrm{d} \mu(x) \\
& =\iint\left|f\left(x y^{-1}\right)\right|^{p} \mathrm{~d} \mu(x) \mathrm{d} \nu(y)=\iint|f(x)|^{p} \mathrm{~d} \mu(x) \mathrm{d} \nu(y)=\|f\|_{p}^{p}
\end{aligned}
$$

We have used the fact that μ is Haar measure on $\{-1,1\}^{n}$.

Now take

$$
\nu_{\delta}^{n}=\left(\frac{1+\delta}{2} \delta_{\{1\}}+\frac{1-\delta}{2} \delta_{\{-1\}}\right)^{\otimes n}
$$

and let $T_{\delta}=T_{\delta}^{(n)}=T_{\nu_{\delta}^{n}}$. We investigate the action of T_{δ} on Walsh functions,

$$
\begin{aligned}
T_{\delta}\left(w_{S}\right)(x) & =\int \prod_{i \in S} x_{i} y_{i} \mathrm{~d} \nu_{\delta}^{n}(y)=\left(\prod_{i \in S} x_{i}\right)\left(\prod_{i \in S} \int y_{i} \mathrm{~d} \nu_{\delta}\left(y_{i}\right)\right) \\
& =w_{S}(x) \delta^{|S|}
\end{aligned}
$$

Therefore, if $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ then we have

$$
T_{\delta}(f)=\sum_{S \subset[n]} a_{S} \delta^{|S|} w_{S}, \quad \text { when } \quad f=\sum_{S \subset[n]} a_{S} w_{S}
$$

The operator T_{δ} possess the following properties

- $T_{\delta}(f) \geq f$, when $f \geq 0$,
- $T_{\delta}(1)=1$,
- $\left\langle f, T_{\delta} g\right\rangle=\left\langle T_{\delta} f, g\right\rangle$,
- $\left\|T_{\delta} f\right\|_{p} \leq\|f\|_{p}$.

We are going to develop one of the most important tools in the theory of boolean functions, namely prove that T_{δ} is hypercontractive.

Theorem 1 (Bonami-Beckner-Gross). For any $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and any $\delta \in[0,1]$ we have

$$
\left\|T_{\delta} f\right\|_{2} \leq\|f\|_{1+\delta_{2}}
$$

We begin with the following abstract lemma.
Lemma 6. Let $q \geq p \geq 1$ and let $\left(\Omega_{1}, \mu_{1}\right),\left(\Omega_{2}, \mu_{2}\right)$ be two finite probability spaces. Let $K_{i}: \Omega_{i} \times \Omega_{i} \rightarrow \mathbb{R}$ for $i=1,2$. We define two operators

$$
T_{i}(f)(x)=\int_{\Omega_{i}} K_{i}(x, y) \mathrm{d} \mu_{i}(y), \quad i=1,2
$$

Moreover, for $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ let us take

$$
\left(T_{1} \otimes T_{2}\right)(f)\left(x_{1}, x_{2}\right)=\int_{\Omega_{1}} \int_{\Omega_{2}} f\left(y_{1}, y_{2}\right) K_{1}\left(x_{1}, y_{1}\right) K_{2}\left(x_{2}, y_{2}\right) \mathrm{d} \mu_{2}\left(y_{2}\right) \mathrm{d} \mu_{1}\left(y_{1}\right)
$$

Suppose that for $i=1,2$ we have

$$
\left\|T_{i} f\right\|_{L_{q}\left(\Omega_{i}, \mu_{i}\right)} \leq\|f\|_{L_{p}\left(\Omega_{i}, \mu_{i}\right)}, \quad \text { for all } f: \Omega_{i} \rightarrow \mathbb{R}
$$

Then

$$
\left\|T_{1} \otimes T_{2} f\right\|_{L_{q}\left(\Omega_{1} \times \Omega_{2}, \mu_{1} \otimes \mu_{2}\right)} \leq\|f\|_{L_{p}\left(\Omega_{1} \times \Omega_{2}, \mu_{1} \otimes \mu_{2}\right)}
$$

Proof. Take $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$. The operator T_{2} acts on a functions $f: \Omega_{1} \rightarrow \mathbb{R}$. However, we can define its action on functions of two variables by the formula

$$
T_{2}(f)\left(y_{1}, x_{2}\right)=\int f\left(y_{1}, y_{2}\right) K_{2}\left(x_{2}, y_{2}\right) \mathrm{d} \mu_{2}\left(y_{2}\right)
$$

Now it $f: \Omega_{1} \times \Omega_{2} \rightarrow \mathbb{R}$ then we have

$$
T_{1} \otimes T_{2} f=T_{1}\left(T_{2}(f)\right)
$$

More precisely,

$$
\left(T_{1} \otimes T_{2}\right)(f)\left(x_{1}, x_{2}\right)=T_{1}\left(T_{2}(f)\left(\cdot, x_{2}\right)\right)\left(x_{1}\right)
$$

By the assumption on T_{1} we have

$$
\begin{aligned}
\left\|T_{1} \otimes T_{2} f\right\|_{L_{q}\left(\Omega_{1} \times \Omega_{2}, \mu_{1} \otimes \mu_{2}\right)}^{q} & =\int_{\Omega_{2}} \int_{\Omega_{1}}\left|T_{1}\left(T_{2}(f)\left(\cdot, x_{2}\right)\right)\left(x_{1}\right)\right|^{q} \mathrm{~d} \mu_{1}\left(x_{1}\right) \mathrm{d} \mu_{2}\left(x_{2}\right) \\
& \leq \int_{\Omega_{2}}\left(\int_{\Omega_{1}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{p} \mathrm{~d} \mu_{1}\left(y_{1}\right)\right)^{q / p} \mathrm{~d} \mu_{2}\left(x_{2}\right) .
\end{aligned}
$$

Now it $(X, \mu),(Y, \nu)$ are finite probability spaces and $r \geq 1$ then we have the following Minkowski inequality

$$
\left(\int_{X}\left(\int_{Y} g(x, y) \mathrm{d} \nu(y)\right)^{r} \mathrm{~d} \mu(x)\right)^{1 / r} \leq \int_{Y}\left(\int_{X} g(x, y)^{r} \mathrm{~d} \mu(x)\right)^{1 / r} \mathrm{~d} \nu(y)
$$

If we realize that the integral over Y in the above inequality is simply a finite sums then we shall see that this inequality means that

$$
\left\|\sum_{i} a_{i} g_{i}\right\|_{r} \leq \sum_{i} a_{i}\left\|g_{i}\right\|_{r}
$$

where $g_{i}: X \rightarrow \mathbb{R}$ and $\left(a_{i}\right)$ are positive numbers. This in is the usual well known Minkowski inequality.

We apply this inequality to the function

$$
g\left(y_{1}, x_{2}\right)=\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{p}
$$

and $(X, \mu)=\left(\Omega_{2}, \mu_{2}\right),(Y, \nu)=\left(\Omega_{1}, \mu_{1}\right), r=q / p$,

$$
\begin{aligned}
& \left(\int_{\Omega_{2}}\left(\int_{\Omega_{1}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{p} \mathrm{~d} \mu_{1}\left(y_{1}\right)\right)^{q / p} \mathrm{~d} \mu_{2}\left(x_{2}\right)\right)^{p / q} \\
& \quad \leq\left(\int_{\Omega_{1}}\left(\int_{\Omega_{2}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{q} \mathrm{~d} \mu_{2}\left(x_{2}\right)\right)^{p / q} \mathrm{~d} \mu_{1}\left(y_{1}\right)\right)
\end{aligned}
$$

It follow that

$$
\begin{aligned}
& \int_{\Omega_{2}}\left(\int_{\Omega_{1}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{p} \mathrm{~d} \mu_{1}\left(y_{1}\right)\right)^{q / p} \mathrm{~d} \mu_{2}\left(x_{2}\right) \\
& \quad \leq\left(\int_{\Omega_{1}}\left(\int_{\Omega_{2}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{q} \mathrm{~d} \mu_{2}\left(x_{2}\right)\right)^{p / q} \mathrm{~d} \mu_{1}\left(y_{1}\right)\right)^{q / p}
\end{aligned}
$$

Now we apply our assumption on T_{2} and obtain

$$
\left(\int_{\Omega_{2}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{q} \mathrm{~d} \mu_{2}\left(x_{2}\right)\right)^{1 / q} \leq\left(\int_{\Omega_{2}}\left|f\left(y_{1}, y_{2}\right)\right|^{p} \mathrm{~d} \mu_{2}\left(y_{2}\right)\right)^{1 / p}
$$

Thus,

$$
\begin{aligned}
& \int_{\Omega_{1}}\left(\int_{\Omega_{2}}\left|\left(T_{2}(f)\left(y_{1}, x_{2}\right)\right)\right|^{q} \mathrm{~d} \mu_{2}\left(x_{2}\right)\right)^{p / q} \mathrm{~d} \mu_{1}\left(y_{1}\right) \\
& \quad \leq \int_{\Omega_{1}} \int_{\Omega_{2}}\left|f\left(y_{1}, y_{2}\right)\right|^{p} \mathrm{~d} \mu_{2}\left(y_{2}\right) \mathrm{d} \mu_{1}\left(y_{1}\right)
\end{aligned}
$$

We arrive at

$$
\begin{aligned}
\left\|T_{1} \otimes T_{2} f\right\|_{L_{q}\left(\Omega_{1} \times \Omega_{2}, \mu_{1} \otimes \mu_{2}\right)}^{q} & \leq\left(\int_{\Omega_{1}} \int_{\Omega_{2}}\left|f\left(y_{1}, y_{2}\right)\right|^{p} \mathrm{~d} \mu_{2}\left(y_{2}\right) \mathrm{d} \mu_{1}\left(y_{1}\right)\right)^{q / p} \\
& =\|f\|_{L_{p}\left(\Omega_{1} \times \Omega_{2}, \mu_{1} \otimes \mu_{2}\right)}^{q} .
\end{aligned}
$$

Note that in the case $n=1$ we have

$$
\begin{aligned}
T_{\delta}^{(1)}(f)(x) & =\frac{1+\delta}{2} f(x)+\frac{1-\delta}{2} f(-x)=\int_{\{-1,\} 1} f(x y)(1+\delta y) \mathrm{d} \mu(y) \\
& =\int_{\{-1,\} 1} f(y)\left(1+\delta y x^{-1}\right) \mathrm{d} \mu(y) .
\end{aligned}
$$

In general,

$$
\begin{aligned}
T_{\delta}^{(n)}(f)(x) & =\int_{\{-1,1\}^{n}} f\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) \mathrm{d} \nu_{\delta}^{(1)}\left(y_{1}\right) \ldots \mathrm{d} \nu_{\delta}^{(1)}\left(y_{n}\right) \\
& =\int_{\{-1,1\}^{n}} f\left(y_{1}, \ldots, y_{n}\right)\left(1+\delta y_{1} x_{1}^{-1}\right) \ldots\left(1+\delta y_{n} x_{n}^{-1}\right) \mathrm{d} \mu^{(1)}\left(y_{1}\right) \ldots \mathrm{d} \mu^{(1)}\left(y_{n}\right) \\
& =\int_{\{-1,1\}^{n}} f\left(y_{1}, \ldots, y_{n}\right) K\left(x_{1}, y_{1}\right) \ldots K\left(x_{n}, y_{n}\right) \mathrm{d} \mu^{(1)}\left(y_{1}\right) \ldots \mathrm{d} \mu^{(1)}\left(y_{n}\right),
\end{aligned}
$$

where

$$
K(x, y)=1+\delta y x^{-1}
$$

Therefore, using induction and Lemma 6 we reduce the proof of the Theorem 1 to the case $n=1$. In this case we have

$$
\left(T_{\delta} f\right)(x)=\frac{1+\delta}{2} f(x)+\frac{1-\delta}{2} f(-x)
$$

Therefore,

$$
\left\|T_{\delta} f\right\|_{2}=\left(\frac{\left|\frac{1+\delta}{2} f(1)+\frac{1-\delta}{2} f(-1)\right|^{2}+\left|\frac{1+\delta}{2} f(-1)+\frac{1-\delta}{2} f(1)\right|^{2}}{2}\right)^{1 / 2}
$$

and

$$
\|f\|_{1+\delta^{2}}=\left(\frac{|f(1)|^{1+\delta^{2}}+|f(-1)|^{1+\delta^{2}}}{2}\right)^{\frac{1}{1+\delta^{2}}}
$$

Let

$$
a=\frac{f(1)+f(-1)}{2}, \quad b=\frac{f(1)-f(-1)}{2} .
$$

The inequality $\left\|T_{\delta} f\right\|_{2} \leq\|f\|_{1+\delta^{2}}$ is now equivalent to

$$
\left(\frac{|a+b \delta|^{2}+|a-b \delta|^{2}}{2}\right)^{1 / 2} \leq\left(\frac{|a+b|^{1+\delta}+|a-b|^{1+\delta^{2}}}{2}\right)^{\frac{1}{1+\delta^{2}}}
$$

Since

$$
\frac{|a+b \delta|^{2}+|a-b \delta|^{2}}{2}=a^{2}+\delta^{2} b^{2}
$$

we have to prove the following lemma.
Lemma 7. For all $a, b \in \mathbb{R}$ and $\delta \in[0,1]$ we have an inequality

$$
\left(a^{2}+b^{2} \delta^{2}\right)^{\frac{1+\delta^{2}}{2}} \leq \frac{|a+b|^{1+\delta^{2}}+|a-b|^{1+\delta^{2}}}{2} .
$$

Proof. If $a=0$ then our inequality has the form $|b|^{1+\delta^{2}} \delta^{1+\delta^{2}} \leq|b|^{1+\delta^{2}}$, which is true since $\delta^{1+\delta^{2}} \leq 1^{1+\delta^{2}}=1$. Therefore we can assume that $a \neq 0$. If we divide both sides of the inequality by $|a|^{1+\delta^{2}}$ and denote $y=b / a$ we are to prove

$$
\left(1+\delta^{2} y^{2}\right)^{\frac{1+\delta^{2}}{2}} \leq \frac{|1+y|^{1+\delta^{2}}+|1-y|^{1+\delta^{2}}}{2}
$$

Both sides of this inequality are even functions of the variable y. Therefore one can assume that $y \geq 0$.

Let us first consider the case $y \in[0,1)$. We have the following Taylor expansion

$$
(1+x)^{1+\delta^{2}}=\sum_{k=0}^{\infty}\binom{1+\delta^{2}}{k} x^{k}, \quad|x|<1
$$

where

$$
\binom{1+\delta^{2}}{k}=\frac{\left(1+\delta^{2}\right)\left(1+\delta^{2}-1\right) \ldots\left(1+\delta^{2}-k+1\right)}{k!} .
$$

Thus,

$$
\begin{aligned}
\frac{|1+y|^{1+\delta^{2}}+|1-y|^{1+\delta^{2}}}{2} & =\frac{1}{2}\left[\sum_{k=0}^{\infty}\binom{1+\delta^{2}}{k} y^{k}+\sum_{k=0}^{\infty}\binom{1+\delta^{2}}{k}(-y)^{k}\right] \\
& =\sum_{k=0}^{\infty}\binom{1+\delta^{2}}{2 k} y^{2 k}=1+\frac{\left(1+\delta^{2}\right) \delta^{2}}{2} y^{2}+\sum_{k=2}^{\infty}\binom{1+\delta^{2}}{2 k} y^{2 k} \\
& \geq 1+\frac{\left(1+\delta^{2}\right) \delta^{2}}{2} y^{2}
\end{aligned}
$$

since

$$
\binom{1+\delta^{2}}{2 k}=\frac{\left(1+\delta^{2}\right)\left(1+\delta^{2}-1\right) \ldots\left(1+\delta^{2}-2 k+1\right)}{(2 k)!} \geq 0
$$

as in the numerator there are 2 positive term and $2 k$ negative terms. It suffices to prove

$$
\begin{equation*}
\left(1+\delta^{2} y^{2}\right)^{\frac{1+\delta^{2}}{2}} \leq 1+\frac{\left(1+\delta^{2}\right) \delta^{2}}{2} y^{2} . \tag{1}
\end{equation*}
$$

Note that $(1+x)^{\lambda} \leq 1+\lambda x$ for $x \geq 0$ and $\lambda \in[0,1]$. This is called the Bernoulli inequality. It follows from the fact that $g(x)=(1+x)^{\lambda}-1-\lambda x$ satisfies $g(0)=0$ and $g^{\prime}(x) \leq 0$ for $x \geq 0$. Taking $x=\delta^{2} y^{2}$ and $\lambda=\frac{1+\delta^{2}}{2}$ we obtain (1).

The case $y=1$ follows from the previous case by continuity.
Let us now consider the case $y>1$. Take $z=\frac{1}{y}<1$. We are to prove that

$$
\left(1+\frac{\delta^{2}}{z^{2}}\right)^{\frac{1+\delta^{2}}{2}} \leq \frac{\left|1+\frac{1}{z}\right|^{1+\delta^{2}}+\left|1-\frac{1}{z}\right|^{1+\delta^{2}}}{2} .
$$

Multiplying both sides by $z^{1+\delta^{2}}$ we obtain

$$
\left(z^{2}+\delta^{2}\right)^{\frac{1+\delta^{2}}{2}} \leq \frac{|1+z|^{1+\delta^{2}}+|1-z|^{1+\delta^{2}}}{2}
$$

This follows from the first case, since

$$
z^{2}+\delta^{2}=1+\delta^{2} z^{2}-\left(1-z^{2}\right)\left(1-\delta^{2}\right) \leq 1+\delta^{2} z^{2}
$$

7 KKL Theorem and Talagrand's theorem

We are now ready to prove the following celebrated KKL Theorem.
Theorem 2 (Kahn-Kalai-Linial). Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $\mu(f)=p \leq$ $\frac{1}{2}$. Then

$$
\sum_{i=1}^{n} I_{i}(f)^{2} \geq C^{2} p^{2} \frac{(\ln n)^{2}}{n}
$$

Moreover,

$$
\max _{1 \leq i \leq n} I_{i}(f) \geq C p \frac{\ln n}{n}
$$

Proof. Since

$$
\sum_{i=1}^{n} I_{i}(f)^{2} \leq n\left(\max _{1 \leq i \leq n} I_{i}(f)\right)^{2}
$$

the second inequality follows directly from the first one.
Let $f_{i}(x)=f(x)-f\left(x^{i}\right) \in\{-2,0,2\}$. Hypercontractivity yields

$$
\left\|T_{\delta} f_{i}\right\|_{2} \leq\left\|f_{i}\right\|_{1+\delta^{2}}, \quad \delta \in[0,1]
$$

Recall that

$$
\hat{f}_{i}(S)= \begin{cases}0 & i \notin S \\ 2 \hat{f}(S) & i \in S\end{cases}
$$

Therefore, if $f=\sum a_{S} w_{S}$ then

$$
f_{i}=2 \sum_{S: i \in S} a_{s} w_{S}
$$

and

$$
\left\|f_{i}\right\|_{2}^{2}=4 \sum_{S: i \in S} a_{S}^{2}
$$

Moreover,

$$
T_{\delta} f_{i}=2 \sum_{i: i \in S} a_{S} \delta^{|S|} w_{S}
$$

and

$$
\left\|T_{\delta} f_{i}\right\|_{2}^{2}=4 \sum_{S: i \in S} a_{S}^{2} \delta^{2|S|}
$$

On the other hand, for $p \geq 1$ we have

$$
\left\|f_{i}\right\|_{p}^{p}=2^{p} \mathbb{P}\left(f(x) \neq f\left(x^{i}\right)\right)=2^{p} I_{i},
$$

where $I_{i}=I_{i}(f)$. Thus,

$$
4 \sum_{S: i \in S} a_{S}^{2} \delta^{2|S|} \leq\left\|f_{i}\right\|_{1+\delta^{2}}^{2}=\left(\left\|f_{i}\right\|_{1+\delta^{2}}^{1+\delta^{2}}\right)^{\frac{2}{1+\delta^{2}}}=\left(2^{1+\delta^{2}} I_{i}\right)^{\frac{2}{1+\delta^{2}}}=4 I_{i}^{\frac{2}{1+\delta^{2}}}
$$

Summing these inequalities for $1 \leq i \leq n$ we obtain

$$
\sum_{S} a_{S}^{2}|S| \delta^{2|S|} \leq \sum_{i=1}^{n} I_{i}^{\frac{2}{1+\delta^{2}}}
$$

Hence,

$$
\delta^{2|S|} \sum_{S:|S| \leq M} a_{S}^{2}|S| \leq \sum_{S:|S| \leq M} a_{S}^{2}|S| \delta^{2|S|} \leq \sum_{S} a_{S}^{2}|S| \delta^{2|S|} \leq \sum_{i=1}^{n} I_{i}^{\frac{2}{1+\delta^{2}}}
$$

We have

$$
\sum_{S} a_{S}^{2}=1, \quad a_{\emptyset}=p-(1-p)=2 p-1
$$

Note that

$$
\sum_{S:|S| \leq M} a_{S}^{2}|S| \geq \sum_{S:|S| \leq M} a_{S}^{2}-a_{\emptyset}^{2}
$$

Therefore,

$$
\delta^{-2 M} \sum_{i=1}^{n} I_{i}^{\frac{2}{1+\delta^{2}}} \geq \sum_{S:|S| \leq M} a_{S}^{2}-a_{\emptyset}^{2}
$$

Since

$$
\sum_{i=1}^{n} I_{i}=\sum_{S}|S| a_{S}^{2}
$$

then we also have

$$
\sum_{i=1}^{n} I_{i} \geq M \sum_{|S|>M} a_{S}^{2}
$$

Summing these two inequalities we obtain

$$
\sum_{i=1}^{n}\left(\delta^{-2 M} I_{i}^{\frac{2}{1+\delta^{2}}}+\frac{1}{M} I_{i}\right) \geq \sum_{S} a_{S}^{2}-a_{\emptyset}^{2}=1-(2 p-1)^{2}=4 p(1-p) \geq 2 p
$$

Let $\lambda \geq 0$ be a number satisfying $\sum_{i=1}^{n} I_{i}^{2}=\frac{\lambda^{2}}{n}$. Suppose, by contradiction, that $\lambda<C p \ln n$. We show that for small values of C this in impossible.

We have

$$
\sum_{i=1}^{n} I_{i} \leq \sqrt{n} \sqrt{\sum_{i=1}^{n} I_{i}^{2}}=\lambda
$$

Moreover, by Jensen inequality we have

$$
\begin{aligned}
\sum_{i=1}^{n} I_{i}^{\frac{2}{1+\delta^{2}}} & \leq n\left(\frac{1}{n} \sum_{i=1}^{n}\left(I_{i}^{\frac{2}{1+\delta^{2}}}\right)^{\frac{1}{1+\delta^{2}}}\right)^{\frac{1}{1+\delta^{2}}}=n\left(\frac{\lambda^{2}}{n^{2}}\right)^{\frac{1}{1+\delta^{2}}} \\
& =\lambda^{\frac{2}{1+\delta^{2}}} n^{1-\frac{2}{1+\delta^{2}}}=\lambda^{\frac{2}{1+\delta^{2}}} n^{\frac{\delta^{2}-1}{\delta^{2}+1}}
\end{aligned}
$$

Thus,

$$
2 p \leq \sum_{i=1}^{n}\left(\delta^{-2 M} I_{i}^{\frac{2}{1+\delta^{2}}}+\frac{1}{M} I_{i}\right) \leq \delta^{-2 M} \lambda^{\frac{2}{1+\delta^{2}}} n^{\frac{\delta^{2}-1}{\delta^{2}+1}}+\frac{\lambda}{M} .
$$

Let $M=\lceil\lambda / p\rceil$. Then

$$
\frac{\lambda}{p} \leq M \leq 1+\frac{\lambda}{p} \leq 1+C \ln n
$$

Thus,

$$
2 p \leq \delta^{-2 M} \lambda^{\frac{2}{1+\delta^{2}}} n^{\frac{\delta^{2}-1}{\delta^{2}+1}}+\frac{\lambda}{M} \leq \delta^{-2(1+C \ln n)}(C p \ln n)^{\frac{2}{1+\delta^{2}}} n^{\frac{\delta^{2}-1}{\delta^{2}+1}}+p
$$

This is equivalent to

$$
1 \leq p^{\frac{1-\delta^{2}}{1+\delta^{2}}} \delta^{-2(1+C \ln n)}(C p \ln n)^{\frac{2}{1+\delta^{2}}} n^{\frac{\delta^{2}-1}{\delta^{2}+1}}
$$

Taking $\delta=1 / 2$ and using $p \leq 1 / 2$ we obtain

$$
1 \leq\left(\frac{1}{2}\right)^{3 / 5} 2^{2(1+C \ln n)} C^{8 / 5} n^{-\frac{3}{5}}(\ln n)^{8 / 5}=2^{7 / 5} C^{8 / 5} n^{-\frac{3}{5}+2 C \ln 2}(\ln n)^{8 / 5}
$$

Take $C<\frac{1}{5 \ln 2}$. Then

$$
1 \leq 2^{7 / 5} C^{8 / 5} n^{-\frac{1}{5}}(\ln n)^{8 / 5} \leq C^{8 / 5} c_{0}
$$

where c_{0} is an universal constant. Now it suffices to take sufficiently small C to obtain a contradiction.

We prove another theorem of this kind (due to Talagrand) and show that KKL Theorem follows from this theorem.

Theorem 3. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and let $\mu(f)=\mathbb{P}(f=1)$. Then

$$
\sum_{i=1}^{n} \frac{I_{i}(f)}{\log \left(\frac{1}{I_{i}(f)}\right)} \geq \frac{4}{15} \mu(f)(1-\mu(f))
$$

We adopt the notation $\frac{0}{\log (1 / 0)}=0$ and $1 / \log (1)=+\infty$. We begin with a lemma.
Lemma 8. Let $g:\{-1,1\}^{n} \rightarrow \mathbb{R}$ with $\|g\|_{3 / 2} \neq\|g\|_{2}$, which is equivalent to $|g|$ being not constant. Then

$$
\sum_{S \neq \emptyset} \frac{\hat{g}(S)^{2}}{|S|} \leq \frac{5}{2} \frac{\|g\|_{2}^{2}}{\log \left(\|g\|_{2} /\|g\|_{3 / 2}\right)}
$$

Proof. Using the inequality

$$
\left\|T_{\delta} g\right\|_{2} \leq\|g\|_{1+\delta^{2}}
$$

with $\delta^{2}=1 / 2$ we obtain

$$
\sum_{S:|S|=k} \hat{g}(S)^{2} \leq 2^{k} \sum_{S} \frac{1}{2^{|S|}} \hat{g}(S)^{2}=2^{k}\|T \sqrt{1 / 2} g\|_{2}^{2} \leq 2^{k}\|g\|_{3 / 2}^{2} .
$$

Now take $m \geq 0$. We have

$$
\begin{aligned}
\sum_{S \neq \emptyset} \frac{\hat{g}(S)^{2}}{|S|} & =\sum_{k=1}^{m} \sum_{S:|S|=k} \frac{\hat{g}(S)^{2}}{k}+\sum_{S:|S|>m} \frac{\hat{g}(S)^{2}}{|S|} \leq \sum_{k=1}^{m} \frac{2^{k}\|g\|_{3 / 2}^{2}}{k}+\sum_{S:|S|>m} \frac{\hat{g}(S)^{2}}{m+1} \\
& \leq \frac{4 \cdot 2^{m}\|g\|_{3 / 2}^{2}+\|g\|_{2}^{2}}{m+1}
\end{aligned}
$$

where we have used the inequality

$$
\sum_{k=1}^{m} \frac{2^{k}}{k} \leq \frac{4 \cdot 2^{m}}{m+1}
$$

which can be easily proved by induction.
Now we take

$$
m=\max \left\{m \geq 0 \mid 2^{m}\|g\|_{3 / 2}^{2} \leq\|g\|_{2}^{2}\right\}
$$

Then $2^{m+1}\|g\|_{3 / 2}^{2}>\|g\|_{2}^{2}$. Hence,

$$
m+1>2 \log \left(\frac{\|g\|_{2}}{\|g\|_{3 / 2}}\right)
$$

We arrive at

$$
\sum_{S \neq \emptyset} \frac{\hat{g}(S)^{2}}{|S|} \leq \frac{5\|g\|_{2}^{2}}{m+1} \leq \frac{5}{2} \frac{\|g\|_{2}^{2}}{\log \left(\|g\|_{2} /\|g\|_{3 / 2}\right)}
$$

Proof of Talagrand's theorem. Suppose $I_{i}(f) \in(0,1)$. Let $g(x)=f(x)-f\left(x^{i}\right)$. It follows that $|g|$ is not constant. We have

$$
\frac{\|g\|_{2}}{\|g\|_{3 / 2}}=\frac{2 I_{i}(f)^{1 / 2}}{2 I_{i}(f)^{2 / 3}}=I_{i}(f)^{-1 / 6}
$$

From the lemma we obtain

$$
\sum_{S: i \in S} \frac{4 \hat{f}(S)^{2}}{|S|}=\sum_{S} \frac{\hat{g}(S)^{2}}{|S|} \leq \frac{5}{2} \frac{\|g\|_{2}^{2}}{\log \left(\|g\|_{2} /\|g\|_{3 / 2}\right)}=\frac{5}{2} \cdot \frac{4 I_{i}(f)}{\log \left(I_{i}(f)^{-1 / 6}\right)}=60 \frac{I_{i}(f)}{\log \left(\frac{1}{I_{i}(f)}\right)}
$$

The inequality

$$
\sum_{S: i \in S} \frac{4 \hat{f}(S)^{2}}{|S|} \leq 60 \frac{I_{i}(f)}{\log \left(\frac{1}{I_{i}(f)}\right)}
$$

is also true when $I_{i}(f) \in\{0,1\}$. We obtain

$$
16 \mu(f)(1-\mu(f))=4 \operatorname{Var}_{\mu}(f)=\sum_{S n \varepsilon \emptyset} 4 \hat{f}(S)^{2}=\sum_{i=1}^{n} \sum_{S: i \in S} \frac{4 \hat{f}(S)^{2}}{|S|} \leq 60 \sum_{i=1}^{n} \frac{I_{i}(f)}{\log \left(\frac{1}{I_{i}(f)}\right)}
$$

The assertion follows.
We show that Talagrand result implies KKL Theorem. Let us first observe that if $a \in(0,1)$ and $\frac{a}{\log (1 / a)} \geq c>0$ then $a \geq \frac{1}{2} c \log (1 / c)$. Since $(0,1) \ni a \mapsto \frac{a}{\log (1 / a)}$ is increasing, it suffices to assume that $\frac{a}{\log (1 / a)}=c$. Then we are to prove

$$
a \geq \frac{1}{2} \frac{a}{\log (1 / a)} \log \left(\frac{1}{a} \log \left(\frac{1}{a}\right)\right) .
$$

Taking $x=1 / a \geq 1$ we see that this inequality is equivalent to

$$
\log (x) \geq \frac{1}{2} \log (x \log (x))=\frac{1}{2} \log x+\frac{1}{2} \log \log x .
$$

Thus we are to prove $x \geq \log x$. It follows from Bernoulli inequality

$$
2^{x}=(1+1)^{x} \geq 1+x \geq x .
$$

From Talagrand's inequality we know that there exists i such that

$$
\frac{I_{i}(f)}{\log \left(\frac{1}{I_{i}(f)}\right)} \geq \frac{1}{n} \cdot \frac{4}{15} \mu(f)(1-\mu(f))
$$

Now take

$$
a=I_{i}(f), \quad c=\frac{1}{n} \cdot \frac{4}{15} \mu(f)(1-\mu(f)) .
$$

We have

$$
\frac{1}{c}=n \cdot \frac{15}{4} \frac{1}{\mu(f)(1-\mu(f))} \geq 15 n
$$

We obtain

$$
I_{i}(f) \geq \frac{1}{2} c \log (1 / c) \geq \frac{1}{n} \cdot \frac{4}{15} \mu(f)(1-\mu(f)) \log (15 n) \geq \frac{4}{15} \mu(f)(1-\mu(f)) \frac{\log n}{n} .
$$

This is the KKL Theorem.

8 Monotone boolean functions

The function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is called monotone if $x_{i} \leq y_{i}$ for $1 \leq i \leq n$ implies $f\left(x_{1}, \ldots, x_{n}\right) \leq f\left(y_{1}, \ldots, y_{n}\right)$. We calculate the influence of a monotone function f. Note that

$$
\hat{f}(\{1\})=\mathbb{E} x_{1} f=\frac{1}{2} \mathbb{E} f\left(1, x_{2}, \ldots x_{n}\right)-\frac{1}{2} \mathbb{E} f\left(-1, x_{2}, \ldots, x_{n}\right) .
$$

Since our function is monotone, the difference

$$
f\left(1, x_{2}, \ldots x_{n}\right)-f\left(-1, x_{2}, \ldots, x_{n}\right)
$$

can have only values 0 and 2 . Therefore,

$$
\begin{aligned}
\hat{f}(\{1\}) & =\frac{1}{2} \mathbb{E}\left(f\left(1, x_{2}, \ldots x_{n}\right)-f\left(-1, x_{2}, \ldots, x_{n}\right)\right) \\
& =\frac{1}{2} \cdot 2 \mathbb{P}\left(f\left(1, x_{2}, \ldots x_{n}\right) \neq f\left(-1, x_{2}, \ldots, x_{n}\right)\right)=I_{1}(f)
\end{aligned}
$$

Therefore, for a monotone boolean function we have

$$
I_{i}(f)=\hat{f}(\{i\}), \quad 1 \leq i \leq n, \quad I(f)=\sum_{i=1}^{n} \hat{f}(\{i\})
$$

For an arbitrary boolean function f we can write

$$
\begin{aligned}
\left|a_{i}\right| & =\frac{1}{2}\left|\mathbb{E} f\left(1, x_{2}, \ldots x_{n}\right)-f\left(-1, x_{2}, \ldots, x_{n}\right)\right| \\
& \leq \frac{1}{2} \mathbb{E}\left|f\left(1, x_{2}, \ldots x_{n}\right)-f\left(-1, x_{2}, \ldots, x_{n}\right)\right| \\
& =\mathbb{P}\left(f\left(1, x_{2}, \ldots x_{n}\right) \neq f\left(-1, x_{2}, \ldots, x_{n}\right)\right) .
\end{aligned}
$$

Thus

$$
\left|a_{i}\right| \leq I_{i}(f)
$$

We can now easily prove the following estimate.
Proposition 4. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ be a monotone boolean function. Then

$$
I(f) \leq \sqrt{n}
$$

Proof. We have

$$
I(f)=\sum_{i=1}^{n} \hat{f}(\{i\}) \leq \sqrt{n} \sum_{i=1}^{n} \hat{f}(\{i\})^{2} \leq \sqrt{n} \sum_{S} \hat{f}(S)^{2}=\sqrt{n} .
$$

Now we introduce certain symmetrization techniques. Namely we prove the following proposition.
Proposition 5. Let $f:\{-1,1\} \rightarrow\{-1,1\}$. Then there exists $g:\{-1,1\} \rightarrow\{-1,1\}$ such that $\mathbb{E} f=\mathbb{E} g$ and $I_{i}(f) \geq I_{i}(g)$.

Proof. For $1 \leq i \leq n$ we take the i th symmetrization of f given by the formula
$f_{s_{i}}\left(x_{1}, \ldots, x_{n}\right)= \begin{cases}f\left(x_{1}, \ldots, x_{n}\right) & f\left(\ldots, x_{i-1},-1, x_{i+1}, \ldots\right) \leq f\left(\ldots, x_{i-1},-1, x_{i+1}, \ldots\right) \\ -f\left(x_{1}, \ldots, x_{n}\right) & f\left(\ldots, x_{i-1},-1, x_{i+1}, \ldots\right)>f\left(\ldots, x_{i-1},-1, x_{i+1}, \ldots\right)\end{cases}$
Clearly $I_{i}(f)=I_{i}\left(f_{s_{i}}\right)$. To check that $I_{j}(f) \geq I_{j}\left(f_{s_{i}}\right)$ for $i \neq j$ it suffices to consider $i=1, j=2$. Now one has to consider elements

$$
(-1,-1, x),(-1,1, x),(1,-1, x),(1,1, x) \in\{-1,1\}^{n}
$$

and 16 possible values of f in these points. It suffices to observe that the contribution to I_{2} will change only when

$$
f(-1,-1, x) \neq f(-1,1) \quad \text { and } \quad f(1,-1, x) \neq f(1,1, x)
$$

and I_{2} will decrease.
Now, we construct a sequence of symmetrizations $f, f_{s_{i_{1}}}, f_{s_{1}, s_{2}}=\left(f_{s_{i_{1}}}\right)_{s_{i_{2}}}, \ldots$ in the following way: whenever we have a function $f_{s_{1}, \ldots, s_{k}}$ that is not monotone we find a direction s_{k+1} for which we can do non-trivial symmetrization and then we take $f_{s_{1}, \ldots, s_{k}, s_{k+1}}$. We only have to show that this procedure will stop. But this is clear since the functional

$$
\mathcal{L}(f)=\sum_{x \in\{-1,1\}^{n}}(1+f(x))\left(x_{1}+\ldots+x_{n}\right)
$$

satisfies $\mathcal{L}(f)<\mathcal{L}\left(f_{s_{i}}\right)$ and $\mathcal{L}(f) \leq 2 n 2^{n-1}$.
Take $p \in[0,1]$ and let

$$
\mu_{p}=\left((1-p) \delta_{\{-1\}}+p \delta_{\{1\}}\right)^{\otimes n}
$$

and let $\mu_{p}(f)=\mu_{p}(\{f=1\})$. Moreover, let $I_{i}^{p}(f)=\mu_{p}\left(f(x) \neq f\left(x^{i}\right)\right)$ and $I^{p}(f)=$ $\sum_{i=1}^{n} I_{i}^{p}(f)$. We prove the following famous Margulis-Russo lemma.

Lemma 9 (Margulis-Russo lemma). Let $f:\{-1,1\} \rightarrow\{-1,1\}$ be monotone. Then we have

$$
\frac{\mathrm{d}}{\mathrm{~d} p} \mu_{p}(f)=I^{p}(f)
$$

Proof. Instead of μ_{p} let us consider

$$
\mu_{p_{1}, \ldots, p_{n}}=\left(\left(1-p_{1}\right) \delta_{\{-1\}}+p_{1} \delta_{\{1\}}\right) \otimes \ldots \otimes\left(\left(1-p_{n}\right) \delta_{\{-1\}}+p_{n} \delta_{\{1\}}\right)
$$

We claim that

$$
\frac{\partial \mu_{p_{1}, \ldots, p_{n}}(f)}{\partial p_{i}}=I_{i}^{\left(p_{1}, \ldots, p_{n}\right)}(f)
$$

Then by the chain role we have

$$
\frac{\mathrm{d} \mu_{p}(f)}{\mathrm{d} p}=\left.\sum_{i=1}^{n} \frac{\partial \mu_{p_{1}, \ldots, p_{n}}(f)}{\partial p_{i}}\right|_{p_{1}=\ldots=p_{n}=p}=\sum_{i=1}^{n} I_{i}^{(p, \ldots, p)}(f)=\sum_{i=1}^{n} I_{i}^{p}(f) .
$$

Now we prove our claim. It suffices to take $i=1$. Let $f_{1}(x)=f(x)-f\left(x^{i}\right)$. We have

$$
\mathbb{P}_{p_{1}, \ldots, p_{n}}(f=1)=\mathbb{P}_{p_{1}, \ldots, p_{n}}\left(f=1, f_{1} \neq 0\right)+\mathbb{P}_{p_{1}, \ldots, p_{n}}\left(f=1, f_{1}=0\right)
$$

Let $A \subset\{-1,1\}^{n-1}$ be defined as follows,

$$
A=\left\{x \in\{-1,1\}^{n-1} \mid f(1, x)=1, f_{1}(1, x)=0\right\} .
$$

If $f(1, x)=1$ and $f_{1}(1, x)=0$ then $f(-1, x)=1$ and $f_{1}(-1, x)=0$. Therefore

$$
\left\{f=0, f_{i}=0\right\}=\{-1,1\} \times A
$$

hence

$$
\mathbb{P}_{p_{1}, \ldots, p_{n}}\left(f=1, f_{1}=0\right)=\mathbb{P}_{p_{2}, \ldots, p_{n}}(A)
$$

and therefore it does not depend on p_{1}.
Since f is monotone we have

$$
\left\{f=1, f_{1} \neq 0\right\}=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid x_{1}=1, f\left(1, \ldots, x_{n}\right)=1, f\left(-1, \ldots, x_{n}\right)=-1,\right\} .
$$

Define $B \subset\{-1,1\}^{n-1}$ by

$$
B=\left\{x \in\{-1,1\}^{n-1} \mid f(1, x)=1, f_{1}(1, x) \neq 0\right\}
$$

It follows that

$$
\left\{f=1, f_{1}=0\right\}=\{1\} \times B
$$

Therefore,

$$
\mathbb{P}_{p_{1}, \ldots, p_{n}}\left(f=1, f_{1} \neq 0\right)=p_{1} \mathbb{P}_{p_{2}, \ldots, p_{n}}(B)
$$

Note also that

$$
I_{1}^{\left(p_{1}, \ldots, p_{n}\right)}(f)=\mu_{p_{1}, \ldots, p_{n}}(\{-1,1\} \times B)=\mathbb{P}_{p_{2}, \ldots, p_{n}}(B) .
$$

Thus

$$
\frac{\partial \mu_{p_{1}, \ldots, p_{n}}(f)}{\partial p_{1}}=\frac{\partial}{\partial p_{1}}\left(\mathbb{P}_{p_{2}, \ldots, p_{n}}(A)+p_{1} \mathbb{P}_{p_{2}, \ldots, p_{n}}(B)\right)=\mathbb{P}_{p_{2}, \ldots, p_{n}}(B)=I_{1}^{\left(p_{1}, \ldots, p_{n}\right)}(f)
$$

Show that among all monotone Boolean functions Maj_{n} is the one with largest influence. Namely we have

Proposition 6. Let n be odd. Then for every monotone $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ we have

$$
I(f) \leq I\left(\mathrm{Maj}_{n}\right)
$$

Proof. We use Margulis-Russo lemma,

$$
\begin{aligned}
I^{p}(f) & =\frac{\mathrm{d} \mu_{p}(f)}{\mathrm{d} p}=\frac{\mathrm{d}}{\mathrm{~d} p}\left(\sum_{x: f(x)=1} p^{|S|}(1-p)^{n-|S|} f(x)\right) \\
& =\sum_{x: f(x)=1} p^{|S|}(1-p)^{n-|S|}\left(\frac{|S|}{p}-\frac{n-|S|}{1-p}\right) f(x) .
\end{aligned}
$$

Taking $p=\frac{1}{2}$ we obtain

$$
I(f)=\frac{1}{2^{n-1}} \sum_{x: f(x)=1}(2|S|-n) f(x)
$$

To maximize the right hand side one has to take

$$
f(x)= \begin{cases}1 & 2|S|-n \geq 0 \\ -1 & 2|S|-n<0\end{cases}
$$

Clearly, this function is Maj_{n}.

9 Friedgut's Theorem

We begin this section with the following problem. Suppose we have a boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and we have a fixed $J \subset[n]$. We would like to find the best approximation of f in the L_{2} norm with a function depending only on variables x_{j} with $j \in J$.

Suppose we want our approximation g to be real valued. For $f:\{-1,1\}^{n} \rightarrow$ $\{-1,1\}$ we write

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f\left(x_{J}, x_{J^{\prime}}\right)
$$

where $x_{J}=\left(x_{j_{1}}, \ldots, x_{j_{|J|}}\right)$ represents the part of the vector x with variables labelled by the numbers in subset J. The vector $x_{J^{\prime}}$ represents the rest of variables. We have

$$
\|f-g\|_{2}^{2}=\frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}}\left(f\left(x_{J}, x_{J^{\prime}}\right)-g\left(x_{J}\right)\right)^{2}=\frac{1}{2^{n}} \sum_{x_{J}} \sum_{x_{J^{\prime}}}\left(f\left(x_{J}, x_{J^{\prime}}\right)-g\left(x_{J}\right)\right)^{2} .
$$

To minimize the expression

$$
\sum_{x_{J^{\prime}}}\left(f\left(x_{J}, x_{J^{\prime}}\right)-g\left(x_{J}\right)\right)^{2}
$$

One can easily see that, having a real numbers a_{1}, \ldots, a_{N} fixed, the quadratic function

$$
x \mapsto \sum_{i=1}^{N}\left(a_{i}-x\right)^{2}
$$

has a minimum in a point

$$
x=\frac{\sum_{i=1}^{N} a_{i}}{N} .
$$

Therefore we take

$$
g\left(x_{J}\right)=\frac{1}{2^{n-|J|}} \sum_{x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right) .
$$

In other words,

$$
g\left(x_{J}\right)=\mathbb{E}\left(f \mid x_{J}\right)
$$

Taking this function g we obtain

$$
\begin{aligned}
\|f-g\|_{2}^{2}= & \frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}}\left(f\left(x_{J}, x_{J^{\prime}}\right)-g\left(x_{J}\right)\right)^{2}=\frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right)^{2}- \\
& \frac{1}{2^{n-1}} \sum_{x_{J}, x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right) g\left(x_{J}\right)+\frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}} g\left(x_{J}\right)^{2} \\
= & 1-\frac{1}{2^{n-1}} 2^{n-|J|} \sum_{x_{J}} g\left(x_{J}\right)^{2}+\frac{1}{2^{n}} 2^{n-|J|} \sum_{x_{J}} g\left(x_{J}\right)^{2} \\
= & 1-2^{-|J|} \sum_{x_{J}} g\left(x_{J}\right)^{2}=2^{-|J|} \sum_{x_{J}}\left(1-g\left(x_{J}\right)^{2}\right) \\
= & 2^{-|J|} \sum_{x_{J}}\left(1-g\left(x_{J}\right)\right)\left(1+g\left(x_{J}\right)\right) .
\end{aligned}
$$

Let $p(x)=\mathbb{P}(f=1 \mid x)$. Then

$$
g(x)=\mathbb{E}(f \mid x)=p(x)-(1-p(x))=2 p(x)-1
$$

Thus

$$
\|f-g\|_{2}^{2}=2^{-|J|} \sum_{x_{J}} 4 p\left(x_{J}\right)\left(1-p\left(x_{J}\right)\right) .
$$

Now we would like to investigate the approximation with $\{-1,1\}$-valued functions. Recall that we have

$$
\|f-g\|_{2}^{2}=\frac{1}{2^{n}} \sum_{x_{J}} \sum_{x_{J^{\prime}}}\left(f\left(x_{J}, x_{J^{\prime}}\right)-g\left(x_{J}\right)\right)^{2}
$$

We are to minimize the expression of the form

$$
\{-1,1\}^{\ni} x \mapsto \sum_{i=1}^{N}\left(a_{i}-x\right)^{2},
$$

where $a_{1}, \ldots, a_{N} \in\{-1,1\}$ are fixed. Let $k=\left|\left\{1 \leq i \leq N: a_{i}=1\right\}\right|$. Therefore

$$
\sum_{i=1}^{N}\left(a_{i}-x\right)^{2}=k(1-x)^{2}+(n-k)(1+x)^{2} .
$$

Therefore we should take $x=1$ if $n-k \geq k$ and $x=-1$ if $n-k<k$. Since

$$
\frac{1}{2^{|J|}}\left|\left\{x_{J^{\prime}}: f\left(x_{J}, x_{J^{\prime}}\right)=1\right\}\right|=\mathbb{P}\left(f=1 \mid x_{J}\right)
$$

we should take

$$
g\left(x_{J}\right)=\left\{\begin{array}{ll}
1 & \mathbb{P}\left(f=1 \mid x_{J}\right) \geq \frac{1}{2} \\
-1 & \mathbb{P}\left(f=-1 \mid x_{J}\right)<\frac{1}{2}
\end{array} .\right.
$$

We arrive at

$$
\begin{aligned}
\|f-g\|_{2}^{2}= & \frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}}\left(f\left(x_{J}, x_{J^{\prime}}\right)-g\left(x_{J}\right)\right)^{2}=\frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right)^{2}- \\
& \frac{1}{2^{n-1}} \sum_{x_{J}, x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right) g\left(x_{J}\right)+\frac{1}{2^{n}} \sum_{x_{J}, x_{J^{\prime}}} g\left(x_{J}\right)^{2} \\
= & 2-\frac{1}{2^{n-1}} \sum_{x_{J}, x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right) g\left(x_{J}\right)
\end{aligned}
$$

Now

$$
\sum_{x_{J^{\prime}}} f\left(x_{J}, x_{J^{\prime}}\right)=2^{n-|J|}\left(p\left(x_{J}\right)-\left(1-p\left(x_{J}\right)\right)\right)=2^{n-|J|}\left(2 p\left(x_{J}\right)-1\right)
$$

Therefore,

$$
\|f-g\|_{2}^{2}=2-\frac{1}{2^{n-1}} 2^{n-|J|} \sum_{x_{J}}\left(2 p\left(x_{J}\right)-1\right) g\left(x_{J}\right)=2 \cdot 2^{-|J|} \sum_{x_{J}}\left(1-\left(2 p\left(x_{J}\right)-1\right) g\left(x_{J}\right)\right)
$$

We have

$$
\begin{aligned}
1-\left(2 p\left(x_{J}\right)-1\right) g\left(x_{J}\right) & = \begin{cases}1-\left(2 p\left(x_{J}-1\right)\right) & p\left(x_{J}\right) \geq \frac{1}{2} \\
1+\left(2 p\left(x_{J}-1\right)\right) & p\left(x_{J}\right)<\frac{1}{2}\end{cases} \\
& = \begin{cases}2\left(1-p\left(x_{J}\right)\right) & p\left(x_{J}\right) \geq \frac{1}{2} \\
2 p\left(x_{J}\right) & p\left(x_{J}\right)<\frac{1}{2}\end{cases} \\
& =2 \min \left\{p\left(x_{J}\right), 1-p\left(x_{J}\right)\right\} .
\end{aligned}
$$

We obtain

$$
\|f-g\|_{2}^{2}=2^{-|J|} \cdot 4 \sum_{x_{J}} \min \left\{p\left(x_{J}\right), 1-p\left(x_{J}\right)\right\} .
$$

Therefore, we have the following lemma.
Lemma 10. Suppose we have a boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and we have a fixed $J \subset[n]$. Let $g\left(g_{b}\right)$ be the best real-valued ($\{-1,1\}$-valued) approximation of f in the L_{2} norm, depending only on variables labelled by elements in J. Then

$$
\|f-g\|_{2}^{2}=2^{-|J|} \cdot 4 \sum_{x_{J}} \min \left\{p\left(x_{J}\right), 1-p\left(x_{J}\right)\right\}
$$

and

$$
\left.\left\|f-g_{b}\right\|_{2}^{2}=2^{-|J|} \cdot 4 \sum_{x_{J}} p\left(x_{J}\right)\left(1-p\left(x_{J}\right)\right)\right\}
$$

where $p\left(x_{J}\right)=\mathbb{P}\left(f=1 \mid x_{J}\right)$. Moreover,

$$
\left\|f-g_{b}\right\|_{2}^{2} \leq\|f-g\|_{2}^{2}
$$

Proof. We have $\min \left\{p\left(x_{J}\right), 1-p\left(x_{J}\right)\right\} \leq 2 p\left(x_{J}\right)\left(1-p\left(x_{J}\right)\right)$.
We prove the following theorem due to E. Friedgut.
Theorem 4 (Friedgut, '98). If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and $I(f)=k$ then for every $\varepsilon>0$ there exists a boolean function $g:\{-1,1\}^{n} \rightarrow\{-1,1\}$ depending only on $\exp (\lceil c k / \varepsilon\rceil)$ variables, such that $\mathbb{P}(f \neq g) \leq \varepsilon$.

Note that for boolean f, g we have

$$
\|f-g\|_{2}^{2}=\mathbb{E}(f-g)^{2}=4 \mathbb{P}(f \neq g)
$$

Thus it suffices to prove the following theorem
Theorem 5 (Friedgut, '98). If $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and $I(f)=k$ then for every $\varepsilon>0$ there exists a boolean function $g:\{-1,1\}^{n} \rightarrow\{-1,1\}$ depending only on $\exp (\lceil c k / \varepsilon\rceil)$ variables, such that $\|f-g\|_{2} \leq \varepsilon$.
Proof. We have seen in the proof of KKL Theorem that if $f_{i}(x)=f(x)-f\left(x^{i}\right)$ then $\left\|f_{i}\right\|_{q}^{q}=2^{q} I_{i}$ and by hypercontractivity

$$
\sum_{S: i \in S} a_{S}^{2} \delta^{2|S|} \leq I_{i}^{\frac{2}{1+\delta^{2}}}
$$

Let

$$
J=\left\{i: I_{i}<\exp (-d)\right\}
$$

We sum these inequalities for $i \in J$ and we arrive at

$$
\sum_{S} a_{S}^{2} \delta^{2|S|}|S \cap J| \leq \sum_{i \in J} I_{i}^{\frac{2}{1+\delta^{2}}}
$$

We obtain

$$
\sum_{i \in J} I_{i}^{\frac{2}{1+\delta^{2}}}=\sum_{i \in J} I_{i} \cdot I_{i}^{\frac{1-\delta^{2}}{1+\delta^{2}}} \leq\left(\sum_{i \in J} I_{i}\right) e^{-d \frac{1-\delta^{2}}{1+\delta^{2}}} \leq k e^{-d \frac{1-\delta^{2}}{1+\delta^{2}}}=k \exp \left(d\left(1-\frac{2}{1+\delta^{2}}\right)\right)
$$

We therefore have

$$
\sum_{S} a_{S}^{2} \delta^{2|S|}|S \cap J| \leq k \exp \left(d\left(1-\frac{2}{1+\delta^{2}}\right)\right)
$$

and

$$
\sum_{S} a_{S}^{2}|S|=k
$$

It follows that

$$
\sum_{S:|S| \geq \frac{4 k}{\varepsilon}} a_{S}^{2} \leq \frac{\varepsilon}{4}
$$

and

$$
\sum_{S: \delta^{2|S|}|S \cap I| \geq \frac{4 k}{\varepsilon} \exp \left(d\left(1-\frac{2}{1+\delta^{2}}\right)\right)} a_{S}^{2} \leq \frac{\varepsilon}{4}
$$

Therefore almost all of the spectrum in concentrated on S such that

$$
|S|<\frac{4 k}{\varepsilon}, \quad \delta^{2|S|}|S \cap I|<\frac{4 k}{\varepsilon} \exp \left(d\left(1-\frac{2}{1+\delta^{2}}\right)\right) .
$$

Take such an S and let $M=4 k / \varepsilon$. If $|S \cap I| \neq 0$ then

$$
\delta^{2 M}<\delta^{2|S|}|S \cap I|<M \exp \left(d\left(1-\frac{2}{1+\delta^{2}}\right)\right)
$$

Let $x=\delta^{2}$. We have

$$
x^{M}<M \exp \left(d\left(1-\frac{2}{1+x}\right)\right) .
$$

It follows that

$$
d<\frac{1+x}{1-x}(\ln M-M \ln x)
$$

Now we optimize the right hand side with respect to $x \in[0,1]$. We have

$$
d<\frac{1+x}{1-x}(\ln M-M \ln x) \leq M \frac{1+x}{1-x}\left(\frac{\ln M}{M}-\ln x\right)=M \frac{1+x}{1-x}(a-\ln x)
$$

where $a=\frac{\ln M}{M}$. We have

$$
\frac{1+x}{1-x}(a-\ln x) \leq \frac{1+x}{1-x}\left(a-\frac{x-1}{x}\right)=\frac{1+x}{1-x} a+\frac{1+x}{x}
$$

The minimum of the right hand side is attained at $x=\frac{1}{1+\sqrt{2 a}}$. We obtain

$$
\frac{d}{M}<\frac{1+\frac{1}{1+\sqrt{2 a}}}{1-\frac{1}{1+\sqrt{2 a}}} a+\frac{1+\frac{1}{1+\sqrt{2 a}}}{\frac{1}{1+\sqrt{2 a}}}=\frac{2+\sqrt{2 a}}{\sqrt{2 a}} a+2+\sqrt{2 a}=(2+\sqrt{2 a})(1+\sqrt{a / 2})
$$

Since $a=\frac{\ln M}{M} \leq \frac{1}{e}$. Therefore

$$
\frac{d}{M}<(2+\sqrt{2 / e})(1+\sqrt{1 /(2 e)})<5
$$

Thus, if $\frac{d}{M}>5$, then $|S \cap I|=0$. Take $d=5 M=\frac{20 k}{\varepsilon}$. Therefore, if

$$
J=\left\{i: I_{i}<\exp \left(-\frac{20 k}{\varepsilon}\right)\right\}
$$

then

$$
\sum_{S:|S \cap J|>0} a_{S}^{2} \leq \frac{\varepsilon}{2} .
$$

Let us define the function g as follows

$$
\hat{g}(S)= \begin{cases}\hat{f}(S) & |S \cap J|=0 \\ 0 & |S \cap J| \neq 0\end{cases}
$$

Thus g depends only on the variables in $[n] \backslash J$. We have

$$
|[n] \backslash J| e^{-d} \leq k
$$

Therefore

$$
|[n] \backslash J| \leq k e^{d} \leq k \exp \left(\frac{20 k}{\varepsilon}\right) \leq \exp \left(\frac{c k}{\varepsilon}\right)
$$

Thus

$$
\|f-g\|_{2}^{2}=\sum_{S}(\hat{f}(S)-\hat{g}(S))^{2}=\sum_{|S \cap J|>0} a_{S}^{2} \leq \frac{\varepsilon}{2}
$$

10 Degree of a boolean function

Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}, f=\sum_{S} a_{S} w_{S}$. We define the degree of f by

$$
\operatorname{deg}(f)=\max \left\{0 \leq k \leq n|\exists S| S \mid=k, a_{S} \neq 0\right\}
$$

In other words, since f is a polynomial in the Walsh representation, the degree of f is simply the degree of this polynomial.

We prove that the boolean function depending on n variables cannot have small degree.

Proposition 7. Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ is a boolean function of degree d and suppose that f depends on all of its variables, namely $I_{i}(f)>0$ for $i=1, \ldots, n$. Then

$$
n \leq d 2^{d} .
$$

Lemma 11. Suppose $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ and suppose $\operatorname{deg}(f) \leq d$ and f is not identically 0 . Then $\mathbb{P}(f \neq 0) \geq 2^{-d}$.

Proof. We prove the lemma by induction on n. For $n=1$ if $f \equiv c$ then $c \neq 0$ and the statement follows. If f is not constant, then it is a polynomial of degree 1 and $f\left(x_{1}\right)=a+b x_{1}$ with $b \neq 0$. Therefore, if $f(-1)=a-b=0$ then $f(1)=a+b \neq 0$ and if $f(1)=a+b=0$ then $f(-1)=a-b \neq 0$. Therefore always $\mathbb{P}(f \neq 0) \geq \frac{1}{2}$.

Suppose we have $f:\{-1,1\}^{n} \rightarrow \mathbb{R}, \operatorname{deg}(f) \leq d$ and f is not identically 0 . Let us write f in the form

$$
f\left(x_{1}, \ldots, x_{n}\right)=x_{n} f_{1}\left(x_{1}, \ldots, x_{n-1}\right)+f_{2}\left(x_{1}, \ldots, x_{n-1}\right)
$$

Note that $\operatorname{deg}\left(f_{1}\right) \leq d-1$. If $f_{1}-f_{2} \equiv 0$ then

$$
f\left(x_{1}, \ldots, x_{n}\right)=\left(1+x_{n}\right) f_{1}\left(x_{1}, \ldots, x_{n}\right)
$$

Note that f_{1} is not identically 0 since f is not identically 0 . By the induction hypothesis we have

$$
\mathbb{P}(f \neq 0)=\mathbb{P}\left(x_{n}=1, f_{1}\left(x_{1}, \ldots, x_{n-1}\right) \neq 0\right)=\frac{1}{2} \mathbb{P}\left(f_{1} \neq 0\right) \geq \frac{1}{2} \cdot 2^{-(d-1)}=2^{-d}
$$

In the same way we treat the case when $f_{1}+f_{2} \equiv 0$.
Now suppose that $f_{1}-f_{2}$ and $f_{1}+f_{2}$ are not identically 0 . Clearly $\operatorname{deg}\left(f_{1}-f_{2}\right) \leq d$ and $\operatorname{deg}\left(f_{1}+f_{2}\right) \leq d$. Therefore,
$\mathbb{P}(f \neq 0)=\mathbb{P}\left(f_{1}-f_{2} \neq 0, x_{n}=-1\right)+\mathbb{P}\left(f_{1}+f_{2} \neq 0, x_{n}=1\right) \geq \frac{1}{2} 2^{-d}+\frac{1}{2} 2^{-d}=2^{-d}$.

Proof of Proposition 7. Suppose $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ satisfies $\operatorname{deg}(f) \leq d$. Take $f_{i}(x)=f(x)-f\left(x^{i}\right)$. Since $I_{i}(f)>0$ we have that f_{i} is not identically 0 . Therefore, from the lemma we have

$$
I_{i}(f)=\mathbb{P}\left(f_{i} \neq 0\right) \geq 2^{-d}
$$

Thus

$$
n 2^{-d} \leq \sum_{i=1}^{n} I_{i}(f)=I(f)=\sum_{S} a_{S}^{2}|S| \leq d \sum_{S} a_{S}^{2}=d
$$

Thus $n \leq d 2^{d}$.
Now we prove a proposition about the algebraic properties of a spectrum of a function $f:\{-1,1\}^{n} \rightarrow \mathbb{Z}$.

Proposition 8. Suppose $f:\{-1,1\}^{n} \rightarrow \mathbb{Z}$ satisfies $\operatorname{deg}(f) \leq d$. Then $\hat{f}(S)=$ $a(S) 2^{-d}$, where $a(s) \in \mathbb{Z}$.

Proof. Induction on d. If $d=0$ then the assertion is trivial. Take $f_{i}(x)=f(x)-$ $f\left(x^{i}\right)$. Then

$$
f_{i}=2 \sum_{S \subset[n] \backslash\{i\}} \hat{f}(S \cup\{i\}) w_{S \cup\{i\}}
$$

Clearly,

$$
x_{i} f_{i}(x)=2 \sum_{S \subset[n \backslash \backslash\{i\}} \hat{f}(S \cup\{i\}) w_{S}(x)
$$

and this function has degree at most $d-1$. Thus $2 \hat{f}(S \cup\{i\})=a(S) 2^{-(d-1)}$. We obtain $\hat{f}(S \cup\{i\})=a(S) 2^{-d}$. Since every nonempty set $S \subset[n]$ can we written in the form $S=S^{\prime} \cup\{i\}$ for some i, our assertion follows for this sets. We also have $\hat{f}(\emptyset)=a(\emptyset) 2^{-d}$. Indeed,

$$
\hat{f}(\emptyset)=f-\sum_{S \neq \emptyset} a(S) 2^{-d} w_{S}
$$

The right hand side clearly is a number in $2^{-d} \mathbb{Z}$.
Note that from the above statement it follows that for every boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ with $I_{i}(f)>0$ for all $1 \leq i \leq n$ we have $n \leq d 4^{d}$. Indeed, we have

$$
I_{i}(f)=\sum_{S: i \in S} \hat{f}(S)^{2} \geq\left(2^{-d}\right) 2=4^{-d}
$$

Thus

$$
n 4^{-d} \leq \sum_{i=1}^{n} I_{i}(f)=I(f) \leq d
$$

Recall now the general statement of the hypercontractivity.
Theorem 6. Let $p \geq q>1$. Then for $0 \leq \delta \leq \sqrt{\frac{q-1}{p-1}}$ we have

$$
\left\|T_{\delta} f\right\|_{p} \leq\|f\|_{q}
$$

Using this theorem we prove the following proposition.
Proposition 9. Let $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ and $\operatorname{deg}(f) \leq d$. Then for $q \in[1,2]$ we have

$$
(q-1)^{d / 2}\|f\|_{2} \leq\|f\|_{q} .
$$

Moreover, if $p \geq 2$ then

$$
\|f\|_{p} \leq(p-1)^{d / 2} \sqrt{d+1}\|f\|_{2}
$$

Proof. Take $p=2$ and $\delta=\sqrt{q-1}$. We then have

$$
(q-1)^{d}\|f\|_{2}^{2}=\delta^{2 d} \sum_{S} a_{S}^{2} \leq \sum_{S} \delta^{2|S|} a_{S}^{2}=\left\|T_{\delta} f\right\|_{2}^{2} \leq\|f\|_{q}^{2}
$$

To prove the second part let us take $q=2$ and $\delta=\frac{1}{\sqrt{p-1}}, p \geq 2$. Let

$$
f_{k}=\sum_{S:|S|=k} a_{S} w_{S}
$$

Then

$$
\begin{aligned}
(p-1)^{-d / 2}\left\|f_{k}\right\|_{p} & \leq(p-1)^{-k / 2}\left\|f_{k}\right\|_{p}=\delta^{k}\left\|f_{k}\right\|_{p}=\left\|\sum_{S:|S|=k} \delta^{k} a_{S} w_{S}\right\|_{p} \\
& =\left\|T_{\delta} f\right\|_{p} \leq\left\|f_{k}\right\|_{2}
\end{aligned}
$$

Thus,

$$
\left\|f_{k}\right\|_{p} \leq(p-1)^{d / 2}\left\|f_{k}\right\|_{2}
$$

Therefore,

$$
\begin{aligned}
\|f\|_{p} & \leq \sum_{k=0}^{n}\left\|f_{k}\right\|_{p} \leq(p-1)^{d / 2} \sum_{k=0}^{d}\left\|f_{k}\right\|_{2} \leq(p-1)^{d / 2} \sqrt{d+1} \sqrt{\sum_{k=0}^{d}\left\|f_{k}\right\|_{2}^{2}} \\
& =(p-1)^{d / 2} \sqrt{d+1}\|f\|_{2}
\end{aligned}
$$

since $\left(f_{k}\right)_{k=0,1, \ldots, d}$ are orthogonal.

Proposition 10. Let $f:\{-1,1\}^{n} \rightarrow\{-1,0,1\}$. Then for every $\delta \in[0,1]$ we have

$$
\sum_{S} \delta^{|S|} a_{S}^{2} \leq \mathbb{P}(f \neq 0)^{\frac{2}{1+\delta}}
$$

Proof. We have

$$
\sum_{S} \delta^{|S|} a_{S}^{2}=\left\|T_{\sqrt{\delta}} f\right\|_{2}^{2} \leq\|f\|_{1+\delta}^{2}=\mathbb{P}(f \neq 0)^{\frac{2}{1+\delta}}
$$

Note that since $\sum_{S} a_{S}^{2}=\mathbb{P}(f \neq 0)$ then for f not identically 0 we have

$$
\frac{\sum_{S} \delta^{|S|} a_{S}^{2}}{\sum_{S} a_{S}^{2}} \leq \mathbb{P}(f \neq 0)^{\frac{1-\delta}{1+\delta}}
$$

Therefore, if f has small support, then the spectrum of f cannot be concentrated on the low-degree Fourier levels. It also follows that

$$
\delta^{d} \leq|\operatorname{supp} f|^{\frac{1-\delta}{1+\delta}}
$$

Therefore, the $\{-1,0,1\}$-valued boolean function with a very small support must have large degree.

