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Abstract.

1. Mixing via couplings

1.1. Discrete time finite Markov chains. Consider a finite set V with |V | = n and a
Markov kernel (or transition matrix) P : V × V → R, i.e.,

P (x, y) ≥ 0, x, y ∈ V
∑
y∈V

P (x, y) = 1, x ∈ V.

The discrete time Markov chain associated with K with an initial distribution ν is a V -valued
sequence (Xn)∞n=0 whose law Pν is given by

Pν [Vi = vi, 0 ≤ i ≤ l] = ν(x0)P (x0, x1) · . . . · P (xl−1, xl), l = 0, 1, . . .

Consider the Markov chain started at x and set Px = Pδx . Then the law of Xl is given by
Px(Xl = y) = P l(x, y), where P l is defined recursively via

P l(x, y) =
∑
z∈V

P l−1(x, z)P (z, y).

The kernel P defines an operator

(Pf)(x) =
∑
y∈V

P (x, y)f(y).

Clearly, the lth power of this operator has kernel P l(x, y).
We also set Eν to be the expectation with respect to Pν and Ex to be the expectation with

respect to Px. Let us also define

P x
t (y) = Pt(x, y) = Px[Xt = y] = P[Xt = y|X0 = x].

1.2. Gamblers ruin. We start with a very simple example, called the gamblers ruin. Here
V = {0, 1, . . . , n}, |V | = n+ 1 and the transition probabilities are given by

P (k, k + 1) = P (k, k − 1) =
1

2
, k = 1, . . . , n− 1 and P (0, 0) = P (n, n) = 1.

We can imagine a gambler playing the following simple round game. In each round he wins
one dollar with probability 1

2
and he with the same probability he looses one dollar. The

game end when the player looses all his money, or reaches the amount of n dollars. Suppose
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our player starts the game having k dollars. Let Xt, t = 0, 1, . . . be the (random) amount of
money in player’s pocket after time t. Let τ be the random time of ending the game, that is

τ = min{t ≥ 0 : Xt ∈ {0, n}}.

Suppose we start with k dollars. What is a chance of winning the game? What is the
expected playing time?

Fact 1. We have Pk[Xτ = n] = k
n

and Ek[τ ] = k(n− k).

Proof. Let pk = Pk[Xτ = n]. Clearly we have

pk =
1

2
pk−1 +

1

2
pk+1, 1 ≤ k ≤ n− 1, p0 = 0, pn = 1.

Thus (pk)
n
k=0 is an arithmetic sequence with p0 = 0 and pn = 1. It follows that pk = k/n.

To prove the second part let us set Tk = Ek[τ ]. We have T0 = Tn = 0. Moreover,

Tk =
1

2
(1 + Tk−1) +

1

2
(1 + Tk+1) =

1

2
(Tk−1 + Tk+1) + 1, k = 1, . . . , n− 1.

Let Sk = Tk + k2. For 1 ≤ k ≤ n− 1 we have

Sk−k2 = Tk =
1

2
(Tk−1+Tk+1)+1 =

1

2
(Sk+1−(k+1)2+Sk−1−(k−1)2)+1 =

1

2
(Sk−1+Sk+1)−k2.

Thus, Sk = 1
2
(Sk−1 +Sk+1). Since S0 = 0 and Sn = n2 we get Sk = nk. Thus Tk = nk− k2 =

k(n− k). �

1.3. Coupon collecting. A collector desires a complete set of n distinct coupons. The
probability of getting a coupon k at a certain round is 1/n. Let Xt be the number of different
coupons accumulated at time t. Clearly, we have the following transition probabilities,

P (k, k + 1) =
n− k
k

, k = 1, . . . , n− 1, P (k, k) =
k

n
, k = 1, . . . , n.

Take

τ = min{t ≥ 0 : Xt = n}.
How long will it take to collect all the coupons (starting with no coupons)?

Fact 2. We have E[τ ] = n
∑n

k=1
1
k
. Here E = E0. In particular

E[τ ] ≤ n lnn+ n.

Proof. Let τk be the number of coupons accumulated when the collection first contained k
distinct coupons. We have

τ = (τ1 − τ0) + (τ2 − τ1) + . . .+ (τn − τn−1),

where τ0 = 0. Note that τk − τk−1 is a geometric random variable with success probability
pk = n−k+1

n
, i.e.,

P[τk − τk−1 = l] = pk(1− pk)l−1, l = 1, 2, . . . .

Therefore,

E[τk − τk−1] =
∞∑
l=1

lpk(1− pk)l−1 = −pk
d

dpk

∞∑
l=0

(1− pk)l = −pk
d

dpk

1

pk
=

1

pk
=

n

n− k + 1
.
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Thus,

E[τ ] =
n∑
k=1

E[τk − τk−1] =
n∑
k=1

n

n− k + 1
= n

n∑
k=1

1

k
.

Now the second part follows from the well known inequality |
∑n

k=1
1
k
− lnn| ≤ 1. �

We will soon need the following tail bound for τ in the coupon collector problem.

Fact 3. For any c > 0 we have P[τ > dn lnn+ cne] ≤ e−c.

Proof. Let

Ai = {coupon i does not appear among the first dn lnn+ cne coupons}.
We have

P[τ > dn lnn+ cne] = P

[
n⋃
i=1

Ai

]
≤

n∑
i=1

P[Ai] ≤ n

(
1− 1

n

)dn lnn+cne

≤ ne−
n ln n+cn

n = e−c.

�

1.4. Stationary measure and the total variation distance. Assume that our kernel P
is strongly irreducible, i.e., there is i such that P i(x, y) > 0 for every x, y ∈ V . This implies
the existence of the unique stationary measure π. This means that

π(x) =
∑
y∈V

π(y)P (y, x), lim
t→∞

P t(x, y) = π(y).

In other words, limt→∞ Px[Xt = y] = π(y). One can say that long time law of the chain is
independent of the initial distribution and is given by the measure π.

Our goal is to bound the quantity |Px[Xt ∈ A] − π(A)| for every A ⊆ V . In other words,
we would like to estimate the rate of convergence to the stationary measure π. We need to
work with the total variation distance,

‖µ− ν‖TV = max
A⊆V
|µ(A)− ν(A)|.

In the sequel we will need two simple lemmas.

Lemma 1. Let µ and ν be probability measures on V . Then

‖µ− ν‖TV =
1

2

∑
x∈V

|µ(x)− ν(x)| =
∑

x∈V : µ(x)≥ν(x)

(µ(x)− ν(x)).

Proof. For the second equality note that

0 =
∑
x

(µ(x)− ν(x)) =
∑

x: µ(x)≥ν(x)

(µ(x)− ν(x)) +
∑

x: µ(x)≤ν(x)

(µ(x)− ν(x)).

Thus,

1

2

∑
x

|µ(x)− ν(x)| = 1

2

∑
x: µ(x)≥ν(x)

(µ(x)− ν(x)) +
1

2

∑
x: µ(x)≤ν(x)

(ν(x)− µ(x))

=
∑

x: µ(x)≥ν(x)

(µ(x)− ν(x)).
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For the first part we define B = {x : µ(x) ≥ ν(x)}. We have

µ(A)− ν(A) ≤ µ(A ∩B)− ν(A ∩B) ≤ µ(B)− ν(B).

Passing to the complement of A we also get

ν(A)− µ(A) ≤ µ(A ∩B)− ν(A ∩B) ≤ µ(B)− ν(B).

Thus,

|µ(A)− ν(A)| ≤ µ(B)− ν(B) =
∑

x: µ(x)≥ν(x)

(µ(x)− ν(x)),

with equality for A = B. �

Remark 1. From the above lemma we deduce the triangle inequality

‖µ− ν‖TV ≤ ‖µ− η‖TV + ‖η − ν‖TV .

1.5. Couplings.

Definition 1. A coupling of two measures µ and ν on V is a measure m on V ×V such that
m(V × {x}) = ν(x) and m({x} × V ) = µ(x). In other words, a coupling of µ and ν is a pair
of random variables (X, Y ) such that X ∼ µ and Y ∼ ν.

Lemma 2. We have

‖µ− ν‖TV = inf {P[X 6= Y ] : (X, Y ) is a coupling of µ and ν} .

Proof. We have

µ(A)− ν(A) = P[X ∈ A]− P[Y ∈ A] = P[X ∈ A, Y /∈ A] + P[X ∈ A, Y ∈ A]− P[Y ∈ A]

≤ P[X ∈ A, Y /∈ A] ≤ P[X 6= Y ].

Changing the roles of µ and ν and taking the supremum with respect to A gives

‖µ− ν‖TV ≤ inf {P[X 6= Y ] : (X, Y ) is a coupling of µ and ν} .

To construct a coupling with ‖µ− ν‖TV = P[X 6= Y ] take the random vector (X, Y ) with

P[X = Y = z] = min{µ(z), ν(z)}, z ∈ V

and

P[X = x, Y = y] =
(µ(x)− ν(x)(ν(y)− µ(y)))

‖µ− ν‖TV
1µ(x)≥ν(x)1ν(y)≥µ(y), x 6= y.

To check that this is indeed a coupling we write

P[X = x] =
∑
y

P[X = x, Y = y]

= P[X = Y = x] +
∑

y: ν(y)≥µ(y)

µ(x)− ν(x)

‖µ− ν‖TV
(ν(y)− µ(y))1µ(x)≥ν(x)

= min{µ(x), ν(x)}+ (µ(x)− ν(x))1µ(x)≥ν(x) = µ(x).
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Similarly P[Y = y] = ν(y). Moreover,

P[X 6= Y ] = 1− P[X = Y ] = 1−
∑
x

min{µ(x), ν(x)}

= 1− 1

2

∑
x

(µ(x) + ν(x)− |µ(x)− ν(x)|) =
1

2

∑
x

|µ(x)− ν(x)| = ‖µ− ν‖TV ,

due to Lemma 1. �

We now define two crucial quantities we would like to control,

d(t) = max
x∈V
‖P x

t (·)− π(·)‖TV , d̃(t) = max
x,y∈V

‖P x
t (·)− P y

t (·)‖TV .

We now show the comparison between those two quantities.

Lemma 3. We have d(t) ≤ d̃(t) ≤ 2d(t).

Proof. We first note that

‖P x
t (·)− P y

t (·)‖TV ≤ ‖P
x
t (·)− π(·)‖TV + ‖π(·)− P y

t (·)‖TV ≤ 2d(t).

Taking the supremum over x and y gives d̃(t) ≤ 2d(t).
Now for the first inequality note that by stationarity of π we have

π(A) =
∑
y

π(y)Pt(y, A), A ⊆ V.

Thus,

‖P x
t (·)− π(·)‖TV = max

A⊆V
|Pt(x,A)− π(A)| = max

A⊆V

∣∣∣∣∣∑
y

π(y)(Pt(x,A)− Pt(y, A))

∣∣∣∣∣
≤ max

A⊆V

∑
y

π(y)|Pt(x,A)− Pt(y, A)| ≤
∑
y

π(y) max
A⊆V
|Pt(x,A)− Pt(y, A)|

=
∑
y

π(y) ‖P x
t (·)− P y

t (·)‖TV ≤ max
x,y
‖P x

t (·)− P y
t (·)‖TV = d̃(t).

Therefore d(t) ≤ d̃(t). �

The following lemma shows monotonicity of d and d̃.

Lemma 4. The functions d(t) and d̃(t) are non-increasing.

Proof. Let us define the action of P on the space of measures,

(µP )(x) =
∑
y∈V

µ(y)P (y, x).

Note that

‖µP − νP‖TV ≤ ‖µ− ν‖TV .
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Indeed,

‖µP − νP‖TV =
1

2

∑
x

|(µP )(x)− (νP )(x)| = 1

2

∑
x

∣∣∣∣∣∑
y

µ(y)P (y, x)− ν(y)P (y, x)

∣∣∣∣∣
≤ 1

2

∑
x,y

p(y, x)|µ(y)− ν(y)| = 1

2

∑
y

|µ(y)− ν(y)| = ‖µ− ν‖TV .

We have P x
t+1(·) = µP x

t (·). It follows that∥∥P x
t+1(·)− P y

t+1(·)
∥∥
TV

= ‖P x
t (·)P − P y

t (·)P‖TV ≤ ‖P
x
t (·)− P y

t (·)‖TV
and thus d̃(t) is non-increasing.

Note also that stationarity means πP = P . Thus∥∥P x
t+1(·)− π

∥∥
TV

= ‖P x
t (·)P − πP‖TV ≤ ‖P

x
t (·)− π‖TV .

This shows that d(t) is non-increasing. �

Lemma 5. We have d̃(s + t) ≤ d̃(s)d̃(t). In particular, for any integers l, t ≥ 0 we have

d(lt) ≤ d̃(lt) ≤ d̃(t)l.

Proof. Fix x, y ∈ V and set (Xs, Ys) to be the optimal coupling of P x
s (·) and P y

s (·), i.e.,

‖P x
s (·)− P y

s (·)‖TV = P[Xs 6= Ys].

We have

Ps+t(x, ω) =
∑
z

Ps(x, z)Pt(z, ω) =
∑
z

P[Xs = z]Pt(z, ω) = EPt(Xs, ω).

Similarly, Ps+t(y, ω) = EPt(Ys, ω). Thus,

Ps+t(x, ω)− Ps+t(y, ω) = E[Pt(Xs, ω)− Pt(Ys, ω)].

We get

‖Ps+t(x, ·)− Ps+t(y, ·)‖TV =
1

2

∑
ω

|E[Pt(Xs, ω)− Pt(Ys, ω)]| = E ‖Pt(Xs, ·)− Pt(Ys, ·)‖TV

≤ d̃(t)E1Xs 6=Ys = d̃(t)P[Xs 6= Ys]

= d̃(t) ‖Ps(x, ·)− Ps(y, ·)‖TV = d̃(t)d̃(s).

Thus d̃(s+ t) ≤ d̃(s)d̃(t). The second assertion follows easily. �

1.6. Mixing times. Let us define the mixing time with parameter ε > 0,

tmix(ε) = min{t ≥ 0 : d(t) ≤ ε}.
Moreover, we set

tmix = tmix(1/4).

Note that
d(ltmix(ε)) ≤ d̃(ltmix(ε)) ≤ d̃(tmix(ε))

l ≤ (2d(tmix(ε)))
l ≤ (2ε)l.

Taking ε = 1/4 we get d(ltmix) ≤ 2−l. We have 2−l0 ≤ ε for l0 = dln(1/ε)e. Thus,

tmix(ε) ≤ lotmix = dln(1/ε)e tmix.
Definition 2. A coupling of two Markov chains C1 and C2 on V is a process (Xt, Yt)t≥0 where
(Xt)t≥0 and (Yt)t≥0 have the same distribution as C1 and C2, respectively.
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Before we proceed further, let us give one simple example of a coupling of two Markov
chains.

Claim 1. Let V = {0, 1, . . . , n} and consider the Gambler’s ruin chain. If 0 ≤ x ≤ y ≤ n
then Pt(x, n) ≤ Pt(y, n).

This is an intuitive statement, but probably not so trivial to prove. Let us give a very
simple explanation using couplings.

Proof. We construct a coupling of Gambler’s ruin chains Cx and Cy started at x and y,
respectively, in the following fashion. Start with a vector (x, y). At each step toss a fair
coin and move both coordinates up if heads and both coordinates down if tails. The only
restriction is that if one of the coordinates gets value 0 or n, we no longer perform moves
for this particular coordinate. This is process (Xt, Yt)t≥0 is clearly a coupling of Cx and Cy.
Moreover, by construction we always have Xt ≤ Yt. Thus

Pt(x, n) = P(Xt = n) ≤ P(Yt = n) = Pt(y, n).

�

If (Xt, Yt) is a coupling of two Markov chains then we can define a modified coupling as
follows. Define τc = min{t ≥ 0 : Xt = Yt}. Then the chain

(X̃t, Ỹt) =

{
(Xt, Yt) t ≤ τ
(Xt, Xt) t ≥ τ

is also a coupling of those two chains. We won’t prove this statement because of two reasons.
First is that it is completely obvious. The other is that writing down the proof requires some
time and board/paper space and we would like to save those resources for more explanatory
material. We will always assume that our couplings have the above form and will call them
standardized chains.

The following lemma shows the relation between couplings and mixing times.

Lemma 6. Let τc be defined as above and consider a standardized coupling. We have

‖P x
t (·)− P y

t (·)‖TV ≤ Px,y[τc > t].

In particular
d(t) ≤ max

x,y
Px,y[τc > t].

Proof. From Lemma 2 we have

‖P x
t (·)− P y

t (·)‖TV ≤ Px,y[Xt 6= Yt] = Px,y[τc > t].

�

Now we use the above theory to upper bound mixing times for several important and basic
Markov chains.

Example 1 (Lazy random walk on a circle). Consider an n-point discrete circle (cyclic group
of cardinality n). We can identify it with the set V = {0, . . . , n− 1}. The transition matrix
is the following,

P (k, k) = 1/2, k = 0, . . . , n− 1, P (k, k + 1) = P (k, k − 1) = 1/4, k = 0, . . . , n− 1,

where (n− 1) + 1 = 0 and 0− 1 = n− 1 (in other words + means adding modulo n).
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Let us consider the above chain Cx started at x and Cy started at y. We construct the
following coupling. Start Xt at x and Yt at y. At each step toss a fair coin. If heads
move Xt clockwise (i.e., add 1) with probability 1/2 and counter-clockwise (subtract 1) with
probability 1/2. If tails do the same for Yt. After Xt and Yt meet, perform the same walk
for both chains.

Clearly, we have construct a standardized coupling of Cx and Cy. Let Dt ∈ {0, 1, . . . , n}
be the clockwise distance between Xt and Yt. Note that both chains meet when Dt reaches
value 0 or n. It is easy to observe that Dt is a Gambler’s ruin chain. Thus, from Lemma 6,
Fact 1 and Markov inequality we have

d(t) ≤ max
x,y∈Zn

[τc > t] ≤ maxx,y∈Zn Ex,y[τc]
t

≤ 1

t
max
k

(k(n− k)) =
n2

4t
.

Thus, tmix ≤ n2. One can show indeed tmix ≈ n2 up to universal constants.

Example 2 (Random walk on the hypercube). Let us consider a set V = {0, 1}n and define
the following Markov chain on V . We toss a fair coin. If heads, we do nothing. If tails, we
pick a random coordinate (with probability 1/d) and flip the bit on this direction.

Let us consider the above chain Cx started at x and Cy started at y. Here is our coupling.
As always, start Xt at x and Yt at y. Pick a random coordinate (with probability 1/d)
and replace this coordinate with a random bit (the same random bit for both chains). One
can easily check that this is indeed a standardized coupling of Cx and Cy. The number of
coordinates replaced with random bits after time t is a coupon collector process. Thus,

d(dn lnn+ cne) ≤ P[τ > n lnn+ cn] ≤ e−c, C > 0.

Thus,

tmix(ε) ≤ dn lnn+ n log(1/ε)e ≤ n lnn+ n log(1/ε) + 1.

Example 3 (Lazy random walk on the discrete d-torus Zdn). The definition of this chain is
natural. We first choose a random coordinate and the perform a move of a discrete circle
random walk. We couple Cx and Cy as follows. We firs pick a random coordinate. If the
positions of Xt and Yt agree on that coordinate, perform a usual step of a discrete circle
chain and move both Xt and Yt. Otherwise we randomly choose one of the processes to move
and the other one to stay. It is again easy to see that we have constructed a standardized
coupling.

Let

Xt = (X
(1)
t , . . . , X

(d)
t ), Yt = (Y

(1)
t , . . . , Y

(d)
t )

and

τi = min{t ≥ 0 : X
(i)
t = Y

(i)
t }.

Note that if X1, . . . , Xn are i.i.d. random variables with mean µ and if τ is independent of
the above sequence, then

E

[
τ∑
i=1

Xi

]
= µE[τ ].

Indeed,

E

[
τ∑
i=1

Xi

]
= E

[
n∑
i=1

Xi

]
P[τ = n] =

∞∑
n=1

nµP[τ = n] = µE[τ ].
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Note that τi has precisely the above structure, where τ is equal to τc of discrete circle
random walk and X1, l . . . , Xn are waiting times for picking ith coordinate. Thus, each Xi

has geometric distribution with mean d. Thus,

Ex,y[τi] = dEx,y[τcircle] ≤
dn2

4
.

Let τc be the standard ”couple time” for our chain. We get

Ex,y[τc] ≤ E

[
d∑
i=1

τi

]
≤ d2n2

4
.

Thus,

d(t) ≤ Px,y[τc > t] ≤ 1

t
Ex,y[τc] ≤

d2n2

4t
.

For t0 = d2n2 we get d(t0) ≤ 1/4 and thus tmix ≤ d2n2. Therefore tmix(ε) ≤ d2n2 dln(1/ε)e.
To get an optimal dependence on d we have to work a little more. Note that for any x, y

we have

Px,y[τi > dn2] ≤ Ex,yτi
dn2

≤ 1

4
.

Thus for any integer k ≥ 1 we have Px,y[τi > kdn2] ≤ 1
4k

(since we can consider k periods of
length dn2 of waiting for coupling the ith coordinate). We get

Px,y[τc > kdn2] ≤
n∑
i=1

Px,y[τi > kdn2] ≤ d

4k
.

The right hand side is smaller than 1/4 for k ≥
⌈

1
2

log2 d+ 1
⌉
. From Lemma 6 we get

tmix ≤
⌈

1

2
log2 d+ 1

⌉
dn2.

Example 4 (Metropolis chain on graph colourings). Let G be a graph with maximal degree
∆. Suppose we have a list of q colors and we want to colour the vertex set of our graph
according to the rule that any two neighbours must have different color. We call such a
colouring proper. Now we run a Markov chain on the set of all proper colourings. We first
choose a vertex v uniformly at random. Then we choose one of the q colors at random and
we update the color of v if this leads to a proper colouring.

Note that it is easy to verify that this chain satisfies the detailed balance condition with π
being the uniform measure on proper colourings. Note also that in order to have this chain
transitive we need to assume that q > ∆ + 1.

We shall prove the following theorem.

Theorem 1. Let G be a graph with n vertices and maximal degree ∆. If q > 3∆ we have

tmix(ε) ≤
1

1− 3∆
q

n

(
lnn+ log

(
1

ε

))
.

Proof. Let Cx be random walks started at any colourings x (not necessarily proper). However,
we keep the updating rule unchanged. We construct Xt as follows. We choose a vertex v
uniformly at random and then one of the q colors uniformly at random. We update Xt

whenever our color is admissible. The main point of this procedure is that we use the same
vertex an color for every starting colouring x. This is called the grand coupling.
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For a colouring x let x(v) be the color of the vertex v. Let us introduce the following
distance,

D(x, y) = |{v : x(v) 6= y(v)}|.

Let X
(y)
t be the Markov chain started at colouring y. Note that X

(x)
t = Xt and X

(y)
t = Yt.

We first consider the case when D(x, y) = 1, that is, the colourings differ at only one vertex
v0. Let N be the set of colors appearing in the neighbourhood of v0 in x (equivalently, in y).
We want to compute the probability that after one step the chains will meet. Note that in
order for this to happen we have to choose vertex v0 and a colour outside of N . Thus,

P(D(Xx
1 , X

y
1 ) = 0) =

1

n
· q − |N |

q
≥ q −∆

nq
.

Unfortunately, D can go up to 2. For this to happen we have to choose one of the neighbours

of v0 and we have to choose one of the colors from the set {X(x)
0 (v0), X

(y)
0 (v0)}. Thus,

P(D(Xx
1 , X

y
1 ) = 2) ≤ ∆

n
· 2

q
.

It follows that

ED(Xx
1 , X

y
1 ) ≤ 1 +

2∆

nq
− q −∆

nq
= 1− q − 3∆

nq
∈ (0, 1).

Suppose now x, y are colouring with D(x, y) = r > 1. Let x = z0, z1, . . . , zr = y be a path
between colourings (again, not necessarily proper), that is, D(zk−1, zk) = 1, k = 1, . . . , r.
Since D is a metric, we get

ED(Xx
1 , X

y
1 ) ≤

r∑
k=1

ED(X
(zk−1)
1 , X

(zk)
1 ) ≤ r

(
1− q − 3∆

nq

)
= D(x, y)

(
1− q − 3∆

nq

)
.

Similarly,

E
[
D(Xx

t , X
y
t ) | Xx

t−1 = xt−1, X
y
t−1 = yt−1

]
= E [D(X

xt−1

1 , X
yt−1

1 )]

≤ D(xt−1, yt−1)

(
1− q − 3∆

nq

)
.

In other words,

E
[
D(Xx

t , X
y
t ) | Xx

t−1, X
y
t−1

]
≤ D(Xx

t−1, X
y
t−1)

(
1− q − 3∆

nq

)
.

Taking expectation,

E [D(Xx
t , X

y
t )] ≤ ED(Xx

t−1, X
y
t−1)

(
1− q − 3∆

nq

)
.

Iterating we get

E [D(Xx
t , X

y
t )] ≤ D(x, y)

(
1− q − 3∆

nq

)t
.

Thus, by Markov inequality

P(Xx
t 6= Xy

t ) = P(D(Xx
t , X

y
t ) ≥ 1) ≤ ED(Xx

t , X
y
t ) ≤ D(x, y)

(
1− q − 3∆

nq

)t
≤ ne−

t
n
· q−3∆

q .
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The last expression is smaller than ε for

t =
1

1− 3∆
q

n

(
lnn+ log

(
1

ε

))
.

This holds for all colourings, in particular for proper colourings. �

2. Expander graphs

Definition 3. Let G = (V,E) be a graph. Define

Γ(S) = {v ∈ V \ S | ∃u ∈ S v ∼ u}.
We say that G is a (n, d, c)-expander when |V | = n, G is d-regular and for any S ⊂ V with
|S| ≤ n/2 we have |Γ(S)| ≥ c|S|.

Fact 4. Any two vertices x, y in a (n, d, c)-expander can be connected with a path of length

at most
⌈
2
(

log1+c

(
n

2(d+1)

)
+ 1
)⌉

.

Proof. Let
Nk(x) = |{z ∈ V | d(x, z) ≤ k}|.

Clearly, N1(x) = d+1 for any x ∈ V . Moreover, N2(x) ≥ d+1+c(d+1) = (1+c)(d+1). By

induction we get Nk(x) ≥ (1+d)(1+c)k−1. Thus, Nk(x) > n/2 if k0 > 1+log1+c

(
n

2(1+d)

)
. As

a consequence, there is a vertex z in the intersection Nk0(x) ∩Nk0(y). The assertion follows
by triangle inequality d(x, y) ≤ d(x, z) + d(z, y). �

Let A be the adjacency matrix of G, that is

auv =

{
1 u ∼ v
0 otherwise

.

Let
e(S, T ) = {(u, v) | u ∈ S, v ∈ T}.

Assume that S ∩ T = ∅. Then e(S, T ) ≤ |S| · |T |.

Fact 5. Let G = (V,E) be a d-regular graph on n vertices. Let λ2 be the second largest
eigenvalue of its adjacency matrix A. Then for every partition V = S ∪ T we have

e(S, T ) ≥ d− λ2

n
· |S| · |T |.

Proof. If 1 = (1, . . . , 1) then A1 = d1 (this is due to the fact that G is d-regular). The matrix
A is symmetric, thus it has eigenvalues λ1 ≥ λ2 ≥ . . . ≥ λn. We claim that λ1 = d. Indeed,
for any vector x ∈ Rn we have

xT (dI − A)x = d
∑
v∈V

x2
v − 2

∑
{u,v}∈E

xuxv =
∑
{u,v}∈E

(xu − xv)2 ≥ 0.

Here the notation {u, v} ∈ E means that the edge (u, v) is the same as (v, u) and is counted
once. It follows that all the eigenvalues of A are not greater than d. Note also that from the
above inequality it follows that G is connected if and only if λ2 < d.

For any x ⊥ 1 we have xTAx ≤ λ2|x|2. Take x = 1S − |S|n 1. We have

(d− λ2)|x|2 ≤ xT (dI − A)x =
∑
{u,v}∈E

(xu − xv)2 = e(S, T ).
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To finish the proof it suffices to observe that

|x|2 = 〈x, x〉 =

〈
1S −

|S|
n

1,1S −
|S|
n

1

〉
= |S| − 2

|S|2

n
+
|S|2

n
=

1

n
|S|(n− |S|).

�

Fact 6. Let λ2 be the second eigenvalue of the adjacency matrix A of a regular graph G.
Then G is a

(
n, d, d−λ

2d

)
-expander.

Proof. Note that for d-regular graphs |e(S, Sc)| ≤ d|Γ(S)|. Thus, for |S| ≤ n/2 we have

|Γ(S)| ≥ 1

d
|e(S, Sc)| ≥ d− λ2

dn
|S|(n− |S|) ≥ d− λ2

2dn
|S|.

�

Fact 7. Let P be the transition matrix of a reversible Markov chain. Let π? = minx∈Ω π(x).
Then

tmix(ε) ≤ log

(
1

επ?

)
1

γ?
,

where
γ? = 1−max {|λ| | λ− eigenvalue of P with λ 6= 1} .

Proof. Note that (
√
π(x))x∈V is an eigenvector of P with eigenvalue 1. Indeed,∑

y

√
π(x)

π(y)
P (x, y)

√
π(y) =

√
π(x).

Let Dπ be a diagonal matrix with Dπ(x, x) = π(x). Take A = D
1/2
π PD

−1/2
π . Note that A is

symmetric. Indeed,

A(x, y) =

√
π(x)

π(y)
P (x, y) =

√
π(y)

π(x)
P (y, x),

which is true due to the detailed balance condition π(x)P (x, y) = π(y)P (y, x). Let (ϕx)x be

the orthonormal basis formed by eigenvectors (µx)x of A. Take fx = D
−1/2
π ϕx. Note that

Pfx = PD−1/2
π ϕx = D−1/2

π (D1/2
π PD−1/2

π )ϕx = D−1/2
π Aϕx = D−1/2

π µxϕx = µxfx.

Moreover,
〈ϕx, ϕy〉 =

〈
D1/2
π fx, D

1/2
π fy

〉
= 〈fx, fy〉π .

Thus, the vectors (fx)x form an orthonormal basis with respect to the scalar product 〈·, ·〉π.
Moreover, they are eigenvectors for the matrix P .

Take δy(x) = 1x=y. We have

δy =
∑
z

〈δy, fz〉π fz =
∑
z

fz(y)π(y)fz.

Recall that
(Pf)(x) =

∑
y

f(y)P (x, y).

Thus,

P (δy)(x) =
∑
z

δy(z)P (x, z) = P (x, y).
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Also,

Pt(x, y) = P t(δy)(x) = P t

(∑
z

fz(y)π(y)fz

)
(x) =

∑
z

fz(y)π(y)P t (fz) (x)

=
∑
z

fz(y)π(y)λtz(x)fz(x).

Let us order the vectors (fx)x such that f1(x) =
√
π(x) is the eigenvector with eigenvalue 1.

We have f1 =
√
π
−1
ϕ1 = 1. Define λ? = 1− γ?. Then∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ =

∣∣∣∣∣
n∑
j=2

fj(x)fj(y)λtj

∣∣∣∣∣ ≤
n∑
j=2

|fj(x)fj(y)|λt? ≤ λt?

(
n∑
j=2

fj(x)2

n∑
j=2

fj(y)2

)1/2

.

Note that

π(x) = 〈δx, δx〉π =

〈
n∑
j=1

fj(x)π(x)fj,
n∑
j=1

fj(x)π(x)fj

〉
π

= π(x)2

n∑
j=1

fj(x)2 ≥ π(x)2

n∑
j=2

fj(x)2.

We get ∣∣∣∣P t(x, y)

π(y)
− 1

∣∣∣∣ ≤ λt?√
π(x)π(y)

≤ (1− γ?)t

π?
≤ e−γ?t

π?
.

Therefore,∥∥P t(x, ·)− π
∥∥
TV

=
∑

y: P t(x,y)<π(y)

(π(y)− P t(x, y)) =
∑

y: P t(x,y)<π(y)

π(y)

(
1− P t(x, y)

π(y)

)

≤ max
y

∣∣∣∣1− P t(x, y)

π(y)

∣∣∣∣ ≤ e−γ?t

π?
.

�

Remark 2. For a lazy version of a random walk, i.e., P̃ = 1
2
P + 1

2
I, all the eigenvalues

λ̃i = 1
2
λi +

1
2

are non-negative. Indeed, it suffices to show that I+P is positive semi-definite.
To show this we observe that under the detailed-balance condition we have

〈(I + P )f, f〉π =
1

2

∑
x,y

|f(x)− f(y)|2P (x, y)π(x).

Then γ̃? = 1− λ̃2.

2.1. Ramanujan graphs. Let A be a adjacency matrix of a graph G and let λ1 ≥ λ2 ≥
. . . ≥ λn be the eigenvalues of A. Note that

xT (dI ± A)x =
∑
{u,v}∈E

(xu ± xv)2 ≥ 0.

It follows that for every i = 1, . . . , n we have λi ∈ [−d, d]. We already know that λ1 = d.
Moreover, from the above identity we see that λn = −d when G is bipartite. Indeed, then
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G = S ∪ T and setting xu = 1 for u ∈ S and xu = −1 for u ∈ T gives xT (dI +A)x = 0, that
is

d = −x
TAx

|x|2
≤ −min

x 6=0

xTAx

|x|2
= −λn ≤ d.

Thus λn = −d. For bipartite graphs d and −d will be called trivial eigenvalues.

Fact 8. The adjacency matrix of a bipartite graph G has symmetric spectrum.

Proof. Suppose that G = S ∪ T and |S| = k, |T | = l. The matrix A can be written in the
form

A =

[
0 B
BT 0

]
,

where B is a k× l matrix. Suppose that a vector [u, v] ∈ Rk×Rl is an eigenvector of A with
eigenvalues λ,

A =

[
0 B
BT 0

]
·
[
u
v

]
=

[
Bv
BTu

]
= λ

[
u
v

]
,

that is, Bv = λu, BTu = λv. We the have

A =

[
0 B
BT 0

]
·
[

u
−v

]
=

[
−Bv
BTu

]
= −λ

[
u
−v

]
,

Thus, the vector [u,−v] is an eigenvector with eigenvalue −λ. �

A bipartite graph G is a good expander if all non-trivial eigenvalues are contained in a
small symmetric interval around 0. The following theorem shows that, for big graphs, this
interval cannot be much smaller than 2

√
d− 1.

Theorem 2 (Alon-Boppana, 1986). For every ε > 0 there exists N such that any d-regular
graph on N vertices has a non-trivial eigenvalue λ with |λ| ≥ 2

√
d− 1− ε.

So, for an infinite family of graphs, having all the non-trivial eigenvalues in the inter-
val [−2

√
d− 1, 2

√
d− 1] is the best what we could hope for. This motivates the following

definition.

Definition 4. A d-regular graph having all the non-trivial eigenvalues in the symmetric
interval [−2

√
d− 1, 2

√
d− 1] is called Ramanujan. Infinite family of d-regular Ramanujan

graphs is called Ramanujan family.

We are not going to prove the above theorem. Our goal is to show the existence of
Ramanujan families of d-regular bipartite graphs.

We now introduce the concept of 2-lifts. For a graph G = (V,E) we define the 2-lift Gs,
where s ∈ {±1}|E|, as follows. Take two copies ofG1, G2 ofG and set V (Gs) = V (G1)∪V (G2).
Assume that e = (a, b) is an edge in G. Let a1, b1 and a2, b2 be corresponding vertices in G1

and G2. If s(e) = 1 then we add to E(Gs) the edges (a1, b1) and (a2, b2). If s(e) = 1 then we
add to E(Gs) the edges (a1, b2) and (a2, b1).

There are 2|E| lifts and for every 2-lift we have degG(a) = degGs
(a1) = degGs

(a2). It is
easy to see that the following is true.

Fact 9. Suppose that G is a bipartite d-regular graph. Then for every s the graph Gs is
d-regular and bipartite.
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Let A be an adjacency matrix and let s be a signing. We define the signed adjacency
matrix As as follows. For every edge e = (u, v) multiply the entry auv by the corresponding
sign s(e).

Fact 10 (Bilu-Linial, 2006). For ant s the eigenvalues of A(Gs) are the union of the set of
eigenvalues of A and the eigenvalues of As.

Proof. We have

A(Gs) =

[
A1 A2

A2 A1

]
,

where A1 is the adjacency matrix of V (G1) with edges corresponding to positive lifts and A2

corresponds to edges going form G1 to G2.
Clearly A = A1 + A2 and As = A1 − A2. Let v be an eigenvector of A with eigenvalue λ.

Then, [
A1 A2

A2 A1

]
·
[
v
v

]
=

[
A1v + A2v
A2v + A1v

]
=

[
Av
Av

]
= λ

[
v
v

]
.

So, (v, v) is an eigenvector of A(Gs) with eigenvalues λ. Moreover, if u is an eigenvector of
As with eigenvalue µ then[

A1 A2

A2 A1

]
·
[

u
−u

]
=

[
A1u− A2u
A2u− A1u

]
=

[
Asu
−Asu

]
= µ

[
u
−u

]
.

Thus, (u,−u) is an eigenvector of A(Gs) with eigenvalue µ. Let v1, . . . , vn be orthonormal
eigenvectors of A and u1, . . . , un be orthonormal eigenvectors of A(Gs). Since (vi, vi) ⊥
(uj,−uj), we produced 2n orthonormal eigenvector. Thus, these is a complete basis of
eigenvectors of A(Gs). �

Example 5. Show that the complete bipartite graph Kd,d has all non-trivial eigenvalues
equal 0.

To construct a Ramanujan family it is enough to prove the following theorem.

Theorem 3. For every d-regular bipartite graph G there is a signing s such that all the
eigenvalues of As are not greater than 2

√
d− 1.

We then run our construction as follows:

1. Take G(1) = Kd,d.

2. Having a bipartite graphG(i) with all the eigenvalues in the interval [−2
√
d− 1, 2

√
d− 1],

choose (using Theorem 3) a signing s such that As(G
(i)) has all the eigenvalues not

greater than 2
√
d− 1. Then by Fact 10 we get that all the eigenvalues of A(G

(i)
s )

are not greater than 2
√
d− 1. From Fact 8 we know that the spectrum of G

(i)
s is

symmetric. From Fact 9 we know that G
(i)
s is bipartite. Thus, the spectrum of G

(i)
s

is contained in [−2
√
d− 1, 2

√
d− 1].

3. Take G(i+1) = G
(i)
s and iterate the procedure.

Let M be a symmetric matrix with eigenvalues λ1, . . . , λn. We define the characteristic
polynomial

χM(x) = det(xI −M) =
∏
i

(x− λi).
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Let A be the adjacency matrix of graph G. For k ≤ m and t ∈ {±1}k define

pt(x) =
1

2m−k

∑
s: s1=t1,...,sk=tk

χAs(x).

Note that for t ∈ {±1}m we have pt = χAt . We also define

p∅(x) =
1

2m

∑
s∈{±1}m

χAs(x).

We would like to find t ∈ {±1}m such that the roots of pt are not greater than 2
√
d− 1.

We will start slowly by showing that this is true for p∅.

2.2. Properties of p∅.

Fact 11. For any graph G we have

p∅(x) =
∑
i

xn−2i(−1)imi,

where mi is the number of matchings (subsets of E that touch each vertex at most once) in
G of size i. Here m0 = 1.

Proof. Recall that

det(A) =
∑

σ−permutation

(−1)|σ|a1,σ(1)a2,σ(2) . . . an,σ(n),

where |σ| is the parity of σ.
Note that

1. Permutations that hit any off-diagonal non-edge do not contribute to the above sum.
2. permutation that hit aij but not aji cancel in expectation.
3. We are left with permutations with n−2i entries on the diagonal (contributing xn−2i)

and i terms of the form aij ·aji with aij = aji = 1 (this corresponds to i element match-
ings; we have mi such matchings). These contributions correspond to permutations
of parity (−1)i, since each pair (i, σ(i)), (σ(i), i) contribute one transposition.

�

Fact 12. Let G be a graph. Then the polynomial µG(x) =
∑

i x
n−2i(−1)imi is real rooted.

Proof. We consider a more general setting where the edges of a complete graph have weights
W (e) ≥ 0. We first assume W (e) > 0 for all e ∈ E. Let Mi be the set of all matchings
having i edges. Take

mi(G) = m
(W )
i (G) =

∑
M∈Mi

∏
e∈M

W (e).

We have

mi(G) = mi(G \ {v}) +
∑
u∼v

W (u, v)mi−1(G \ {u, v}).

Take

µG(x) = µ
(W )
G (x) =

∑
i

xn−2i(−1)im
(W )
i (G).
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Using the recurrence relations gives

µG(x) = xµG\{v}(x)−
∑
u∼v

W (u, v)µG\{u,v}(x).

We show by induction that µG has n different real roots a1 < a2 . . . < an and for every v the
roots b1 < . . . < bn−1 of µG\{v} satisfy

a1 < b1 < a2 < b2 < . . . < bn−1 < an.

The base of the induction is trivial. In this case we take n = 2 and then µG(x) = x2 −W ,
where W is the weight on the only edge of G. For v ∈ G we have µG\{v}(x) = x2, so the
assertion holds.

To do the induction step fix v and assume that for every u the zeroes of µG\{u,v} interlace
the zeroes of µG\{v}. By Darboux principle the zeroes c1 < . . . < cn−2 of the sum

s(x) =
∑
u∼v

W (u, v)µG\{u,v}(x)

also interlaces the zeroes b1 < . . . < bn−1 of µG\{v}. Consider the sign of the right hand side
for x = b1, . . . , bn−1. We get

µG(bn−1) < 0, µG(bn−2) > 0, . . . .

However, limx→∞ µG(x) =∞, so there is a zero of µG to the right of bn−1. Assume µg(b1) > 0,
that is s(b1) < 0. Note that s is a monic polynomial of degreeN−2 and we have determined all
the zeroes of s. If follows that N is odd. Since the degree of µG is odd, limx→−∞ µG(x) = −∞
and thus there is a zero of µG to the left of b1. The same holds when µg(b1) < 0. Thus, there
we have found N zeroes of µG: N − 1 interlace the numbers bi, plus two additional zeroes.
So, the zeroes of µG interlace the numbers bi.

If W (e) are non-negative but not necessarily positive, then by passing to the limit we
deduce that

a1 ≤ b1 ≤ a2 ≤ b2 ≤ . . . ≤ bn−1 ≤ an

and that all the zeroes of µG are real. �

Fact 13. Let G be a graph with maximum degree ∆. Then the polynomial µG(x) =∑
i x

n−2i(−1)imi satisfy µG(y) > 0 for y > 2
√

∆− 1.

Proof. Given a connected graph G we construct a set EG (not necessarily unique) of pairs
(G′, G′ \ {v}), where G′ is a vertices induced subgraph of G, in the following way:

1. Fix v0 ∈ G. A pair (G \ {v0}, G \ {v0, u}) is a member of EG if u ∼ v0. Since G is
connected, there is at least one element in EG of this type.

2. If (H,H \{v}) ∈ EG then (H \{u}, H \{v, u}) ∈ EG whenever u ∼ v and u ∈ H \{v}.
3. If (H,H \ {v}) ∈ EG but v is isolated, then choose any vertex u ∈ H \ {v} such that
u had some neighbour in G not belonging to H \ {v} and choose (H \ {u}, H \ {v, u})
to be a member of EG.

We prove the following lemma.

Lemma 7. Let G be a connected graph of maximal degree ∆. Then for every (H,H \{v}) ∈
EG and x ≥ 2

√
∆− 1 we have

µH(x)

µH\{v}(x)
≥
√

∆− 1 and µH(x) > 0.
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Proof. We prove this fact by induction over EG. It is easy to verify the base of induction, i.e.,
graphs H with |H| = 1. For the induction step we use the identity

µH(x) = xµH\{v}(x)−
∑

u∼v, u∈H\{v}

µH\{u,v}(x).

This is the same as

µH(x) = xµH\{v}(x)−
∑

u∼v: (H\{v},H\{u,v})∈EG

µH\{u,v}(x).

Now, the cardinality of the set u ∼ v : (H \ {v}, H \ {u, v}) ∈ EG is at most ∆− 1. This is
because according to steps 1. and 2. above, the vertex v has been removed because either v
was a neighbour of a removed point (and the the degree of v decreased by 1) or v has been
removed as a result of step 3, i.e., there was some other vertex w that has been remover even
earlier with w ∼ v and thus the degree of v is also at most ∆ − 1. We get, by induction
hypothesis,

µH(x)

µH\{v}(x)
= x−

∑
u∼v: (H\{v},H\{u,v})∈EG

µH\{u,v}(x)

µH\{v}(x)

≥ x− (∆− 1) · 1√
∆− 1

> 2
√

∆− 1− (∆− 1) · 1√
∆− 1

=
√

∆− 1.

Clearly µH(x) > 0. �

We can assume that G is connected. If not, observe that if G has two components S, T
then the matrix As has two blocks Bs1 , Cs2 , where s = (s1, s2) and∑

s

χAs(x) =
∑
s1,s2

χBs1
(x)χCs2

(x) =
∑
s1

χBs1
(x)
∑
s2

χCs2
(x),

so we can consider the roots of
∑

s1
χBs1

(x) and
∑

s2
χCs2

(x) separately.
If G is connected and ∆ = 1 then the assertion holds trivially. Assume that ∆ ≥ 2 and

x > 2
√

∆− 1. Then

µG(x)

µG\{v0}(x)
= x−

∑
u∼v0: (H\{v0},G\{u,v0})∈EG

µG\{u,v0}(x)

µG\{v0}(x)

≥ x−∆ · 1√
∆− 1

> 2
√

∆− 1− ∆√
∆− 1

=
∆− 2√
∆− 1

≥ 0,

where we have used the Lemma. Since µG\{v0}(x) > 0, it follows that µG(x) > 0. �

2.3. From p∅ to pt. We know that p∅ has all its roots not greater than 2
√
d− 1. Suppose

we know such a thing for some pt with t ∈ {pm1}k, k ≤ m. Now,

pt(x) =
1

2
pt,+(x) +

1

2
pt,−(x).

Let M(p) be the maximal root of a polynomial p. We are going to use the following fact.

Lemma 8. Let p, q be monic real-rooted polynomials of the same degree. Suppose that for
every t ∈ [0, 1] the polynomial tp+ (1− t)q is also real rooted. Then for every λ ∈ [0, 1] the
root M((1− λ)p+ λq) lies between M(p) and M(q).
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Proof. Assume without loss of generality that M(p) ≤ M(q). Our goal is to show that
M(p) ≤ M((1− λ)p+ λq) ≤ M(q). Since p > 0 to the right of M(p) and q > 0 to the right
of M(q), we get that (1− λ)p + λq > 0 to the right of M(q), so M((1− λ)p + λq) ≤ M(q).
Suppose our assertion fails, that is, (1 − λ)p + λq has no root in [M(p),M(q)]. This means
that (1− λ)p+ λq > 0 on [M(p),M(q)]. In particular q(M(p)) > 0. As a consequence q has
at least 2 zeroes in [M(p),M(q)] (counting multiplicities). Let F (q) be the smallest of those
zeroes.

Note that for small t the polynomial pt = (1 − t)p + tq has no zeroes to the right of
M(p). To see this take I0 = [M(p), F (q)], I1 = [F (q),M(q)] and I2 = (M(q),∞). On I2 the
combination pt is strictly positive. Since q(M(p)) > 0 we see that pt > 0 on [M(p), F (q)).
The same holds true at the point F (q), due to the positivity of p. Thus pt > 0 on I0. Now,
on I1 we have p ≥ ε for some ε > 0. Thus, for sufficiently small t we have pt > 0 there.

Changing t from t ≈ 0 to t = 1 we see that the number of roots of pt in the interval
(M(p),∞) increases from 0 to at least 2. Let us consider the open set U = {Rez > M(p)} ⊂
C. Since pt(z) are real rooted, the number of roots of pt(z) in U has a discontinuity (jumps
from 0 to more than 0). This contradicts Hurwitz theorem. �

From this fact it follows that if λpt,+ + (1 − λ)pt,− is real rooted for every t ∈ [0, 1], then
either M(pt,+) ≤ M(1

2
pt,+ + 1

2
pt,−) = M(pt), or M(pt,−) ≤ M(pt). So, there is a sign sk+1

such that M(pt,sk+1
) ≤ 2

√
d− 1. Iterating gives s ∈ {±1}m with M(ps) ≤ 2

√
d− 1.

To finish the proof it suffices to show the following lemma.

Lemma 9. For any λ ∈ [0, 1] and t ∈ {±1}k the polynomial λpt,+ +(1−λ)pt,− is real rooted.

Note that

ps(x− d) = χAs(x− d) = det(xI − (dI + As))

and

dI + As =
∑

s(i,j)=−1

(δi − δj)(δi − δj)T +
∑

s(i,j)=−1

(δi + δj)(δi + δj)
T .

Thus, ∑
s∈{±1}m

∏
si=+1

θi
∏
si=−1

(1− θi)ps(x− d) = E det

(
xI −

∑
e∈E

ueu
T
e

)
,

where for e = ek = (i, j) we have

ue =

{
δi + δj w.p. θk
δi − δj w.p. 1− θk

.

Note that this covers the case of λpt,+ + (1 − λ)pt,−. It suffices to take θk ∈ {0, 1} for
edges corresponding to the coordinates of t, θk = λ for the edge corresponding to (+,−) and
θk = 1/2 for other edges.

We shell prove the following theorem.

Theorem 4. For any independent random vectors u1, . . . , um the expected characteristic
polynomial

det

(
xI −

m∑
i=1

uiu
T
i

)
is real rooted.



20 RANDOM WALKS ON GRAPHS

3. Real stable polynomials

We would like to prove the following fact.

Proposition 1. Let A1, . . . , Am be d × d rank 1 matrices. Take A = A1 + . . . + Am. Then
the characteristic polynomial pA(z) = det(zI − A) can be written in the form

pA(z) =
m∏
i=1

(
1− ∂

∂zi

)
det

(
zI +

m∑
i=1

ziAi

)∣∣∣
z1=...=zm=0

.

Let us also define

µ[A1, . . . , Am](z) =
m∏
i=1

(
1− ∂

∂zi

)
det

(
zI +

m∑
i=1

ziAi

)∣∣∣
z1=...=zm=0

.

We need the following lemma.

Lemma 10. Let A,B be d × d matrices and assume that A is rank 1. Then the function
t 7→ det(B + tA) is affine linear.

Proof. Sylvester identity. Suppose X is a m× n matrix and Y is a n×m matrix. Then

det(Im +XY ) = det(In + Y X).

To prove this, let us first observe that we have the identity(
In −Y
X Im

)
·
(
In Y
0 Im

)
=

(
In 0
X XY + Im

)
.

We have

det

((
In −Y
X Im

)
·
(
In Y
0 Im

))
= det

(
In 0
X XY + Im

)
= det(XY + Im)

Since det(AB) = det(BA), the left hand side is the same as

det

((
In Y
0 Im

)
·
(
In −Y
X Im

))
= det

(
In + Y X 0

X Im

)
= det(In + Y X).

We have proved the Sylvester identity.
To prove the lemma it suffices to consider the case when B is invertible. Then

det(B + tA) = det(B) det(I + tB−1A).

Note that B−1A is rank 1, so it suffices to consider the case B = I. Any rank 1 matrix can
be written in the form A = u · vT . Then

det(I + tA) = det(Id + tuv?) = det(I1 + tv?u) = 1 + tv?u.

�

Proof of Proposition 1. From the above lemma we have

p(z1, . . . , zm) = det(zI +
m∑
i=1

ziAi) =
∑

i1<i2...<ik

ai1,...ikzi1 . . . zik ,

Now, any affine multi-linear polynomial p : Rm → R satisfies

p(t1, . . . , tm) =
m∏
i=1

(
1 + ti

∂

∂zi

)
p(z1, . . . , zm)

∣∣∣
z1=...=zm=0

.
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It suffices to use this fact for t1 = . . . = tm = −1. �

We now need the following crucial definition.

Definition 5. We say that a polynomial pCm → C is stable if it has no zeroes in the set
{Im z1 > 0, . . . , Im zm > 0}. If additionally p has real coefficients then it is called real stable.

Remark 3. Note that p : C → C is real stable if and only if it has real coefficients and is
real rooted.

Fact 14. Let A1, . . . , Am be positive semi-definite Hermitian matrices. Then

p(z, z1, . . . , zm) = det(zI +
m∑
i=1

ziAi)

is real stable.

Proof. For real inputs the values of this polynomial are real (the determinant of a Hermitian
matrix is real). Suppose p has a root (z, z1, . . . , zm). This means that the corresponding
matrix is singular and therefore there is a vector v such that (zI+

∑m
i=1 ziAi)v = 0. Suppose

z, z1, . . . , zm have positive imaginary parts. Then

0 = Im

(〈
(zI +

m∑
i=1

ziAi)v, v

〉)
= (Im z)|v|2 +

m∑
i=1

(Im zi) 〈Aiv, v〉 > 0,

since the first term is strictly positive and other terms are non-negative (because Ai are
positive semi-definite). This is a contradiction. �

Fact 15. Suppose that p(z1, . . . , zm) is real stable. Then

(a) for any t ∈ R the polynomial q(z1, . . . , zm−1) = p(z1, . . . , zm−1, t) is real stable (or
identically zero),

(b) if t ∈ R then (1 + t ∂
∂zm

)p(z1, . . . , zm) is real stable,

(c) if σ is a permutation then p(zσ(1), . . . , zσ(n)) is real stable.

Proof. (a) Let Ω = {Im z1 > 0, . . . , Im zm−1 > 0}. For any ε > 0 the function pε(z1, . . . , zm−1) =
p(z1, . . . , zm−1, t+ iε) has no roots on Ω. Since pε → p0 when ε→ 0, the function p0 cannot
have roots in Ω by Hurwitz theorem (or p0 is identically zero).

(b) Fix z1, . . . , zm−1 and define q(z) = p(z1, . . . , zm−1, z). If Im zi > 0 for i = 1, . . . ,m− 1

then q is stable. Our goal is to prove that q + tq′ is also stable. Let q(z) = c
∏d

i=1(z − wi).
Then

q(z) + tq′(z) = q(z)

(
1 +

d∑
i=1

t

z − wi

)
.

Note that Imwi ≤ 0. If Im z > 0 then

Im

(
1

z − wi

)
= Im

(
z̄ − w̄i
|z − wi|2

)
=

1

|z − wi|2
Im(z̄ − w̄i) < 0.

In particular, the number 1+
∑d

i=1
t

z−wi
has non-zero imaginary part and therefore is non-zero.

Thus, z is not a root of q(z) + tq′(z).
Part (c) is trivial. �

Corollary 1. From the Fact 14 and Fact 15 we see that for any positive semi-definite Hermit-
ian matrices A1, . . . , Am the polynomial µ[A1, . . . , Am](z) is real stable and thus real rooted.
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To finish the construction of Ramanuja family it suffices to show the following proposition.

Proposition 2. Let A1, . . . , Am be independent rank one matrices. Then

Eµ[A1, . . . , Am] = µ[EA1, . . . ,EAm].

We need a lemma.

Lemma 11. Let A be invertible n× n matrix.

(a) If u, v ∈ Cn then

det(A+ uv?) = det(A)(1 + v?A−1u).

(b) If B is a n× n matrix then

∂t det(A+ tB)
∣∣
t=0

= det(A) Tr(A−1B).

Proof. For (a) note that due to Sylvester identity we have

det(A+ uv?) = det(A) det(In + A−1uv?) = det(A) det(I1 + v?A−1u) = det(A)(1 + v?A−1u).

For (b) we again write

det(A+ tB) = det(A) det(I + tA−1B),

so it suffices to show that ∂t det(I + tA)|t=0 = Tr(A), which is obvious. �

Lemma 12. For every deterministic square n×n matrix A and every random vector v ∈ Cn

we have

E det(A− vv?) = (1− ∂t) det(A+ tEvv?)
∣∣∣
t=0
.

Proof. From Lemma 12(a) we have

E det(A− vv?) = E det(A)(1− v?A−1v) = E det(A)(1− TrA−1vv?)

= det(A)− det(A)ETr(A−1vv?) = det(A)− det(A) Tr(A−1Evv?).

Also,

(1−∂t) det(A+ tEvv?)
∣∣∣
t=0

= det(A)−∂t det(A+ tEvv?)
∣∣∣
t=0

= det(A)−det(A) Tr(A−1Evv?),

by Lemma 12(b). �

We are ready to give a proof of Proposition 2.

Proof of Proposition 2. We show by induction on k that for every matrix M we have

E det

(
M −

k∑
i=1

viv
?
i

)
=

(
k∏
i=1

(1− ∂zi)

)
det

(
M +

m∑
i=1

ziAi

)∣∣∣
z1=...=zk=0

.
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To pass from k − 1 to k we observe that

E det

(
M −

k∑
i=1

viv
?
i

)
= Ev1,...,vk−1

Evk det

(
M −

k−1∑
i=1

viv
?
i − vkv?k

)

= Ev1,...,vk−1
(1− ∂zk) det

(
M −

k−1∑
i=1

viv
?
i + zkEvkv?k

)∣∣∣
zk=0

= (1− ∂zk)Ev1,...,vk−1
det

(
M + zkEvkv?k −

k−1∑
i=1

viv
?
i

)∣∣∣
zk=0

= (1− ∂zk)

(
k−1∏
i=1

(1− ∂zi)

)
det

(
M + zkEvkv?k +

k−1∑
i=1

ziEviv?i

)∣∣∣
zk=0

=

(
k∏
i=1

(1− ∂zi)

)
det

(
M +

m∑
i=1

ziAi

)∣∣∣
z1=...=zk=0

.

�

4. Towards Kadison-Singer conjecture

4.1. M-S-S Theorem. Our first goal is to prove the following theorem.

Theorem 5 (Marcus, Spielman, Srivastava). Let m, d ≥ 1 and let v1, . . . , vd ∈ Cd be inde-
pendent random vector (finitely supported). Assume that E (

∑m
i=1 viv

?
i ) = I and E‖vi‖2 ≤ ε.

Then ‖
∑m

i=1 viv
?
i ‖op ≤ (1 +

√
ε)2 with positive probability.

Equivalently,

Theorem 6 (Marcus, Spielman, Srivastava). Letm, d ≥ 1 and let A1, . . . , Am be independent
Hermitian positive semi-definite rank 1 random matrices (finitely supported). Take A =
A1 + . . . + Am and assume that EA = I and ETrAi ≤ ε. Then ‖A‖op ≤ (1 +

√
ε)2 with

positive probability.

The above theorem is an easy consequence of the following two propositions.

Proposition 3. Let A1, . . . , Am be independent rank 1 Hermitian matrices. Take A =
A1 + . . .+ Am. Then M(pA) ≤M(EpA) with positive probability.

Proposition 4. Let A1, . . . , Am be independent rank 1 positive semi-definite Hermitian
matrices. Let A = A1 + . . . + Am and assume that EA = I and ETrAi ≤ ε. Then
M(EpA) ≤ (1 +

√
ε)2.

Proof of Proposition 3. We have

µ[A1, . . . , Aj−1,EAj, . . . ,EAm] = EA1,...,Amµ[A1, . . . , Am]

= EAj
µ[A1, . . . , Aj−1, Aj,EAj+1, . . . ,EAm].

Here A1, . . . , Aj−1 are deterministic, but are treated as random with Dirac delta distributions.
Thus, the polynomial

p = µ[A1, . . . , Aj−1,EAj, . . . ,EAm]

is a convex combination of polynomials

p(ω) = µ[A1, . . . , Aj−1, Aj(ω),EAj+1, . . . ,EAm].
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Thus, p =
∑

ω λ(ω)p(ω). All such combinations
∑

ω ν(ω)p(ω) are real stable, because they
are of the form

µ[A1, . . . , Aj−1,EνAj,EAj+1, . . . ,EAm].

Iterating The Lemma 8 it is easy to show that

M(
∑
ω

λ(ω)p(ω)) ∈ conv((M(p(ω)))ω).

Thus,

M(µ[A1, . . . , Aj,EAj+1, . . . ,EAm]) ≤M(µ[A1, . . . , Aj−1,EAj, . . . ,EAm])

with positive probability. Iterating gives

M(µ[A1, . . . , Am]) ≤M(µ[EA1, . . . ,EAm])

with positive probability. This is M(pA) ≤M(EpA) with positive probability. �

4.2. Proof of Proposition 4.

Definition 6. Let p(z1, . . . , zm) be a real stable polynomial. We say that a point x =
(x1, . . . , xm) ∈ Rm lies above the roots of p if p has no roots in the octant {(y1, . . . , ym) ∈
Rm | yi ≥ xi, i = 1, . . . ,m}.

We will prove the following proposition.

Proposition 5. Let A1, . . . , Am be Hermitian deterministic positive semi-definite d× d ma-
trices and let A1 + . . . + Am = Id. Assume that TrAi ≤ ε for every i = 1, . . . ,m and some
ε > 0. Define

p(z1, . . . , zm) = det

(
m∑
i=1

ziAi

)
.

Then ((1 +
√
ε)2, . . . , (1 +

√
ε)2) lies above the roots of (

∏m
i=1(1− ∂zi)) p.

We first show that Proposition 5 implies Proposition 4.

Proposition 5 implies Proposition 4. We have

EpA(z) =

(
m∏
i=1

(1− ∂zi)

)
det

(
zId +

m∑
i=1

ziEAi

)∣∣∣
z1=...=zm=0

=

(
m∏
i=1

(1− ∂zi)

)
det

(
m∑
i=1

(z + zi)EAi

)∣∣∣
z1=...=zm=0

=

(
m∏
i=1

(1− ∂zi)

)
det

(
m∑
i=1

ziEAi

)∣∣∣
z1=...=zm=z

.

Let Ãi = EAi. Note that Ãi satisfy the assumptions of Proposition 5. Thus, if real z satisfy
z ≥ (1 +

√
ε), then EpA(z) 6= 0 because ((1 +

√
ε)2, . . . , (1 +

√
ε)2) lies above the roots of

(
∏m

i=1(1− ∂zi)) det
(∑m

i=1 ziÃi

)
. Thus M(EpA) ≤ (1 +

√
ε)2.

�

Lemma 13. Let p(z) be a real stable polynomial of one variable. Define Φp = p′/p = (log p)′.
Then

(−1)kΦ(k)
p (x) > 0, for x > M(p).
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Proof. If y1 ≤ . . . ≤ yd are the roots of p then Φp(x) =
∑d

i=1
1

x−yi . Thus, for x > yd we have

(−1)kΦ(k)
p (x) =

d∑
i=1

1

(x− yi)k
> 0.

�

Lemma 14. Let p(z1, . . . , zm) be a real stable polynomial and take 1 ≤ i, j ≤ m. Define

Φ
(i)
p = ∂

∂zi
log p. Then

(−1)k
∂k

∂xkj
Φ(i)
p (x) ≥ 0, k ≥ 0,

for x = (x1, . . . , xm) above the roots of p.

Proof. The cases i = j or k = 0 follow from Lemma 13. We can therefore take i 6= j and
k ≥ 1. Without loss of generality we can assume i = 1 and j = m = 2. Let x = (x1, x2) be
above the roots of p(z1, z2). We have

(−1)k
∂k

∂xkj
Φ(i)
p (x) = (−1)k

∂k

∂xkj

∂

∂x1

log p =
∂

∂x1

[
(−1)k

∂k

∂xkj
log p

]
.

It is therefore enough to show that (−1)k ∂k

∂xkj
log p is non-decreasing in x1 ∈ R.

Fix x1 and consider px1(x2) = p(x1, x2), which has roots y1(x1), . . . , yd(x1). Thus,

p(x1, x2) = c(x1)
d∏
i=1

(x2 − yi(x1)).

For a generic x1 the number d is constant and the functions y1(x1), . . . , yd(x1) are smooth in
a neighbourhood of x1. Then

(−1)k
∂k

∂xkj
log p = −(k − 1)!

d∑
i=1

1

(x2 − yi(x1))k
.

Note that x2 > yi(x1) for any i, since (x1, x2) lies above the roots of p. It is therefore enough
to show that x1 7→ yi(x1) is non-increasing.

Suppose by contradiction that there is a generic x0 and i such that y′i(x0) = α > 0. Since
(x0, yi(x0)) is a root of p, for small ε > 0 the is a root of p of the form zε = (x0+εi, yi(x0+εi)),
where the function yi(x0 + εi) is smooth. We have yi(x0 + εi) ∼ yi(x0) + εαi. This implies
that Im(x0 + εi) > 0 and Im(yi(x0 + εi)) > 0, for ε > 0. Thus, the root zε lies in {Im z1 >
0, Im z2 > 0}, contradicting the real stability of p. �

Lemma 15. Let q(z1, . . . , zm) be a real stable polynomial and let x = (x1, . . . , xm) be above
the roots of q. Assume that for some 1 ≤ j ≤ m we have Φj

q(x) < 1. Let y = (y1, . . . , ym) be
such that yk ≥ xk for any 1 ≤ k ≤ m. Then y is above the roots of q − ∂jq.

Proof. Clearly, y is above the roots of q. By monotonicity of Φj
q above the roots of q (Lemma

14) we get Φj
q(y) ≤ Φj

q(x) < 1. Thus

q(y)− ∂jq(y) = q(y)
(
1− Φj

q(y)
)
6= 0.

�
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Lemma 16. Let q(z1, . . . , zm) be a real stable polynomial and let x = (x1, . . . , xm) be above
the roots of q. Assume that for some 1 ≤ j ≤ m and δ > 0 we have Φj

q(x) + 1
δ
≤ 1. Then

x+ δej is above the roots of q − ∂jq and

(1) Φi
q−∂jq(x+ δej) ≤ Φi

q(x), 1 ≤ i ≤ m.

Proof. Since Φj
q < 1, we can apply the above lemma with y = x+δej and deduce that x+δej

is above the roots of q − ∂jq.
For the second part observe that q − ∂jq = q(1− Φj

q) and thus

log(|q − ∂j|) = log(|q|) + log(|1− Φj
q|).

This implies

Φi
q−∂j = Φi

q −
∂iΦ

j
q

1− Φj
q

.

Therefore (1) is equivalent with

−
∂iΦ

j
q(x+ δej)

1− Φj
q(x+ δej)

≤ Φi
q(x)− Φi

q(x+ δej).

Since t 7→ Φi
q(x+ tej) is convex (Lemma 14) we get

Φi
q(x)− Φi

q(x+ δej) ≥ −δ∂jΦi
q(x+ δej) = −δ∂iΦj

q(x+ δej).

By Lemma 14 we have −δ∂iΦj
q(x+ δej) > 0. Thus it is enough to show

1

1− Φj
q(x+ δej)

≤ δ.

But this is evident since Φj
q(x) ≤ 1− 1/δ implies

1

1− Φj
q(x+ δej)

≤ 1

1− Φj
q(x)

≤ δ.

�

The above lemma is strong enough to apply it inductively and obtain the following corol-
lary.

Corollary 2. Let q(z1, . . . , zm) be a real stable polynomial and let x = (x1, . . . , xm) be above
the roots of q. Assume that for some δ > 0 and every 1 ≤ j ≤ m we have Φj

q(x) + 1
δ
≤ 1.

Then x+ (δ, . . . , δ) is above the roots of
∏m

i=1(1− ∂i)q.

Proof of Theorem 5. Note that for any t > 0 the point (t, . . . , t) is above the roots of p.
Indeed, if x1, . . . , xm ≥ t then

∑m
i=1 xiAi is non-singular since

m∑
i=1

xiAi − tI =
m∑
i=1

(xi − t)Ai

is positive semi-definite.



RANDOM WALKS ON GRAPHS 27

Now, for x1, . . . , xm > 0 we have (using Lemma 11)

Φj
p(x1, . . . , xm) =

∂

∂y
log det

(
m∑
i=1

xiAi + yAj

)∣∣∣
y=0

=
det (

∑m
i=1Ai + yAj) Tr

(
Aj (

∑m
i=1 xiAi)

−1
)

det (
∑m

i=1Ai + yAj)

= Tr

Aj ( m∑
i=1

xiAi

)−1
 .

Thus,

Φj
p(t, . . . , t) = Tr

Aj ( m∑
i=1

tAi

)−1
 =

1

t
Tr (AjI) =

TrAj
t
≤ ε

t
.

To apply Corollary 2 we want to find δ such that ε
t

+ 1
δ
≤ 1. Then (t + δ, . . . , t + δ) will

lie above the roots of
∏m

i=1(1 − ∂i)p. Thus, we are to optimize t + δ under the constrain
ε
t

+ 1
δ
≤ 1. Take ε

t
+ 1

δ
= 1. Then

t+ δ = t+
t

t− ε
= (t− ε) +

ε

t− ε
+ ε+ 1 ≥ 2

√
ε+ ε+ 1 = (1 +

√
ε)2,

with equality for t = ε+
√
ε. �

4.3. Weaver-type bounds. In this section we are going to prove the following theorem.

Theorem 7 (Generalized Weaver bound). Let m, r, d ≥ 1 be integers and let w1, . . . , wm in
Cd be such that |wi|2 ≤ A. Suppose that for any unit vector u in Cd we have

m∑
i=1

| 〈u,wi〉 |2 = B.

Then there is a partition of {1, . . . ,m} into sets S1, . . . , Sr such that for any unit vector in
Cd we have ∑

i∈Sj

| 〈u,wi〉 |2 ≤
(√

A+
√
B/r

)2

.

Taking A = 1 and B = 18 we deduce the following theorem.

Theorem 8 (KSr Weaver conjecture). For any r ≥ 2 and any vectors w1, . . . , wm such that
|wi| ≤ 1 and

m∑
i=1

| 〈u,wi〉 |2 = 18, |u| = 1, u ∈ Cd

there is a partition {S1, . . . , Sr} of {1, . . . ,m} with∑
i∈Sj

| 〈u,wi〉 |2 ≤ 16.

The following fact gives several equivalent conditions for the so-called B-tight frames.

Fact 16. Let w1, . . . , wm be vectors in Cd and let B > 0. Then the following conditions are
equivalent,
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(a)
∑m

i=1 | 〈u,wi〉 |2 = B for any u ∈ Cd with |u| = 1,
(b)

∑m
i=1 | 〈u,wi〉 |2 = B|u|2 for any u ∈ Cd,

(c)
∑m

i=1 〈u,wi〉 〈wi, v〉 = B 〈u, v〉 for any u, v ∈ Cd

(d)
∑m

i=1 〈u,wi〉wi = Bu for any u ∈ Cd,
(e)

∑m
i=1wiw

?
i = BId.

Proof. Clearly (a) and (b) are equivalent. The equivalence between (b) and (c) follows from

polarization principle (note that 〈wi, v〉 = 〈v, wi〉). The equivalence of (c) and (d) is clear.
The equivalence between (d) and (e) follows from the fact that w?i u = 〈u,wi〉. �

Remark 4. From (d) it follows that a B-tight frame is a basis of Cd. Thus, we always have
m ≥ d.

Example 6. Let wj = (cos(2πj/m), sin(2πj/m)), j = 1, . . . ,m, be vectors in C ≈ R2 ⊂ C2.
We show that this system is a (m/2)-tight frame in C2. It is easy to check that for u =
(x, y) ∈ C2 we have

m∑
i=1

| 〈u,wi〉 |2 =
∑
j=1

(
x cos

(
2πj

m

)
+ y sin

(
2πj

m

))(
x̄ cos

(
2πj

m

)
+ ȳ sin

(
2πj

m

))
=
m

2
(|x|2 + |y|2) =

m

2
|u|2.

Example 7. Let e1, . . . , em ∈ Cm be the standard basis. Let d < m and let H be a d-
dimensional subspace of Cm. Let PH : Cm → H be the orthogonal projection. Consider the
vectors PHe1, . . . , PHem in H ≈ Cd. Since ICm =

∑m
i=1 eie

?
i we get u =

∑m
i=1 〈u, ei〉 ei. Now,

if u ∈ H then

u = PHu =
m∑
i=1

〈u, ei〉PHei =
m∑
i=1

〈PHu, ei〉PHei =
m∑
i=1

〈u, PHei〉PHei,

which means that IH =
∑m

i=1(Pei)(Pei)
?. This means that PHe1, . . . , PHem is a 1-tight frame

on H.

Proof of Theorem 7. For i = 1, . . . ,m and k = 1, . . . , r we define wi,k by

wi,1 =


wi
0d

...
0d

 , wi,1 =


0d

wi
...

0d

 , . . .


0d

0d

...
wi


Let v1, . . . , vm be independent random vectors such that each vi is distributed uniformly on
the r-element set {wi,k

√
r/B}rk=1. Clearly,

E[viv
?
i ] =

1

B


wiw

?
i 0d×d . . . 0d×d

0d×d wiw
?
i . . . 0d×d

...
...

. . .
...

0d×d 0d×d . . . wiw
?
i

 .
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By our assumption
∑m

i=1 E[viv
?
i ] = ICrd . Also, E|vi|2 = r

B
|wi|2 ≤ rA

B
. From Theorem 6 we

know that with positive probability∥∥∥∥∥
m∑
i=1

viv
?
i

∥∥∥∥∥
op

≤

(
1 +

√
rA

B

)2

.

Fix such a realization of v1, . . . , vm. Define Sk = {1 ≤ i ≤ m : vi = wi,k
√
r/B}. We have∥∥∥∥∥

m∑
i=1

viv
?
i

∥∥∥∥∥
op

=

∥∥∥∥∥
r∑

k=1

(∑
i∈Sk

r

B
wi,kw

?
i,k

)∥∥∥∥∥
op

.

Thus,(
√
A+

√
B

r

)2

≥

∥∥∥∥∥
r∑

k=1

(∑
i∈Sk

wi,kw
?
i,k

)∥∥∥∥∥
op

= max
k=1,...,r

∥∥∥∥∥∑
i∈Sk

wi,kw
?
i,k

∥∥∥∥∥
op

= max
k=1,...,r

∥∥∥∥∥∑
i∈Sk

wiw
?
i

∥∥∥∥∥
op

.

�

4.4. Paving conjecture.

Theorem 9. Let r,m ≥ 1 be integers and let P = (pij)
n
i,j=1 be an orthogonal projection

m×m matrix, that is P 2 = P and P ? = P , such that pii ≤ ε (it will be justified in the proof
that pii is a non-negative real number). Then there is a partition I = Q1 + . . . + Qr, where
each matrix Qj is diagonal of the form

Qj =

 ε1 0
. . .

0 εm

 , ε1, . . . , εm ∈ {0, 1},

such that ‖QjPQj‖op ≤
(√

ε+ 1√
r

)2

.

Proof. Let V = im(P ). We have

|Pei|2 = 〈Pei, P ei〉 = 〈ei, P ?Pei〉 =
〈
ei, P

2ei
〉

= 〈ei, P ei〉 = pii ≤ ε.

Now, for v ∈ V
m∑
i=1

| 〈v, Pei〉 |2 =
m∑
i=1

| 〈Pv, ei〉 |2 =
m∑
i=1

| 〈v, ei〉 |2 = |v|2.

Applying Theorem 7 with B = 1, A = ε and wi = Pei (on the space V ) we get a partition
{S1, . . . , Sr} of {1, . . . ,m} such that

m∑
i∈Sj

| 〈v, Pei〉 |2 ≤
(√

ε+
1√
r

)2

|v|2, v ∈ V.

Define Qi be the matrix of ProjCSj . For any u ∈ Cm and any j we get

|QjPu| ≤
(√

ε+
1√
r

)
|Pu| ≤

(√
ε+

1√
r

)
|u|.
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Thus, ‖QiP‖op ≤
√
ε+ 1√

r
. To finish the proof it suffices to observe that

‖QjPQj‖op = ‖QjPPQj‖op = ‖QjP (QjP )?‖op = ‖QjP‖2
op ≤

(√
ε+

1√
r

)2

,

since for any square matrix A we have ‖AA?‖op = ‖A‖2
op. Recall also that in fact always

‖AA?‖op = ‖A‖2
op = ‖A?‖2

op .

�

Theorem 10. Let r,m ≥ 1 be integers and let P = (pij)
n
i,j=1 be an orthogonal projection

m×m matrix, such that pii ≤ ε and ‖P‖op ≤ A. Then there is a partition I = Q1 + . . .+Qr

into diagonal projection matrices such that ‖QjPQj‖op ≤
(√

ε+ A√
r

)2

.

Proof. By homogeneity we can assume that A = 1. We then write P =
∑m

i=1 λiuuu
?
i , where

λi ∈ [0, 1] and ui form an orthonormal basis for Cm. We consider the embedding Cm ↪→
Cm ⊕ CM , where M ≥ 0. If M ≥ M(m, ε), one can find orthonormal vectors v1, . . . , vm in
CM with disjoint support, such that each of the ri have coefficients of magnitude at most
ε1/2. Define

ũi =
√
λiui ⊕

√
1− λivi, i = 1, . . . ,m.

This is an orthonormal system in CM+m. Define also

P ′ =
m∑
i=1

ũiũ
?
i ,

which is an orthogonal projection on Cm ⊕ CM . The matrix P ′ is an (m + M) × (m + M)
matrix whose top left m × m minor is equal to P . The bottom right minor of P ′ is equal
to
∑m

i=1(1 − λi)viv?i and, since vi have disjoint supports, has a block structure with blocks
corresponding to viv

?
i . Thus, the diagonal entries of this M ×M minor are squares of entries

of vectors vi and so are not greater than ε. Since the diagonal entries of P are by assumption
not greater than ε, we have P ′ii ≤ ε for every i = 1, . . . ,m+M .

We are now is a position to apply Theorem 9. Thus, there is a partition ICm⊕CM =
Q′1 + . . . Q′r onto diagonal projections Q′1, . . . , Q

′
r such that∥∥Q′jP ′Qj

∥∥
op
≤
(√

ε+
1√
r

)2

, j = 1, . . . , r.

Let Qj be the top left m×m minor of Q′j. Then ICm = Q1 + . . .+Qr and

‖QjPQj‖op ≤
(√

ε+
1√
r

)2

, j = 1, . . . , r.

since QjPQj is the top left corner of Q′jP
′Q′j. Indeed, if we write

Q′j =

[
Qj 0
0 D

]
, P ′ =

[
P A
A? B

]
,

then

Q′jP
′Q′j =

[
QjPQj QjAD
DA?Qj DBD

]
.

�
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Theorem 11. Let r,m ≥ 1 be integers and let P = (pij)
n
i,j=1 be a Hermitian m×m matrix

with pii = 0, whose eigenvectors lie in [−A,B], A,B > 0. and ‖P‖op ≤ A. Then there is a
partition I = Q1 + . . . + Qr into diagonal projection matrices such that the eigenvalues of
QjPQj lie in [−A, 2√

r

√
A(A+B) + A+B

r
].

Proof. We use Theorem 10 with P̃ = P+AI, Ã = A+B and ε = A. There is a partition ICm =
Q1 + . . .+Qr such that the eigenvalues of Qj(P +AI)Qj lie in [0, A+ 2√

r

√
A(A+B) + A+B

r
].

Suppose now that λ is an eigenvalues of QjPQj, that is, there is a vector u such that
QjPQju = λu. In particular u is in the image of Qj and thus there is v such that Qju =
QjQjv = Qjv = u. We have

Qj(P + AI)Qju = QjPQju+ AQ2
ju = QjPQju+ Au = (λ+ A)u.

Thus spec(Qj(P + AI)Qj) = A+ spec(QjPQj). The assertion follows. �

Lemma 17. If Q is a diagonal projection and P is a Hermitian matrix with spec(P ) ∈ [a, b]
for some a, b, then spec(QPQ) ⊆ [a, b].

Proof. Let λmax(P ) be the maximal eigenvalue of P . Then

λmax(QPQ) = sup
u6=0: |u|≤1

〈u,QjPQju〉 = sup
u6=0: |u|≤1

〈Qu, PQu〉 .

Note that |Qu| ≤ |u| ≤ 1, so

sup
u6=0: |u|≤1

〈Qu, PQu〉 ≤ sup
v: |v|≤1

〈v, Pv〉 = λmax(P ).

Considering −P instead of P we prove that that the minimal eigenvalue of P satisfies
λmin(QPQ) ≥ −A. �

Theorem 12. Let r,m ≥ 1 be integers and let P = (pij)
n
i,j=1 be a Hermitian m×m matrix

with pii = 0, i = 1, . . . ,m and ‖A‖op ≤ A. Then there is a partition I = Q1 + . . .+Qr2 into

diagonal projection matrices such that ‖QjPQj‖op ≤ A(2
√

2r−1/2 + 2r−1).

Proof. According to Theorem 11 there is a partition I = Q1, . . . , Qr such that the spectrum

of QjPQj is contained in [−A, 2
√

2A√
r

+ 2A
r

]. From Lemma 17 the spectrum of this matrix is

also contained in [−A,A]. Now we can apply Theorem 11 again to the matrix −QjPQj (note
that it has zero diagonal) and thus for any j get a partition I = Qj1 + . . . + Qjr such that

the spectrum of −QjkQjPQjQjk is contained in [−A, 2
√

2A√
r

+ 2A
r

]. Thus, again using Lemma
17,

spec(QjkQjPQjQjk) ⊆

[
−2
√

2A√
r
− 2A

r
,A

]
∩

[
−A, 2

√
2A√
r

+
2A

r

]
.

As a consequence

‖(QjkQjPQjQjk‖op ≤
2
√

2A√
r

+
2A

r
.

We can therefore use the partition I =
∑r

j,k=1QjkQj. �

Theorem 13. Let P be a m × m matrix with vanishing diagonal and ‖P‖op ≤ A. Then

there is a partition I = Q1 + . . .+Qr4 such that ‖QjPQj‖op ≤ (4
√

2r−1/2 + 4r−1)A.
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Proof. We apply Theorem 12 to Hermitian matrices 1
2
(P+P ?) and 1

2
i(P−P ?) (with operator

norm bounded by A). This gives partitions {Qj}r
2

j=1 and {Q′j}r
2

j=1 such that∥∥∥∥Qj
P ± P ?

2
Qj

∥∥∥∥
op

≤ (2
√

2r−1/2 + 2r−1)A.

Using Lemma 17 we get∥∥∥∥Q′jQj
P ± P ?

2
QjQ

′
j

∥∥∥∥
op

≤ (2
√

2r−1/2 + 2r−1)A.

The assertion follows by triangle inequality. �
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