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Abstract. We review several topics related to the Gross’s logarithmic Sobolev
inequality. This includes connections to the concentration of measure theory, in-
formation theory, combinatorics and the theory of finite Markov chains.

1. Entropy and combinatorics

In the first section we study the Shannon entropy of discrete random variables and use its
properties to derive certain results in the field of combinatorics. Let Ω = be a probability
space and let X : Ω → M be a discrete random variable, meaning that the range of X is
finite. Here M could be any set. Let p(x) = P(X = x). The Shannon entropy of X is defined
via the formula

H(X) = −
∑
x

p(x) ln p(x).

Here 0 ln 0 is interpreted as 0. Since p(x) ≤ 1 we get H(X) ≥ 0 with equality only when P is
a Dirac delta. Assume that the range of X has cardinality n. Then from Jensen inequality
(for concave function ln x) we get

H(X) =
∑
x

p(x) ln

(
1

p(x)

)
≤ ln

(∑
x

p(x)

p(x)

)
= lnn.

Thus we have.

Fact 1. For a discrete random variable X we have H(X) ≤ ln |r(X)|, where r(X) is the
range of X.

For a random variable (X, Y ) we define the conditional probability

p(x|y) =
p(x, y)

p(y)
.

Note that we have p(y) =
∑

x p(x, y). We define conditional entropy of X given Y = y

H(X|Y = y) = −
∑
x

p(x|y) ln p(x|y)

and the entropy of X given Y

H(X|Y ) = EyH(X|Y = y).
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Fact 2. We have H(X|Y ) = H(X, Y )−H(Y ) and

H(X|Y ) =
∑
x,y

p(x, y) ln

(
p(y)

p(x, y)

)
.

Proof. We have

H(X|Y ) = EyH(X|Y = y) =
∑
y

p(y)H(X|Y = y) = −
∑
y

∑
x

p(y)p(x|y) ln p(x|y)

= −
∑
y

∑
x

p(y)
p(x, y)

p(y)
ln

(
p(x, y)

p(y)

)
= −

∑
y

∑
x

p(x, y) ln

(
p(x, y)

p(y)

)
= −

∑
y

∑
x

p(x, y) ln p(x, y) +
∑
y

∑
x

p(x, y) ln p(y) = H(X, Y )−H(Y ).

�

The relation
H(X, Y ) = H(Y ) +H(X|Y )

is called the chain rule for the entropy.

Fact 3. We have H(X|Y ) ≤ H(X). Moreover, H(X|Y ) = H(X) if and only if X and Y are
independent.

Proof. Using Jensen inequality we get

H(X|Y ) =
∑
x,y

p(x, y) ln

(
p(y)

p(x, y)

)
=
∑
x

p(x)
∑
y

p(x, y)

p(x)
ln

(
p(y)

p(x, y)

)

≤
∑
x

p(x) ln

(∑
y

p(x, y)

p(x)

p(y)

p(x, y)

)
=
∑
x

p(x) ln

(
1

p(x)

)
= H(X).

The equality in the case of independent random variables follows from the fact that we
have equality in Jensen inequality if and only if p(y)/p(x, y) does not depend on y. Thus,
p(y) = h(x)p(x, y) fore some h. Summing over y give h(x) = 1/p(x) and thus the condition
p(x, y) = p(x)p(y), which means independence. �

Fact 4. We have H(X|Y, Z) ≤ H(X|Y ). In other words (using chain rule)

H(X, Y, Z) +H(Y ) ≤ H(X, Y ) +H(Y, Z).

Proof. Again using Jensen inequality one gets

H(X|Y, Z) =
∑
x,y,z

p(x, y, z) ln

(
p(y, z)

p(x, y, z)

)
=
∑
x,y

p(x, y)
∑
z

p(x, y, z)

p(x, y)
ln

(
p(y, z)

p(x, y, z)

)

≤
∑
x,y

p(x, y) ln

(∑
z

p(y, z)

p(x, y)

)
=
∑
x,y

p(x, y) ln

(
p(y)

p(x, y)

)
.

�

The following fact is the so-called subadditivity of the Shannon entropy.

Fact 5. We have H(X1, . . . , Xn) ≤ H(X1) + . . .+H(Xn). Moreover, there is equality if and
only if X1, . . . , Xn are independent.
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Proof. Using chain rule n− 1 times (and Fact 3) gives us

H(X1, . . . , Xn) = H(X1|X2, . . . , Xn) +H(X2, . . . , Xn) = . . .

= H(X1|X2, . . . , Xn) +H(X2|X3, . . . , Xn) + . . .+H(Xn−1|Xn) +H(Xn)

≤ H(X1) +H(X2) + . . .+H(Xn).

�

We are now ready to state the so-called Shearer’s lemma.

Proposition 1 (Shearer’s lemma). Let (X1, . . . , Xn) be a random vector and take consider
sets S1, . . . , Sm ⊆ [n]. Define XS = {Xi : i ∈ S}. Assume that for any i ∈ [n] there is at
least k sets Si1 , . . . , Sil , l ≥ k that contain i. Then

kH(X1, . . . , Xn) ≤
m∑
i=1

H(XSi).

Moreover, if S is a random subset of [n] such that for every i we have P(i ∈ S) ≥ p then
pH(X1, . . . , Xn) ≤ ESH(XS).

Proof. Using chain rule we have

kH(X1, . . . , Xn) = kH(X1) + kH(X2|X1) + . . .+ kH(Xn|X1, . . . , Xn−1).

Let us list the elements of Sj in an increasing order, Sj = {t(j)1 < . . . < t
(j)
lj
}. Note that

H(XSj) = H(X
t
(j)
1

) +H(X
t
(j)
2
|X

t
(j)
1

) + . . .+H(X
t
(j)
lj

|X
t
(j)
1
, . . . X

t
(j)
lj−1

)

≥ H(X
t
(j)
1
|X

t
(j)
1 −1

, X
t
(j)
1 −2

, X1) +H(X
t
(j)
2
|X

t
(j)
2 −1

, X
t
(j)
2 −2

, X1) + . . .

+H(X
t
(j)
lj

|X
t
(j)
lj
−1
, X

t
(j)
lj
−2
, . . . , X1).

After using this estimate we are left with terms of the form H(Xq|Xq−1, . . . , X1). If we sum
those estimates up for j = 1, . . . ,m we see that each term of this form will appear at least k
times, since each q is contained in at least k sets Sj.

For the probabilistic version, observe that if we set X<i = (Xi−1, . . . , X1), then we just
observed that H(XS) ≥

∑
i∈S H(Xi|X<i). Taking expectation gives

ESH(XS) ≥ ES
∑
i∈S

H(Xi|X<i) = ES
∑
i∈[n]

1{i∈S}H(Xi|X<i) =
∑
i∈[n]

P(i ∈ S)H(Xi|X<i)

≥ p
∑
i∈[n]

H(Xi|X<i) = pH(X1, . . . , Xn).

�

Example 1. If (X1, X2, X3) is our random vector and S1 = {2, 3}, S2 = {1, 3}, S3 = {1, 2}
then we can take k = 2 and thus get

2H(X1, X2, X3) ≤ H(X1, X2) +H(X2, X3) +H(X3, X1).

This can be generalized to the case of a vector (X1, . . . , Xn) and Sj = [n] \ {j}, j = 1, . . . , n.
We then get

(n−1)H(X1, . . . , Xn) ≤ H(X1, X2, . . . , Xn−1)+H(X1, . . . , Xn−2, Xn)+. . .+H(X2, X3, . . . , Xn).

Let us derive our first combinatorial statement using the above lemma.



4 SHANNON ENTROPY AND LOGARITHMIC SOBOLEV INEQUALITIES

Proposition 2 (Loomis-Whitney inequality). Let P be a finite set of points in Rn. Let Pi
be the projection of P onto the hyperplane {xi = 0}. Then

|P |n−1 ≤
n∏
i=1

|Pi|.

Proof. Let (X1, . . . , Xn) be the vector uniformly distributed on P . Thus, from Fact 1 we
have H = H(X1, . . . , Xn) = ln |P |. Note that Hi = H(X1, . . . , Xi−1, Xi+1, . . . , Xn) has range
of cardinality |Pi|. Therefore, Hi ≤ ln |Pi|. Using Shearer’s lemma (actually, the example
above) we get

(n− 1) ln |P | = (n− 1)H ≤
n∑
i=1

Hi ≤
n∑
i=1

ln |Pi| = ln
n∏
i=1

|Pi|.

�

To state another application let us introduce the so-called fractional cover of graph G.

Definition 1. Let G = (V,E) be a (undirected) graph. A fractional cover of G is a function
φ : E → [0, 1] such that for every vertex v ∈ G we have

∑
e∈E,e∼v φ(e) ≥ 1. We also take

α?(G) = inf

{∑
e∈E

φ(e)
∣∣∣ φ fractional cover of G

}
.

Definition 2. Let T,G be two graphs. We say that ψ : V (T ) → V (G) is a graph homo-
morphism if u ∼ v implies ψ(u) ∼ ψ(v). The sets of all homomorphisms of T into G will be
denoted by Hom(T,G).

We shell prove the following proposition.

Proposition 3. For any two graphs T,G we have |Hom(T,G)| ≤ (2|E(G)|)α?(T ).

Proof. Let σ : V (T ) → V (G) be the random uniform homomorphism. Suppose that we
have V (T ) = {v1, . . . , vn} and let us define the random variables Xi = σ(vi). Take a vector
X = (X1, . . . , Xn). Note that by uniformity of σ we get H(X) = |Hom(T,G)|. Let φ :
E(T ) → [0, 1] be the optimal fractional cover, i.e.

∑
e∈E(T ) φ(e) = α?(T ). Choose a random

edge S (random subset S ⊆ V (T ) of cardinality 2 with P(e) = φ(e)/α?(T ). For any i we
have P(vi ∈ S) ≥ 1/α?(T ), since

∑
e∼vi φ(e) ≥ 1. Thus,

1

α?(T )
|Hom(T,G)| = 1

α?(T )
H(X1, . . . , Xn) ≤ ESH(XS) ≤ ln(2|E(G)|).

Example 2. If T is a triangle K3 then it is easy to see that α?(T ) = 3/2. Thus, we get
|Hom(K3, G)| ≤ (2|E(G)|)3/2. Is this the best possible bound (up to a universal constant in
front of the right hand side)?

�

2. Isoperimetric inequality on the hypercube

2.1. Influences. Let f : {−1, 1}n → {−1, 1}. The influence of the i-th variable is defined
as

Ii(f) = P(f(x) 6= f(σi(x))) =
1

2n
|{x ∈ {−1, 1}n : f(x) 6= f(σi(x))}| .
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Here P is the uniform measure on the cube.
There is an one-to-one correspondence between Boolean functions and subsets of the dis-

crete cube. Namely, if f : {−1, 1}n → {−1, 1} then we can define Af = {x : f(x) = 1}. If
A ⊂ {−1, 1}n then we also have fA(x) = 21A(x) − 1. If we have sets A,B ⊂ {−1, 1}n with
then we define

E(A,B) = |{(a, b) : a ∈ A, b ∈ B, a ∼ b}|.
The quantity E(A,Ac) is the so-called the edge boundary of A. We have

|E(A,Ac)|
2n−1

=
2|E(A,Ac)|

2n
=

∑n
i=1 |{x : fA(x) 6= fA(σi(x))}|

2n
=

n∑
i=1

Ii(fA).

The influence (total influence) of a Boolean function f : {−1, 1}n → {−1, 1} is defined as

I(fA) =
n∑
i=1

Ii(fA) =
|E(A,Ac)|

2n−1
.

2.2. Examples of Boolean functions and their influences. In this section we analyse
some basis examples of Boolean functions.

• Dictator: Dictn(x1, . . . , xn) = xj, 1 ≤ j ≤ n,
Clearly, we have

Ii(Dictn) =

{
1 i = j
0 i 6= j

, I(Dictn) = 1, E(Dictn) = 0.

• Junta (k-junta): f(x1, . . . , xn) = g(xi1 , . . . , xik), where g : {−1, 1}k → {−1, 1} and
1 ≤ k < n.
• Parity: Parn(x1, . . . , xn) = x1 · . . . ·xn. Note that Parity is equal to the Walsh function

of highest degree, namely w[n].

Ii(Parn) = 1, I(Parn) = n, E(Parn) = 0.

• Majority: Majn(x1, . . . , xn) = sgn(x1 + . . .+ xn), n is odd,

Ii(Majn) =
1

2n−1

(
n− 1
n−1

2

)
= O

(
1√
n

)
, I(Majn) =

n

2n−1

(
n− 1
n−1

2

)
= O(

√
n),

E(Majn) = 0.

• AND: ANDn(x1, . . . , xn) = min(x1, . . . , xn),

Ii(ANDn) =
1

2n−1
, I(ANDn) =

n

2n−1
, E(ANDn) = −1 +

1

2n−1
.

• OR: ORn(x1, . . . , xn) = max(x1, . . . , xn)

Ii(ORn) =
1

2n−1
, I(ORn) =

n

2n−1
, E(ORn) = 1− 1

2n−1
.

• Tribes: take n = mk and divide n variables into m groups (tribes), each of cardinality
k. The value of our function is 1 if and only if there exists a tribe which says ’yes’.
The tribe says ’yes’ if all values of spines in this tribe is 1. So the Tribes function is
OR of ANDs. We can write

Tribesk,m(x1, . . . , xn) = OR
(
AND(x1, ..., xk), ..., AND(x(m−1)k+1, ..., xmk))

)
.
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To calculate Ii observe that if xi wants to decide then others variables in its tribe
has to take value 1 and in m − 1 other tribes there must be at least 1 variable with
value 0 in each tribe. Therefore,

Ii(Tribesk,m) =
1

2k−1

(
1− 1

2k

)m−1

, I(Tribesk,m) =
km

2k−1

(
1− 1

2k

)m−1

,

E(Tribesk,m) = 1− 2

(
1− 1

2k

)m
.

Now we would like to find the value k = k(n) for which P(Tribesk(n), n
k(n)

) = p. Let

us take

k(n) = log2

(
n

− ln(1− p)

)
− log2 log2 n.

Of course k(n) and n/k(n) should be integers, but who cares... Since for a Boolean
function f we have Ef = 2P(f = 1)− 1, therefore

1− P(Tribesk(n), n
k(n)

= 1) =

(
1− 1

2k(n)

)n/k(n)

=

(
1 +

(ln(1− p))(log2 n)

n

)n/k(n)

.

Let

an =
n

(ln(1− p))(log2 n)
.

Clearly, limn→∞ |an| = +∞. Therefore limn→∞(1 + 1
an

)an = e. Moreover,

lim
n→∞

n

k(n)an
= lim

n→∞

(ln(1− p))(log2 n)

log2

(
n

− ln(1−p)

)
− log2 log2 n

= ln(1− p).

It follows that

lim
n→∞

P(Tribesk(n), n
k(n)

= 1) = 1− eln(1−p) = p.

Let us now calculate the asymptotic behaviour of Ii(Tribesk(n), n
k(n)

). We have

Ii(Tribesk(n), n
k(n)

) =
1

2k(n)−1

(
1− 1

2k

)n/k(n)−1

=
1

2k(n)−1

(
1− 1

2k

)−1 (
1− P(Tribesk(n), n

k(n)
= 1)

)
≈ 1

2k(n)−1
(1− p) ≈ 2(1− p) ln

(
1

1− p

)
log2 n

n
.

Therefore,

Ii(Tribesk(n), n
k(n)

) ≈ 2(1− p) ln

(
1

1− p

)
log2 n

n
, n→∞,

Ii(Tribesk(n), n
k(n)

) ≈ 2(1− p) ln

(
1

1− p

)
log2 n, n→∞.
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If p ≤ 1/2 then we have

Ii(Tribesk(n), n
k(n)

) ≤ Cp
log2 n

n
.

2.3. Isoperimetric inequality on the cube. We would like to make a connection between
Loomis-Whitney inequality and the isoperimetric inequality on the discrete cube. We are
going to prove the following proposition.

Proposition 4. Let A ⊆ {−1, 1}n. Then

|E(A,Ac)| ≥ 2nµn(A) ln

(
1

µn(A)

)
.

Proof. Fix i and consider 2n−1 pairs

(x1, . . . , xi−1,−1, xi+1, . . . , xn), (x1, . . . , xi−1, 1, xi+1, . . . , xn).

Suppose a is the number of pairs such that both points are not contained in A, b is the
number of pair such that both points are contained in A and let c be the number of pairs
such that one point is contained in A and the other one is not. We have

µn(A) =
b

2n−1
+

c

2n
, Ii = Ii(fA) =

c

2n−1
, |Pi(A)| = b+ c.

Therefore
|Pi(A)|

2n−1
= µn(A)− Ii

2
+ Ii = µn(A) +

Ii
2
, i = 1, . . . , n.

From the Loomis-Whitney inequality we have

µn(A)n−1 =
|A|n−1

2n(n−1)
≤ 1

2n(n+1)
|P1(A)| · . . . · |Pn(A)| =

(
µn(A) +

I1

2

)
. . .

(
µn(A) +

In
2

)
,

thus
1

µn(A)
≤
(

1 +
I1

2µn(A)

)
. . .

(
1 +

In
2µn(A)

)
and therefore

ln

(
1

µn(A)

)
≤ ln

(
1 +

I1

2µn(A)

)
+ . . .+ ln

(
1 +

In
2µn(A)

)
≤ I1 + . . .+ In

2µn(A)
=

I(f)

2µn(A)
.

It follows that
|E(A,Ac)|

2n−1
= I(f) ≥ 2µn(A) ln

(
1

µn(A)

)
.

�

Recall that on the discrete cube we have a natural graph structure with the set of edges
given by E = {(x, y) : dH(x, y) = 1}, where dH(x, y) = |{i : xi 6= yi}|. Also, for a set
S ⊆ {0, 1}d we define its boundary ∂S = {(x, y) ∈ E : x ∈ S, y /∈ S}. On {0, 1}d we can
define the lexicographical order induced by 1 > 0. Let Ld[n] be the set of first n vertices
according to this order.

Theorem 1 (Harper’s theorem). We have |∂S| ≥ |∂Ld[|S|]|, i.e., the set of size n minimizing
the edge boundary is Ld[n].
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Proof. We proceed by induction on d. For d = 1 the assertion is trivial. Suppose d ≥ 2 and
the theorem holds for d− 1.

Let us first introduce an order on the set of subsets of {0, 1}d. Each such subset can be

identified with a vector in {0, 1}2d (since there are 2d subsets of {0, 1}d). Here the order of
coordinates corresponds to the lexicographical order on {0, 1}d.

Example 3. For d = 3 we have the following order on {0, 1}d,
(000) < (001) < (010) < (011) < (100) < (101) < (110) < (111).

Thus, e.g., the vector (01101001) ∈ {0, 1}23 corresponds to the following subset of {0, 1}3.

{(001), (010), (100), (111)}.

The order ≺ on {0, 1}2d (and thus the order on subsets of {0, 1}d) is defined to be the
reverse lexicographical order. It is the usual order (where 1 > 0) but the order of reading
the coordinates is reversed.

By the construction we have the following fact.

Fact 6. If x, y ∈ {0, 1}d, y ∈ T ⊆ {0, 1}d and x < y then ((T \ {y}) ∪ {x}) ≺ T .

We now define the compression of S. Take T ⊆ {0, 1}d. For every coordinate i ∈ [d] we can
decompose T into two subsets Ti=0, Ti=1 ⊆ {0, 1}d−1 according to the value of ith coordinate.
Formally

Ti=ε = {x ∈ {0, 1}d−1 : (x1, . . . , xi−1, ε, xi+1, . . . , xn) ∈ T}, ε ∈ {0, 1}.
Let Ci(T ) be the set obtained by replacing Ti=0 with Ld−1[|Ti=0|] and Ti=1 with Ld−1[|Ti=1|].
Of course |Ci(T )| = |T |.

Fact 7. We have |∂Ci(T )| ≤ |∂T |.

Proof. Note that

|∂Ci(T )| = |∂Ld−1[|Ti=0|] + |∂Ld−1[|Ti=1|] + |Ld−1[|Ti=0|] ∆ Ld−1[|Ti=1|]|
= |∂Ld−1[|Ti=0|] + |∂Ld−1[|Ti=1|] + ||Ti=0| − |Ti=1||
≤ |∂Ti=0|+ |∂Ti=1|+ |Ti=0 ∆ Ti=1| = |∂T |.

Here the inequalities

|∂Ld−1[|Ti=0|] ≤ |∂Ti=0|, |∂Ld−1[|Ti=1|] ≤ |∂Ti=1|
follow from the induction assumption and the inequality ||Ti=0| − |Ti=1|| ≤ |Ti=0 ∆ Ti=1| is a
general bound |A∆B| ≥ ||A| − |B|| valid for any finite sets A,B. �

We continue the proof of Harper’s theorem. From Fact 6 we see that Ci(T ) ≺ T . Let us
apply C1, . . . , Cn in a cyclic fashion,

S → C1(S)→ C2C1(S)→ . . .→ CdCd−1 . . . C1(S)→ C1CdCd−1 . . . C1(S)→ . . .

Since in this sequence the (linear) order ≺ in non-increasing, we eventually reach a fixed
point T of all C1, . . . , Cd.

Let us define a new order � on {0, 1}d (compressibility order). If all compressed sets
containing y ∈ {0, 1}d also contain x ∈ {0, 1}d then we write x� y. �

Fact 8. We have x < y implies x� y unless x = 01...1 and y = 10...0.
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Proof. We first consider the case when xi 6= yi = ε for some i = 1, . . . , d, ε ∈ {0, 1}. Let T
be compressed. Suppose y ∈ T and x < y. We are to show that x ∈ T . We have Ci(T ) = T .
Clearly x is in T since Ti=ε = Ld−1[|Ti=ε|].

We now consider the case when xi 6= yi for all i = 1, . . . , d. Since x < y we get x1 = 0 and
y1 = 1. Assume that x, y are not equal to x = 01...1 and y = 10...0. Thus, there is i > 1
such that xi = 0 and yi = 1. Therefore, x, y have the form x = (0a0b) and y = (1ā1b̄), where
ā = 1 − a. Take z = (0a1b). We have x < z and x1 = z1. Thus, from the previous case,
x� z. Moreover, z < y and zi = yi. Thus, z � y. We get x� z � y and therefore x� y.

Let L = {x : x < 01...1} and R = {x : x > 10...0}. On L and H the orders < and � are
the same. The only non-comparable points are x = 01...1 and y = 10...0. To see that they
are indeed non-comparable, we take T = {(0a) : a ∈ {0, 1}d−1} ∪ (10...0) \ (01...1). Then T
is compressed and contains y but it does not contain x. On the other hand T = {0a : a ∈
{0, 1}d−1} is compressed and it contains x but does not contain y. Thus x and y are not
comparable in �.

Take our compressed set T . If T ∩ H 6= ∅ then there is a unique maximal point z in T .
Since z ∈ T we get that x < z implies x ∈ T for any x. Thus, in this case T is a prefix in <.

Let us now assume that T ∩H = ∅. If T ∩{(01...1), (10...0)} = ∅ then in the same way we
get the same conclusion. If T ∩ {(01...1), (10...0)} 6= ∅ then we proceed similarly if the cases

T ∩ {(01...1), (10...0)} = {(01...1), (10...0)}, T ∩ {(01...1), (10...0)} = {(01...1)}.

The only non-trivial case is T = L ∪ {(10...0)}. In this case we compute the size of edge
boundary explicitly,

|∂T | = 2d−1 − 2 + 2(d− 1) ≥ 2d−1 = |∂Ld−1[|T |]|.

�

3. Harmonic analysis on the hypercube

3.1. Walsh-Fourier system. For S ⊂ [n] consider a function wS : {−1, 1}n → R defined
by wS(x) =

∏
i∈S xi. Here we use a convention w∅(x) ≡ 1. Let E denote the expectation

with respect to µn. Note that

EwS =

{
0 S 6= ∅
1 S = ∅ .

Clearly,

wS(x)wT (x) =
∏
i∈S

xi
∏
j∈T

xj =
∏

i∈S∆T

xi
∏
i∈S∩T

x2
i =

∏
i∈S∆T

xi = wS∆T (x).

Since wSwT = wS∆T , we get

EwSwT =

{
0 S 6= T
1 S = T

.

This means that (wS)S⊂[n] is an orthonormal system in L2({−1, 1}n, µn). Since the dimension
of is equal to the number of function wS (both are equal to 2n), we get that (wS)S⊂[n] is an
orthonormal basis. It follows that a function f : Σn → R admits an unique expansion

f =
∑
S⊂[n]

〈f, wS〉wS,
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where 〈f, g〉 = Efg. It can be also seen by an elementary argument. Indeed, we have

1x(y) =
n∏
i=1

1 + xiyi
2

= 2−n
∑
S⊂[n]

wS(x)wS(y).

Hence,

f(x) =
∑
y∈Σn

f(y)1y(x) = 2−n
∑
S⊂[n]

(∑
y∈Σn

f(y)wS(y)

)
wS(x) =

∑
S⊂[n]

〈f, wS〉wS(x).

The coefficients aS = 〈f, wS〉 are called the spectrum of f . Note that we have Ef = a∅ and
by orthogonality

Ef 2 = E

(∑
S

aSwS

)2

=
∑
S,T

aSaTEwSwT =
∑
S

a2
S.

This is the so-called Parseval’s identity.

Example 4. Let us prove that f : ΣntoR satisfies the following Poincaré inequality,

Varµn(f) ≤
∫

Σn

|∇f |2dµn.

To this end consider the Walsh-Fourier expansion of f , namely f =
∑

S aSwS. From the
Parseval identity we get

Varµn(f) = Ef 2 − (Ef)2 =
∑
|S|>0

a2
S.

We now observe that |∇f |2 =
∑n

i=1 |∇if |2. Let us compute the Walsh-Fourier expansion of
∇if ,

(∇if)(x) =
f(x)− f(σi(x))

2
=
∑
S:i∈S

aSwS(x).

This is because

∇iwS =

{
wS i /∈ S
0 i ∈ S .

Thus,∫
Σn

|∇f |2dµn =
n∑
i=1

∫
Σn

|∇if |2dµn =
n∑
i=1

∑
S:i∈S

a2
S =

∑
S

|S|a2
S ≥

∑
|S|>0

a2
S = Varµn(f).

Example 5. It is easy to see that for f : {−1, 1}n → {−1, 1} the following two conditions
are equivalent:

(1) f(x · y) = f(x)f(y), x, y ∈ {−1, 1}n,
(2) for some S ⊆ [n] we have f = wS.

Indeed,(2) clearly implies (1). On the other hand, if we assume (1) then we have

f(x1, . . . , xn) =
n∏
i=1

f(1, . . . , xi, . . . , 1).

Since f(1) = f(1 · 1) = f(1)2 implies f(1) = 1 we get that each f(1, . . . , xi, . . . , 1) is either
identically 1 or is equal to xi.
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Suppose now that we want to consider approximately multiplicative functions. We can
define this notion either through point (1) or using (2). The definition (2’) reads as follows:

(2’) f : {−1, 1}n → {−1, 1} is ε close to being multiplicative if there is wS such that
Px(f(x) 6= g(x)) ≤ ε, where x is uniform on {−1, 1}n.

The definition (1) can be rewritten using the so called Blum-Luby-Rubinfeld test. In BLR
test we consider two independent random inputs x, y ∈ Σn and accept f if f(x·y) = f(x)f(y).
Thus, this test uses only three queries.

(1’) We say that f is ε BLR-close to being multiplicative if P(f(x ·y) = f(x)f(y)) = 1−ε,
where x, y are independent and uniform in {−1, 1}n. In other words, BLR test excepts
f with probability 1− ε.

We show that both definitions are equivalent. First, if f is ε close to certain wS then BLR
test accepts f with probability at least 1− 3ε,

P(f(x · y) 6= f(x)f(y)) ≤ P(f(x) 6= wS(x) or f(x) 6= wS(y) or f(x · y) 6= wS(x · y))

≤ P(f(x) 6= wS(x)) + P(f(y) 6= wS(y)) + P(f(x · y) 6= wS(x · y))

= 3P(f(x) 6= wS(x)) ≤ 3ε.

What is non-trivial is that we have the reverse implication.

Fact 9. If BLR test accepts f with probability 1− ε then f is ε close to certain wS.

Proof. Take f : {−1, 1}n → {−1, 1}. Let h(x) = Eyf(y)f(x · y). If f =
∑

S aSwS then

h(x) = Ey

(∑
S

aSwS(y)

)(∑
S

aSwS(x)wS(y)

)
=∑

S,T

aSaTwS(x)EywS(y)wT (y) =
∑
S

a2
SwS(x).

using orthogonality of the Walsh system. We have

1

2
+

1

2
f(x)f(y)f(x · y) =

{
1 f(x)f(y) = f(x · y)
0 f(x)f(y) 6= f(x · y)

.

Thus,

1− ε = E
(

1

2
+

1

2
f(x)f(y)f(x · y)

)
=

1

2
+

1

2
Exf(x)Eyf(y)f(x · y) =

1

2
+

1

2
Exf(x)h(x).

We get

1− 2ε = Exf(x)h(x) =
∑
S

a3
S ≤ (max

S
aS)
∑
S

a2
S = max

S
aS.

Therefore, there exists wS such that 1− 2ε ≤ EfwS = 1− 2Px(f(x) 6= wS(x)). Thus, f is ε
close to wS. �

3.2. Noise semigroup on the cube. We now compute the action of our semigroup Pt(f) =
etLf on the Walsh functions wS. We have L = K − I and thus

(LwS)(x) = (KwS)(x)− wS(x) =
1

n

∑
i

wS(σi(x))− wS(x)

=
1

n
(−|S|wS(x) + (n− |S|)wS(x))− wS(x) = −2

|S|
n
wS(x).
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This gives etLwS = e−2t
|S|
n wS. Thus,

Pt

(∑
S

aSwS

)
=
∑
S

aSe
−2t

|S|
n wS.

To simplify notation in what follows we rescale our operator Pt and define

Pt(f) = Pnt/2(f) =
∑
S

aSe
−t|S|wS.

The new generator Lf = d
dt
Pt(f)

∣∣
t=0

= n
2
Lf . Therefore the inequality discrete LSI

Entµn(f 2) ≤ 2 · n
2
〈(−Lf), f〉

now reads

Entµn(f 2) ≤ 2 〈(−Lf), f〉 = 2EL(f, f).

3.3. Arrow’s theorem. Suppose we have three candidates a, b, c and we want to elect one
using some voting procedure. Assume we have n voters and each voter has his own ranking
of candidates. In other words for each pair (a, b), (b, c), (c, d) a voter gives a number in
{−1, 1}, with 1 meaning that he prefers the first candidate. Thus, each voter Vi delivers a
triple (xi, yi, zi) ∈ {−1, 1}3. Note that only six triples are allowed. Indeed, the triples (1, 1, 1)
and (−1,−1,−1) are not allowed because a voter can not prefer a than b, b than c and c
than a (nor the opposite cycle). So, for each voter we have the following allowed rankings

(−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,−1).

Now suppose we use some function f : {−1, 1}n → {−1, 1} to decide whether the society
prefers a than b, etc. by considering f(x) = f(x1, . . . , xn), f(y) = f(y1, . . . , yn) and f(z) =
f(z1, . . . , zn). For example f(x1, . . . , xn) = 1 means that the society prefers a than b. In
other words, w consider all three pairwise elections.

We say that there is a Condorcet winner if there is a candidate who wins all the pairwise
elections he participated in. So, there is a Condorcet winner if

(f(x), f(y), f(z)) ∈ {(−1,−1, 1), (−1, 1,−1), (−1, 1, 1), (1,−1,−1), (1,−1, 1), (1, 1,−1)}.

Here is an example of a voting with Condorcet winner.

V1 V2 V3 f
a(+) vs. b(−) + + − +
b(+) vs. c(−) − + − −
c(+) vs. a(−) + − − −

Table 1. Voting with n = 3 voters using f(x) = sgn(x1 + x2 + x3). Here we
get the ranking (1,−1,−1) which means c > a > b and thus c is the winner.

However, the following voting shows that there may not be a Condorcet winner. This is
called the Condorcet paradox.

We show that essentially the only voting scheme free from the Condorcet paradox is dic-
tatorship.
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V1 V2 V3 f
a(+) vs. b(−) + + − +
b(+) vs. c(−) + − + +
c(+) vs. a(−) − + + +

Table 2. Voting with n = 3 voters using f(x) = sgn(x1 + x2 + x3). Here
we get the ranking (1, 1, 1) which means a > b, b > c and c > a and thus we
cannot choose a winner.

Theorem 2 (Arrow’s Theorem). Let f : {−1, 1}n → {−1, 1} be unanimous (i.e., f(1) = 1
and f(−1) = −1) voting rule used in three candidate Condorcet elections. If there is always
a Condorcet winner, then f(x) = xk for some k ∈ [n].

Proof. Let us do a random election. Each voter chooses one of the 6 possible rankings
uniformly at random. We compute the probability of Condorcet winner. For this we need a
function σ : {−1, 1}3 → {0, 1} which is equal to 1 if and only if the argument (x, y, z) does
not belong to the set {(−1,−1,−1), (1, 1, 1)}. It is easy to see that

σ(x, y, z) =
3

4
− 1

4
(xy + yz + zx).

Thus,

P(∃ Condorcet winner) = Eσ(f(x), f(y), f(z))

=
3

4
− 1

4
E[f(x)f(y) + f(y)f(z) + f(z)f(x)] =

3

4
− 3

4
E[f(x)f(y)].

Recall that (xi, yi), i = 1, . . . , n are independent. Moreover, the distribution of each (xi, yi, zi)
is uniform over all 6 admissible rankings. Therefore, it is easy to see that Exi = Eyi = 0 and
Exiyi = −1

3
. Let f =

∑
S aSwS. We get

E[f(x)f(y)] =
∑
S,T

aSaTE[wS(x)wT (y)] =
∑
S

a2
SE[wS(x)wS(y)]

=
∑
S

a2
S(E[x1y1])|S| =

∑
S

a2
S (−1/3)|S| .

We arrive at

P(∃ Condorcet winner) =
3

4
− 3

4

∑
S

a2
S (−1/3)|S| .

Let Wk[f ] =
∑
|S|=k a

2
S. We have

3

4
− 3

4

∑
S

a2
S (−1/3)|S| =

3

4
− 3

4

n∑
k=0

Wk[f ] (−1/3)k ≤ 3

4
− 3

4

∑
k

W2k+1[f ] (−1/3)2k+1

=
3

4
+

3

4

∑
k

W2k+1[f ] (1/3)2k+1 ≤ 3

4
+

3

4

(
1

3
W1[f ] +

1

27

∑
k>0

W2k+1[f ]

)

≤ 3

4
+

3

4

(
1

3
W1[f ] +

1

27
(1−W1[f ])

)
=

7

9
+

2

9
W1[f ] =

7

9
+

2

9

n∑
k=1

a2
{k}.
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Thus,

P(∃ Condorcet winner) ≤ 7

9
+

2

9

n∑
k=1

a2
{k}.

The quantity
∑n

k=1 a
2
{k} ≤

∑
S a

2
S = 1 can be equal to 1 only if f(x) =

∑n
k=1 a{k}xk. Taking

xi = sgn(ai) we get
∑

k |a{k}| = 1. Together with
∑n

k=1 a
2
{k} = 1 this gives the existence of l

such that |a{l}| = 1 and a{k} = 0 for all k 6= l. Thus P(∃ Condorcet winner) implies that f
is a dictator.

�

4. Hypercontractivity

4.1. Uniform convexity in Lp. For a given normed space (V, ‖ · ‖) and ε > 0 let us define
the quantity

δV (ε) = inf

{
1−

∥∥∥∥u+ v

2

∥∥∥∥ : ‖u‖ = ‖v‖ = 1, ‖u− v‖ ≥ 2ε

}
.

Our goal in to lower bound δV for Lp with 1 < p ≤ 2. First, note that the case of L2 is easy.
Indeed for f, g ∈ L2 we have the parallelogram identity∥∥∥∥f + g

2

∥∥∥∥2

2

+

∥∥∥∥f − g2

∥∥∥∥2

2

=
‖f‖2

2 + ‖g‖2
2

2
.

If ‖f‖2 = ‖g‖2 = 1, we get (by using
√

1− x ≤ 1− 1
2
x, x ≤ −1)∥∥∥∥f + g

2

∥∥∥∥
2

=

(
1−

∥∥∥∥f − g2

∥∥∥∥2

2

)1/2

≤ 1− 1

2

∥∥∥∥f − g2

∥∥∥∥2

2

.

Thus, δL2(ε) ≥ 1
2
ε2.

Let us now consider a more general, but still simple, case p ≥ 2. For numbers x, y ≥ 0 we
have

(xp + yp)1/p ≤ (x2 + y2)1/2,

(
a2 + b2

2

)1/2

≤
(
ap + bp

2

)1/p

.

Thus, for all a, b we get(∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p)1/p

≤

(∣∣∣∣a+ b

2

∣∣∣∣2 +

∣∣∣∣a− b2

∣∣∣∣2
)1/2

=

(
a2 + b2

2

)1/2

≤
(
|a|p + |b|p

2

)1/p

.

We get ∣∣∣∣a+ b

2

∣∣∣∣p +

∣∣∣∣a− b2

∣∣∣∣p ≤ |a|p + |b|p

2
.

Taking a = f(x), b = g(x) and integrating yields∥∥∥∥f + g

2

∥∥∥∥p
p

+

∥∥∥∥f − g2

∥∥∥∥p
p

≤
‖f‖pp + ‖g‖pp

2
.

Again, if ‖f‖p = ‖g‖p = 1, we get (by using Bernoulli inequality (1−x)1/p ≤ 1−x/p, x ≤ −1)∥∥∥∥f + g

2

∥∥∥∥
p

=

(
1−

∥∥∥∥f − g2

∥∥∥∥p
p

)1/p

≤ 1− 1

p

∥∥∥∥f − g2

∥∥∥∥p
p

.



SHANNON ENTROPY AND LOGARITHMIC SOBOLEV INEQUALITIES 15

This yields δLp(ε) ≥ p−1
2
ε2.

We now prove the following theorem.

Theorem 3. Let 1 < p ≤ 2. Then for every f, g ∈ Lp we have∥∥∥∥f + g

2

∥∥∥∥2

p

+ (p− 1)

∥∥∥∥f − g2

∥∥∥∥2

p

≤
‖f‖2

p + ‖g‖2
p

2
.

In particular, δLp(ε) ≥ p−1
2
ε2.

Proof. We will prove the complex case. It is enough to consider only step functions of the
form

f =
∑
j

zj1Aj , g =
∑
j

wj1Aj .

Then
f + tg =

∑
j

(zj + twj)1Aj .

Moreover, we can assume that zj+twj 6= 0 for all real t, my imposing the condition zjw̄j /∈ R.
As a consequence f(x) + tg(x) 6= 0 and we avoid problems with differentiating in the next
step.

Consider the function Y (t) = ‖f + tg‖pp and let q = p/2. We have ‖f + tg‖p 2 = Y (t)2/p =

Y (t)1/q. Thus,

d

dt2
‖f + tg‖2

p =
1

q

(
1

q
− 1

)
Y (t)

1
q
−2(Y ′)2 +

1

q
Y

1
q
−1Y ′′ ≥ 1

q
Y

1
q
−1Y ′′.

Now, our goal is to show that

(1) Y ′′(t) ≥ p(p− 1)

∫
|f + tg|p−2|g|2dµ.

It is enough to show that for every complex numbers a, b ∈ C, such that a + tb 6= 0, t ∈ R,
we have

d

dt2
|a+ tb|p ≥ p(p− 1)|a+ tb|p−2|b|2.

Let a = a1 + ia2, b− b1 + ib2. Then |a+ tb|2 = (a1 + tb1)2 + (a2 + tb2)2. Moreover,

d

dt
|a+ tb|2 = 2 [(a1 + tb1)b1 + (a2 + tb2)b2] ,

d

dt2
|a+ tb|2 = 2|b|2.

We get

d

dt2
|a+ tb|p =

d

dt2
(|a+ tb|2)

p
2

=
(p

2
− 1
) p

2
(|a+ tb|2)

p
2
−2 · 4 [(a1 + tb1)b1 + (a2 + tb2)b2]2 +

p

2
(|a+ tb|2)

p
2
−12|b|2

= p(p− 2)|a+ tb|p−4 [(a1 + tb1)b1 + (a2 + tb2)b2]2 + p|a+ tb|p−2|b|2.
Note that by Cauchy-Schwarz

[(a1 + tb1)b1 + (a2 + tb2)b2]2 ≤ |a+ tb|2|b|2.
This, together with the fact that p− 2 ≤ 0, yields

d

dt2
|a+ tb|p ≥ [p(p− 2) + p] |a+ tb|p−2|b|2 = p(p− 1)|a+ tb|p−2|b|2.
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We arrive at (1). Note that for u, v we have the reverse Hölder inequality,∫
|uv|dµ ≥

(∫
|u|r
)1/r (∫

|v|s
)1/s

,
1

s
+

1

r
= 1, 0 < r ≤ 1.

We use it with r = q, s = q
q−1

= p
p−2

, u = |g|2 and v = |f + tg|2q−2,

Y ′′(t) ≥ p(p− 1)

(∫
|f + tg|pdµ

)1− 1
q
(∫
|g|pdµ

) 2
p

= p(p− 1)Y (t)1− 1
q

(∫
|g|pdµ

) 2
p

d

dt2
‖f + tg‖2

p ≥
1

q
Y

1
q
−1Y ′′ ≥ 1

q
Y

1
q
−1 · p(p− 1)Y (t)1− 1

q ‖g‖2
p = 2(p− 1) ‖g‖2

p .

Let ψ(t) = ‖f + tg‖2
p and take c = (p − 1) ‖g‖2

p. Then ψ′′(t) ≥ 2c and thus the function

ϕ(t) = ψ(t) + ct(1− t) is convex. This gives ϕ(1/2) ≤ 1
2
(ϕ(0) + ϕ(1)), or equivalently

ψ(1/2) +
c

4
≤ ψ(0) + ψ(1)

2
.

The latter is ∥∥∥f +
g

2

∥∥∥2

p
+
p− 1

4
‖g‖2

p ≤
‖f‖2

p + ‖f + g‖2
p

2
.

Taking f = u and g = v − u yields∥∥∥∥u+ v

2

∥∥∥∥2

p

+ (p− 1)

∥∥∥∥u− v2

∥∥∥∥2

p

≤
‖u‖2

p + ‖v‖2
p

2
.

�

4.2. Hölder and Pinsker inequalities. Let us show one particular application of Theorem
3 proved in the previous section.

Theorem 4 (Hölder inequality with reminder). Let 1 < p ≤ 2 and define q through the
relation 1

p
+ 1

q
= 1. Assume that ‖f‖q = ‖g‖p = 1. Let θ be such that eiθ

∫
fgdµ is positive.

Then ∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ 1− p− 1

4

∥∥Dq(f)− eiθg
∥∥2

p
,

where

Dq(f) = ‖f‖1−q
q |f |q−2f(x).

Proof. Note that
∫
Dq(f)fdµ = ‖f‖q = 1. Thus

1 +

∣∣∣∣∫ fgdµ

∣∣∣∣ = 1 + eiθ
∫
fgdµ =

∫
f
(
Dq(f) + eiθg

)
dµ ≤

∥∥Dq(f) + eiθg
∥∥
p
.

Using the fact that ‖Dq(f)‖p = 1, we get, by strong convexity,

1

2
+

1

2

∣∣∣∣∫ fgdµ

∣∣∣∣ ≤ ∥∥∥∥Dq(f) + eiθg

2

∥∥∥∥
p

≤ 1− p− 1

2

∥∥∥∥Dq(f)− eiθg
2

∥∥∥∥2

p

Rewriting gives the desired inequality. �
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Example 6. Let us consider probability densities ρ, σ. Take f = ρ1/q and g = σ1/p with

1/p+ 1/q = 1 and 1 < p ≤ 2. We have ‖f‖q = ‖g‖p = 1. Moreover, Dq(f) = f q−1 = f
1
p−1 =

ρ1/p. We get ∫
ρ1− 1

pσ
1
pdµ ≤ 1− p− 1

4

∥∥∥ρ 1
p − σ

1
p

∥∥∥2

p
.

This is equivalent to

p− 1

4

∥∥∥ρ 1
p − σ

1
p

∥∥∥2

p
≤
∫ (

σ − ρ1− 1
pσ

1
p

)
dµ =

∫
σ
(

1− (ρ/σ)1− 1
p

)
dµ,

which is
p

4

∥∥∥ρ 1
p − σ

1
p

∥∥∥2

p
≤ 1

1− 1
p

∫
σ
(

1− (ρ/σ)1− 1
p

)
dµ.

Taking p→ 1+ we get

1

4
‖ρ− σ‖2

1 ≤ −
d

dε

∫
σ(ρ/σ)εdµ = −

∫
σ ln(ρ/σ) =

∫
σ ln(σ/ρ) = D(σ‖ρ).

This is the so-called Pinsker inequality

1

4
‖ρ− σ‖2

1 ≤ D(σ‖ρ).

In fact the optimal constant is 1/2, not 1/4. We leave this improvement as an exercise.

4.3. Gross’s two-point inequality. If we take u = f+g and v = f−g we get an equivalent
form of the inequality from Theorem 3,

‖u‖2
p + (p− 1) ‖v‖2

p ≤
‖u+ v‖2

p + ‖u− v‖2
p

2
.

We need the following strengthening of this inequality.

Theorem 5. Let 1 < p ≤ 2. Then for every f, g ∈ Lp we have

‖f‖2
p + (p− 1) ‖g‖2

p ≤

(
‖f + g‖pp + ‖f − g‖pp

2

) 2
p

.

Proof. We use Theorem 3 on (Ω× {−1, 1}, µ⊗ µ1), where µ1 = 1
2
δ−1 + 1

2
δ1 is the symmetric

Bernoulli measure. Let f̃(x, y) = f(x) and g̃(x, y) = yg(x). We get∥∥∥f̃ ± g̃∥∥∥p
p

=

∫
|f(x)± yg(x)|pdµ(x)dµ1(y) =

1

2

∫
|f + g|pdµ+

1

2

∫
|f − g|pdµ

=
1

2
‖f + g‖p +

1

2
‖f − g‖p .

Moreover, ‖f̃‖p = ‖f‖p and ‖g̃‖p = ‖g‖p. Thus,

‖f‖2
p + (p− 1) ‖g‖2

p = ‖f̃‖2
p + (p− 1) ‖g̃‖2

p ≤
‖f̃ + g̃‖2

p + ‖f̃ − g̃‖2
p

2
= ‖f̃ + g̃‖2

p

=

(
‖f + g‖pp + ‖f − g‖pp

2

)2/p

.

�
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If we restric the above inequality to two point space {−1, 1} and take f(x) = a, g(x) = bx,
we get the so-called two-point Gross’s inequality

(2) (a2 + (p− 1)b2)1/2 ≤
(
|a+ b|p + |a− b|p

2

)1/p

.

4.4. Gross’s hypercontractivity.

Theorem 6. Let 1 < p ≤ 2. Then

e−t ≤
√
p− 1 =⇒ ‖Pth‖2 ≤ ‖h‖p .

More generally, if 1 < p < q <∞ then

e−t ≤
√
p− 1

q − 1
=⇒ ‖Pth‖q ≤ ‖h‖p .

We now prove only the first part.

Proof. For n = 1 we have h(x) = a+ bx Thus, h = f + g, where f(x) = a and g(x) = bx. We
have Pt(h) = a+ e−txb. Clearly, we have

‖h‖pp =
‖f + g‖pp + ‖f − g‖pp

2
.

Moreover,∥∥P− ln
√
p−1

∥∥2

2
= a2 + (eln

√
p−1)b2 = a2 + (p− 1)b2 = ‖f‖2

p + (p− 1) ‖g‖2
p .

Thus, in this case ‖Pth‖2 ≤ ‖h‖p is equivalent to the assertion of Theorem 5.

Let us not provide an induction step. Let us consider h : {−1, 1}n → R. There is a unique

decomposition h = f + xng. Note that Pth = Ptf + e−txnPtg. Let e−t = p− 1, f̃ = Ptf and
g̃ = xnPtg. Then by Theorem 5 we get

‖Pth‖2
2 = ‖Ptf‖2

2 + (p− 1) ‖Ptg‖2
2 ≤ ‖f‖

2
p + (p− 1) ‖g‖2

p

≤

(
‖f + g‖pp + ‖f − g‖pp

2

) 2
p

= ‖h‖2
p .

Thus, ‖Pth‖2 ≤ ‖h‖p. �

4.5. Kahn-Kalai-Linial theorem. We first prove the following theorem due to Talagrand.

Theorem 7. Let f : {−1, 1}n → {−1, 1} and let µ(f) = P(f = 1). Then
n∑
i=1

Ii(f)

log
(

1
Ii(f)

) ≥ 4

15
µ(f)(1− µ(f)).

We adopt the notation 0
log(1/0)

= 0 and 1/ log(1) = +∞. We begin with a lemma.

Lemma 1. Let g : {−1, 1}n → R with ‖g‖3/2 6= ‖g‖2, which is equivalent to |g| being not
constant. Then ∑

S 6=∅

ĝ(S)2

|S|
≤ 5

2

‖g‖2
2

log
(
‖g‖2 / ‖g‖3/2

) .
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Proof. Using the inequality
‖Tδg‖2 ≤ ‖g‖1+δ2

with δ2 = 1/2 we obtain∑
S: |S|=k

ĝ(S)2 ≤ 2k
∑
S

1

2|S|
ĝ(S)2 = 2k

∥∥∥T√
1/2
g
∥∥∥2

2
≤ 2k ‖g‖2

3/2 .

Now take m ≥ 0. We have∑
S 6=∅

ĝ(S)2

|S|
=

m∑
k=1

∑
S: |S|=k

ĝ(S)2

k
+

∑
S: |S|>m

ĝ(S)2

|S|
≤

m∑
k=1

2k ‖g‖2
3/2

k
+

∑
S: |S|>m

ĝ(S)2

m+ 1

≤
4 · 2m ‖g‖2

3/2 + ‖g‖2
2

m+ 1
,

where we have used the inequality
m∑
k=1

2k

k
≤ 4 · 2m

m+ 1
,

which can be easily proved by induction.
Now we take

m = max{m ≥ 0 | 2m ‖g‖2
3/2 ≤ ‖g‖

2
2}.

Then 2m+1 ‖g‖2
3/2 > ‖g‖

2
2. Hence,

m+ 1 > 2 log

(
‖g‖2

‖g‖3/2

)
.

We arrive at ∑
S 6=∅

ĝ(S)2

|S|
≤ 5 ‖g‖2

2

m+ 1
≤ 5

2

‖g‖2
2

log
(
‖g‖2 / ‖g‖3/2

) .
�

Proof of Talagrand’s theorem. Suppose Ii(f) ∈ (0, 1). Let g(x) = f(x) − f(xi). It follows
that |g| is not constant. We have

‖g‖2

‖g‖3/2

=
2Ii(f)1/2

2Ii(f)2/3
= Ii(f)−1/6.

From the lemma we obtain∑
S: i∈S

4f̂(S)2

|S|
=
∑
S

ĝ(S)2

|S|
≤ 5

2

‖g‖2
2

log
(
‖g‖2 / ‖g‖3/2

) =
5

2
· 4Ii(f)

log(Ii(f)−1/6)
= 60

Ii(f)

log( 1
Ii(f)

)
.

The inequality ∑
S: i∈S

4f̂(S)2

|S|
≤ 60

Ii(f)

log( 1
Ii(f)

)

is also true when Ii(f) ∈ {0, 1}. We obtain

16µ(f)(1− µ(f)) = 4 Varµ(f) =
∑
Snε∅

4f̂(S)2 =
n∑
i=1

∑
S: i∈S

4f̂(S)2

|S|
≤ 60

n∑
i=1

Ii(f)

log( 1
Ii(f)

)
.
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The assertion follows. �

We are ready to give state and prove the following celebrated theorem of Kahn, Kalai and
Linial.

Theorem 8 (KKL theorem). Let f : {−1, 1}n → {−1, 1} be a Boolean function. Then

max
i
Ii(f) ≥ 4

15
µ(f)(1− µ(f))

log n

n
.

Proof. We show that Talagrand result implies KKL Theorem. Let us first observe that if
a ∈ (0, 1) and a

log(1/a)
≥ c > 0 then a ≥ 1

2
c log(1/c). Since (0, 1) 3 a 7→ a

log(1/a)
is increasing,

it suffices to assume that a
log(1/a)

= c. Then we are to prove

a ≥ 1

2

a

log(1/a)
log

(
1

a
log

(
1

a

))
.

Taking x = 1/a ≥ 1 we see that this inequality is equivalent to

log(x) ≥ 1

2
log(x log(x)) =

1

2
log x+

1

2
log log x.

Thus we are to prove x ≥ log x. It follows from Bernoulli inequality

2x = (1 + 1)x ≥ 1 + x ≥ x.

From Talagrand’s inequality we know that there exists i such that

Ii(f)

log
(

1
Ii(f)

) ≥ 1

n
· 4

15
µ(f)(1− µ(f)).

Now take

a = Ii(f), c =
1

n
· 4

15
µ(f)(1− µ(f)).

We have
1

c
= n · 15

4

1

µ(f)(1− µ(f))
≥ 15n.

We obtain

Ii(f) ≥ 1

2
c log(1/c) ≥ 1

n
· 4

15
µ(f)(1− µ(f)) log(15n) ≥ 4

15
µ(f)(1− µ(f))

log n

n
.

�

5. Finite space Markov chains

5.1. Discrete time Markov chains. Consider a finite set V with |V | = n and a Markov
kernel (or transition matrix) K : V × V → R, i.e.,

K(x, y) ≥ 0, x, y ∈ V
∑
y∈V

K(x, y) = 1, x ∈ V.

The discrete time Markov chain associated with K with an initial distribution ν is a V -valued
sequence (Xn)∞n=0 whose law Pν is given by

Pν(Vi = vi, 0 ≤ i ≤ l) = ν(x0)K(x0, x1) · . . . ·K(xl−1, xl), l = 0, 1, . . .
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Consider the Markov chain started at x and set Px = Pδx . Then the law of Xl is given by
Px(Xl = y) = K l(x, y), where K l is defined recursively via

K l(x, y) =
∑
z∈V

K l−1(x, z)K(z, y).

The kernel K defines an operator

(Kf)(x) =
∑
y∈V

K(x, y)f(y).

Clearly, the lth power of this operator has kernel K l(x, y).

5.2. Continuous time Markov chains. In the continuous time Markov chain associated
with K (and starting from x) the moves are those of the discrete time Markov chain, however
the jumps occur after independent Exp(1) waiting times. Thus, the number of jumps after
time t is given by the Poisson process. Therefore, the probability that there have been exactly
i jumps until time t is equal to e−tti/i!. It follows that the probability to be at point y after
i jumps is equal to e−tti/i!Ki(x, y). Let Pt(x, y) = P x

t (y) = Px(Xt = y) We get

Pt(x, y) = e−t
∞∑
i=0

Ki(x, y)
ti

i!
.

This is a kernel of an operator Pt defined by

(3) Ptf = e−t
∞∑
i=0

ti

i!
Kif = e−t(I−K)f.

Note that
Pt(f)(x) = Ef(Xt).

The operators (Pt)t≥0 have the following three properties:

• Pt preserves positivity, i.e. f ≥ 0 implies Pt(f) ≥ 0
• Pt(1) = 1
• Pt+s = Pt ◦ Ps (semigroup property)

Thus, (Pt)t≥0 is a Markov semigroup. The so-called generator L of Pt is given by Lf =
d
dt
Ptf |t=0 = (K − I)f .
Assume that our kernel K is strongly irreducible, i.e., there is i such that Ki(x, y) > 0 for

every x, y ∈ V . This implies the existence of the unique stationary measure π. This means
that

π(x) =
∑
y∈V

π(y)K(y, x), lim
l→∞

K l(x, y) = π(y).

Similar convergence holds for Pt,

lim
l→∞

Pt(x, y) = π(y).

Let us set

pxt (y) = pt(x, y) :=
P x
t (y)

π(y)
=
Pt(x, y)

π(y)
.

Definition 3. We say that a Markov chain with a transition matrix K and a positive
stationary measure π is reversible (or, in other words, satisfies the detailed balance condition)
if we have

π(x)K(x, y) = π(y)K(y, x).
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Let us define the scalar product

〈f, g〉 =
∑
x∈V

f(x)g(x)π(x), E(f, g) = 〈(−L)f, g〉 .

We would like to compute the adjoint K? of K. We have

〈f,Kg〉 =
∑
x,y

f(x)K(x, y)g(y)π(x) =
∑
y

(∑
x

π(x)K(x, y)

π(y)

)
g(y)π(y).

Thus,

(K?f)(y) =
∑
x

π(x)K(x, y)

π(y)
.

It follows that the kernel of K? is equal to

K?(x, y) =
π(y)K(y, x)

π(x)
.

We see that K satisfies the detailed balance condition if and only if K? = K. We have also
P ?
t = e−t(I−K

?). The kernel of P ?
t is equal to

P ?
t (x, y) =

π(y)Pt(y, x)

π(x)
.

Moreover, p?t (x, y) = pt(y, x). Let us set

µ(f) =
∑
x

f(x)π(x).

The operator K acts on measures, µ→ µK, namely

µK(x) =
∑
y

µ(y)K(y, x).

Thus,

(µK)(f) =
∑
x,y

µ(y)K(y, x)f(x).

The operator Pt◦Ps has kernel (Pt◦Ps)(x, y) =
∑

z Pt(x, z)Ps(z, y). Thus, since Pt◦Ps = Pt+s,
we have a chain rule

Pt+s(x, y) =
∑
z

Pt(x, z)Ps(z, y).

Equivalently,

pt+s(x, y) =
∑
z

pt(x, z)ps(z, y)π(z).

5.3. Dirichlet form and spectral gap. Define the Dirichlet form,

E(f, g) = < (〈(I −K)f, g〉) .

Lemma 2. We have

E(f, f) =

〈(
I − K +K?

2

)
f, f

〉
=

1

2

∑
x,y

|f(x)− f(y)|2K(x, y)π(x).
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Moreover, if (K, π) is reversible then

E(f, g) =
1

2

∑
x,y

(f(x)− f(y))(g(x)− g(y))K(x, y)π(x).

Proof. Observe that〈(
I − K +K?

2

)
f, f

〉
=

1

2
(〈(I −K)f, f〉+ 〈(I −K?)f, f〉) .

To prove the first inequality it suffices to show that

〈(I −K?)f, f〉 = 〈(I −K)f, f〉.
Indeed, we have

〈(I −K?)f, f〉 = 〈f, f〉 − 〈K?f, f〉 = 〈f, f〉 − 〈f,Kf〉 = 〈f, f〉 − 〈Kf, f〉 = 〈(I −K)f, f〉.
For the second equality write

1

2

∑
x,y

|f(x)− f(y)|2K(x, y)π(x)

=
1

2

∑
x,y

(|f(x)|2 + |f(y)|2 − (f(x)f(y) + f(x)f(y)))K(x, y)π(x)

=
1

2

∑
x

|f(x)|2π(x) +
1

2

∑
y

|f(y)|2π(y)−
∑
x,y

<(f(x)f(y))K(x, y)π(x)

= 〈f, f〉 −
∑
x,y

<(f(x)f(y))K(x, y)π(x).

In the second inequality we have used
∑

x π(x)K(x, y) = π(y) (stationarity of π) and∑
yK(x, y) = 1. Now it suffices to observe that

E(f, f) = < (〈(I −K)f, f〉) = 〈f, f〉 − < (〈Kf, f〉)
and

〈Kf, f〉 =
∑
x,y

f(x)f(y)K(x, y)π(x).

For the second part note that

E(f, g) = 〈(I −K)f, g〉 =
∑
x

f(x)g(x)π(x)−
∑
x,y

K(x, y)f(y)g(x)π(x).

Moreover,

1

2

∑
x,y

(f(x)− f(y))(g(x)− g(y))K(x, y)π(x) =
1

2

∑
x,y

f(x)g(x)K(x, y)π(x)−

1

2

∑
x,y

f(x)g(y)K(x, y)π(x)− 1

2

∑
x,y

f(y)g(x)K(x, y)π(x) +
1

2

∑
x,y

f(y)g(y)K(x, y)π(x)

Now it suffices to observe that by stationarity of π we have∑
x,y

f(y)g(y)K(x, y)π(x) =
∑
y

f(y)g(y)π(y)
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and ∑
x,y

f(x)g(y)K(x, y)π(x) =
∑
x,y

f(x)g(y)K(y, x)π(y) =
∑
x,y

f(y)g(x)K(x, y)π(x).

�

Remark 1. The Dirichlet forms related to Pt, P
?
t and St = exp

(
−t(I − K+K?

2
)
)

are the
same.

Lemma 3. We have
∂

∂t
‖Ptf‖2

2 = −2E(Ptf, Ptf).

Proof. We have

∂

∂t
‖Ptf‖2

2 =
∂

∂t
〈Ptf, Ptf〉 = 〈LPtf, Ptf〉+ 〈Ptf, LPtf〉 = 2< (〈LPtf, Ptf〉)

= 2< (〈(K − I)Ptf, Ptf〉) = −2< (〈(I −K)Ptf, Ptf〉) = −2E(Ptf, Ptf).

�

We define the spectral gap λ = λ(K).

Lemma 4. The following definitions are equivalent.

(a) λ = min
{
E(f,f)

Varπ(f)
: Varπ(f) 6= 0, f : V → C

}
,

(a’) λ = min
{
E(f,f)

Varπ(f)
: Varπ(f) 6= 0, f : V → R

}
,

(b) λ = {E(f, f) : ‖f‖2 = 1, π(f) = 0},
(c) λ is the second smallest eigenvalue of I − K+K?

2
.

The constant λ will be called the spectral gap of K or the Poincaré constant of K.

Proof. The equivalence of (a) and (b) follows from the fact that the quantity E(f, f)/Varπ(f)
is invariant under shifting and rescaling, f → af + b, a, b ∈ C.

For the equivalence of (a) and (a’) let us observe that λR ≥ λC. On the other hand, for
f = u+ iv, where u, v are real, we get

λR Varπ(f) = λR Varπ(u) + λR Varπ(v) ≤ E(u, u) + E(v, v) = E(f, f).

Thus, λR ≤ λC.
We show the equivalence between (a’) and (c). Note that I − K+K?

2
is self adjoint and

therefore it has real eigenvalues λ0 ≤ λ1 ≤ λ2 ≤ . . .. Since

E(f, f) =

〈(
I − K +K?

2

)
f, f

〉
=

1

2

∑
x,y

|f(x)− f(y)|2K(x, y)π(x),

we get that λ0 ≥ 0. In fact λ0 = 0 since for a constant function f = 1 we get E(f, f) = 0.
Moreover, E(f, f) = 0 if and only if f is constant on every irreducible component of our
state space V . Since we assume that our chain is itself irreducible, we get that the only
eigenfunction with eigenvalue 0 is a constant function. Thus, in fact λ1 > 0 and it is the
spectral gap between first two eigenvalues. However, λ1 can be degenerate (have multiplicity
bigger that 1). Let fk be the (real) eigenfunction with eigenvalue λk. We assume that fk
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are orthonormal with respect to 〈·, ·〉 = 〈·, ·〉π. Take f : V → R. It has a unique expansion
f =

∑
k≥0 akfk. We get

π(f) =
∑
k≥0

akπ(fk) =
∑
k≥0

ak 〈fk, 1〉 = a0.

Thus,

Varπ(f) =
∑
k≥1

a2
k, E(f, f) =

∑
k≥0

λka
2
k =

∑
k≥1

λka
2
k.

Clearly λ1 is the best constant λ in the inequality λVarπ(f) ≤ E(f, f). �

Lemma 5. Let λ be the spectral gap of (K, π). Then for any f we have

Varπ(Ptf) = ‖Ptf − π(f)‖2
2 ≤ e−2λt Varπ(f).

Moreover, ‖Pt − π‖2→2 ≤ e−λt.

Proof. We have

π(Kf) =
∑
x,y

K(x, y)f(y)π(x) =
∑
y

f(y)π(y) = π(f).

Thus also π(Ptf) = π(f). Thus, we get the first equality. To show the inequality let us define
u(t) = Varπ(Ptf) = ‖Pt(f − π(f))‖2

2. From the Lemma 3 we get

u′(t) = −2E(Pt(f − π(f)), Pt(f − π(f))) ≤ −2λu(t).

Thus, u(t) ≤ e−2λu(0) = e−2λ Varπ(f).
To prove the second part it suffices to observe that

‖Ptf − π(f)‖2
2 ≤ e−2λt Varπ(f) ≤ e−2λt ‖f‖2

2 .

�

Proposition 5. Let (K, π) be a Markov chain with spectral gap λ. Then

‖pxt − 1‖2 ≤
√

1/π(x)e−λt, |Pt(x, y)− π(y)| ≤
√
π(y)/π(x)e−λt.

Corollary 1. Let (K, π) be a Markov chain with spectral gap λ. Then

‖pxt − 1‖2 ≤ e−C for t =
1

2λ

(
ln

(
1

π(x)

)
+ 2C

)
+

.

and

|Pt(x, y)− π(y)| ≤ e−C for t =
1

2λ

(
ln

(
π(y)

π(x)

)
+ 2C

)
+

.

Proof of Proposition 5. Let P ?
t be the adjoint Markov chain with the spectral gap λ(K?) =

λ(K). Define δx(y) = (1/π(x))1y=x. We have

pxt (y) =
Pt(x, y)

π(y)
=
P ?
t (y, x)

π(x)
=
∑
z

P ?
t (y, z)δx(z) = (P ?

t δx)(y).

We have π(P ?
t δx) = π(δx) = π(x)/π(x) = 1. Thus,

‖pxt − 1‖2
2 = ‖P ?

t δx − π(P ?
t δx)‖

2
2 = Varπ(P ?

t δx) ≤ e−2λt Varπ(δx) =

(
1

π(x)
− 1

)
e−2λt

We arrive at
‖pxt − 1‖2 ≤

√
1/π(x)− 1e−λt ≤

√
1/π(x)e−λt.
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For the second part observe that∑
z

(pt/2(x, z)− 1)(pt/2(z, y)− 1)π(z)

=
∑
z

pt/2(x, z)pt/2(z, y)π(z)−
∑
z

pt/2(x, z)π(z)−
∑
z

pt/2(z, y)π(z) +
∑
z

π(z)

= pt(x, y)−
∑
z

Pt/2(x, z)

π(z)
π(z)−

∑
z

Pt/2(z, y)

π(y)
π(z) + 1 = pt(x, y)− 1.

Thus,

|pt(x, y)− 1| ≤
∥∥pxt/2 − 1

∥∥
2
‖p?yt/2 − 1‖2 ≤

1√
π(x)π(y)

e−λt.

Multiplying by π(y) give the result. �

5.4. Log-Sobolev inequalities.

Lemma 6 (Stroock-Varopoulos inequality). If (K, π) is reversible and f ≥ 0 then for any
p > 1 we have

4(p− 1)

p2
E(fp/2, fp/2) ≤ E(f, fp−1).

Proof. Take a > b ≥ 0. By Cauchy-Schwarz we have(
ap/2 − bp/2

a− b

)2

=

(
p

2(a− b)

∫ a

b

tp/2−1dt

)2

≤ p2

4(a− b)

∫ a

b

tp−2dt =
p2

4(p− 1)

ap−1 − bp−1

a− b
.

We get

(ap−1 − bp−1)(a− b) ≥ 4(p− 1)

p2
(ap/2 − bp/2)2.

Thus, from Lemma 2 we get

4(p− 1)

p2
E(fp/2, fp/2) =

4(p− 1)

p2
· 1

2

∑
x,y

|fp/2(x)− fp/2(y)|2K(x, y)π(x)

≤ 1

2

∑
x,y

(fp−1(x)− fp−1(y))(f(x)− f(y))K(x, y)π(x) = E(f, fp−1).

�

Lemma 7. Let ϕ be convex. Then ϕ(Ptf) ≤ Pt(ϕ(f)). Moreover, Eϕ(Ptf) ≤ Eϕ(f). In
particular, ‖Ptf‖p ≤ ‖f‖p, p ≥ 1.

Proof. Any convex function is a supremum of a certain family of convex functions ϕ(x) =
supα(aαx + bα). We have aαf + bα ≤ ϕ(f). Applying Pt and using the fact that it is linear
and preserves positivity, we get aαPtf + bα ≤ Pt(ϕ(f)). Taking supremum over α we get
ϕ(Ptf) ≤ Pt(ϕ(f)). To get the second assertion we apply expectation and use the fact that
Pt preserves expectation. �
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Definition 4. For a Markov chain (K, π) the log-Sobolev constant α = α(K) is defined via

α = min

{
E(f, f)

Entπ(|f |2)
: Entπ(|f |2) 6= 0

}
.

Proposition 6. For any Markov chain (K, π) we have 2α ≤ λ.

Proof. It suffices to take f = 1 + εg in the above definition (with g real) and observe that
E(f, f) = ε2E(g, g) and (by easy Taylor expansion) Entπ(|f |2) = 2ε2 Varπ(g) + O(ε3). One
gets the result by taking ε→ 0. �

We prove that Log-Sobolev inequality is equivalent to the hypercontractivity property.

Theorem 9. For a reversible chain with a generator L the following statements are equiva-
lent,

(i) (Log-Sobolev inequality) for every f : Ω→ R satisfying suitable technical assumptions

E(f 2 ln f 2)− (Ef 2) ln(Ef 2) ≤ CE(f(−L)f),

(ii) (hypercontractivity) for every p > q > 1 and f : Ω→ R we have

‖Ptf‖p ≤ ‖f‖q

for t ≥ C
4

ln p−1
q−1

.

Proof. Assume that we have (i). Take φq : [q,∞)→ R given by

φq(p) = ln
∥∥Pt(p)f∥∥p =

1

p
lnE

∣∣Pt(p)f ∣∣p ,
where t(p) = C

4
ln p−1

q−1
. It suffices to show that

∥∥Pt(p)f∥∥p ≤ ‖f‖q. Indeed, if t > t(p) then we

obtain

‖Ptf‖p =
∥∥Pt(p)+t−t(p)f∥∥p ≤ ∥∥Pt−t(p)f∥∥q ≤ ‖f‖q ,

since Pt−t(p) is a contraction in Lq.

To prove that
∥∥Pt(p)f∥∥p ≤ ‖f‖q we can assume that f i nonnegative. Indeed, the inequality

−|f | ≤ f ≤ |f | implies (positivity preserving) that −Pt|f | ≤ Ptf ≤ Pt|f |, hence |Ptf | ≤
Pt|f |. Therefore

∥∥Pt(p)f∥∥p ≤ ∥∥Pt(p)|f |∥∥p.
Take a nonnegative f . Since t(q) = 0, the inequality

∥∥Pt(p)f∥∥p ≤ ‖f‖q is equivalent to

φq(p) ≤ φq(q). Hence, it suffices to show that the function [q,∞) 3 p 7→ φq(p) is nonincreas-
ing. Set Pt(p)f = fp. We have

d

dp
φq(p) =

1

p

E d
dp

(fpp )

Efpp
− 1

p2
lnEfpp

and

d

dp
fpp =

d

dp

(
Pt(p)f

)p
=

d

dp
ep ln(Pt(p)f) = ep ln(Pt(p)f)

(
ln(Pt(p)f) + p

LPt(p)f
Pt(p)f

)
· dt(p)

dp

= fpp ln fp + fp−1
p p(Lfp)

C

4
ln

1

p− 1
.
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Thus,

d

dp
φq(p) =

1

p
·
Efpp ln fp

Efpp
+
C

4

1

p− 1
·
Efp−1

p Lfp

Efpp
− 1

p2
lnEfpp

=
1

p2Efpp

((
Efpp ln(fpp )− (Efpp ) ln(Efpp )

)
+

Cp

4(p− 1)
E(fp−1

p Lfp)

)
=

1

p2Efpp

(
Ent(fpp ) +

Cp

4(p− 1)
E(fp−1

p Lfp)

)
.

We would like to prove

Ent(fpp ) ≤ Cp2

4(p− 1)
E(fp−1

p (−L)fp).

Taking f = f
p/2
p in the Log-Sobolev inequality and using Stroock-Varopoulos inequality we

obtain

Ent(fpp ) ≤ CE
(
fp/2p (−L)fp/2p

)
≤ Cp2

4(p− 1)
E(fp−1

p (−L)fp).

To prove that (ii) implies (i) observe that for a nonnegative function f the inequality∥∥Pt(p)f∥∥p ≤ ‖f‖q implies that d
dp

∥∥Pt(p)f∥∥p ∣∣∣p=q ≤ 0, which is equivalent to

Ent(f q) ≤ Cq2

4(q − 1)
E(f q−1(−L)f).

Now it suffices to take q = 2 to obtain Log-Sobolev inequality for nonnegative functions. If
f is not necessarily nonnegative then we have

Ent(f 2) = Ent(|f |2) ≤ CE|f |(−L)|f | ≤ CEf(−L)f

because of the energy stability lemma. �

Since the continuous time random walk on Σn satisfy Log-Sobolev inequality with constant
2, we have proved the following theorem.

Theorem 10. Let (Pt)t≥0 be the continuous time random walk on Σn. Then for every
p > q > 1 and t ≥ 1

2
ln p−1

q−1
we have

‖Ptf‖p ≤ ‖f‖q .
As an application of the hypercontractivity we prove the following proposition.

Proposition 7 (Khinchin-Kahane inequality). Let (F, ‖·‖) be a normed space and let v1, . . . , vn ∈
F . Then for p > q > 1 we have(

E

∥∥∥∥∥
n∑
i=1

rivi

∥∥∥∥∥
)1/p

≤
√
p− 1

q − 1

(
E

∥∥∥∥∥
n∑
i=1

rivi

∥∥∥∥∥
)1/q

.

Proof. Let H(x) = ‖
∑n

i=1 xivi‖, H : Σn → [0,∞). We have proved that (−L)H ≤ H. Hence,

d

dt
PtH = LPtH = −PtLH ≥ −PtH.

Therefore PtH ≥ e−tP0H = e−tH. Take t = 1
2

ln p−1
q−1

. By the hypercontractivity of Pt we

obtain √
q − 1

p− 1
‖H‖p = e−t ‖H‖p ≤ ‖PtH‖p ≤ ‖H‖q .
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�

Proposition 8. For all t, s ≥ 0 we have

‖pt+s − 1‖2 ≤ π(x)
− 1

1+e4αs e−λt.

Moreover, we have

‖pxT − 1‖2 ≤ e1−C , for T =
1

4α
ln+ ln

(
1

π(x)

)
+
C

λ

and

|pT (x, y)− 1| ≤ e2−C , for T =
1

4α

(
ln+ ln

(
1

π(x)

)
+ ln+ ln

(
1

π(y)

))
+
C

λ
.

Lemma 8. Let 1 ≤ p, r ≤ ∞. Then for any linear operator K we have ‖K‖p→r = ‖K?‖r′→p′ ,
where r′, p′ are the Hölder conjugate to r and p.

Proof. We use a well known fact that

‖f‖p = sup
‖g‖p′≤1

| 〈f, g〉 |.

Thus,

‖K‖p→r = sup
‖f‖p≤1

‖Kf‖r = sup
‖f‖p≤1

sup
‖g‖r′≤1

| 〈Kf, g〉 | = sup
‖g‖r′≤1

sup
‖f‖p≤1

| 〈K?g, f〉 |

= sup
‖g‖r′≤1

‖K?g‖p′ = ‖K‖r′→p′ .

�

Proof. Take q(s) = 1 + e4αs. By Theorem 9 we have ‖Ps‖2→q(s) ≤ 1. By Lemma 8 and the

fact that L?2 = L2 and L?q = Lp with 1/q(s) + 1/p(s) = 1 we have ‖P ?
s ‖p(s)→2 ≤ 1. Take

δx(y) = 1
π(x)

1y=x. In the proof of Proposition 5 we showed that pt(x, y) = (P ?
t δx)(y). Thus

pt+s(x, y)− 1 = ((P ?
t+s − π)δx)(y) = (P ?

s (P ?
t − π)δx)(y),

since P ?
s (P ?

t − π) = P ?
t+s − π. We get∥∥pxt+s − 1

∥∥
2

=
∥∥(P ?

t+s − π)δx
∥∥

2
= ‖P ?

s (P ?
t − π)δx‖2 ≤ ‖P

?
s δx‖2 ‖P

?
t − π‖2→2

≤ ‖δx‖p(s) ‖P
?
s ‖p(s)→2 ‖P

?
t − π‖2→2 .

First, recall that ‖P ?
s ‖p(s)→2 ≤ 1. Moreover,

‖δx‖p(s) =

((
1

π(x)

) 1
p(s)

π(x)

)1/p(s)

= π(x)
1
p(s)
−1 = π(x)−

1
q(s) .

Finally, by Lemma 5 applied for P ?
t we have ‖P ?

t − π‖2→2 ≤ 1.
To prove that the second part take

s =
1

4α
ln+ ln

(
1

π(x)

)
, t =

C

λ
.

The third part follows from the second and |pt(x, y) − 1| ≤ ‖pxt/2 − 1‖2‖p?yt/2 − 1‖2 (see the

proof of Proposition 5). �
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5.5. Example: continuous time random walk on the cube. Let us consider a contin-
uous time random walk on the cube {−1, 1}n. For this walk we have

K(x, y) =

{
1
n

dH(x, y) = 1
0 therwise

.

Here dH(x, y) = |{1 ≤ i ≤ n : xi 6= yi}| is the so-called Hamming distance. If dH(x, y) = 1
then we will say that x and y are neighbours and we will write x ∼ y. This relation induces
the standard graph structure on the cube. Let us compute the generator Lf = (K − I)f .
We get

(Lf)(x) =
1

n

(∑
y∼x

f(y)

)
− 1 =

1

n

∑
y∼x

(f(y)− f(x)).

Note that the uniform measure π(x) = 2−n satisfies the condition

π(x) =
∑

y∈{−1,1}n
π(y)K(y, x).

However, it does not satisfy the condition liml→∞K
l(x, y) = π(y), because, K2l(x, y) = 0

when dH(x, y) is odd. However, as we will see later, this problem disappears when we pass
to Pt. Thus, π = µn. The Dirichlet form is equal to,

E(f, g) = 〈(−L)f, g〉 =
1

2

∑
x,y

(f(x)− f(y))(g(x)− g(y))K(x, y)π(x)

=
1

2n+1n

∑
(x,y): x∼y

(f(x)− f(y))(g(x)− g(y)).

Thus,

E(f, f) =
1

2n+1n

∑
(x,y): y∼x

(f(x)− f(y))2 =
1

2n−1n

∑
(x,y): y∼x

(
f(x)− f(y)

2

)2

=
2

n

∫
|∇f |2dµn.

We have seen the Poincaré inequality on the cube,

Varµn(f) ≤
∫
|∇f |2dµn =

n

2
E(f, f).

We get that the spectral gap is equal to λ = 2/n.

We have seen that LwS = −2 |S|
n
wS, where wS is the Walsh-Fourier function.

Recall that the discrete LSI says that

Entµn(f 2) ≤ 2

∫
|∇f |2dµn = nE(f, f).

As a consequence, the log-Sobolev constant for the continuous time random walk equals 1/n.
Thus, the eigenvalues of (−L) = I − K are equal to λk = 2 k

n
, each with multiplicity

(
n
k

)
.

Note that λ0 = 0 and λ = λ1 = 2/n.
Let us compute the action of Pt on a function f =

∑
S aSwS. We get

Ptf =
∑
S

aSe
−2t

|S|
n wS.
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Previously we mentioned (and proved for q = 2) that the operator Pn
2
t satisfies the following

hypercontractivity property

e−t ≤
√
p− 1

q − 1
=⇒

∥∥Pn
2
t

∥∥
q
≤ ‖f‖p .

From Theorem 9 we get that

t ≥ n

4
ln

(
p− 1

q − 1

)
=⇒ ‖Pt‖q ≤ ‖f‖p .

Clearly those two conditions are the same.
Proposition 5 yields

‖pxt − 1‖2
2 ≤ e−C for t =

n

4
(n ln 2 + 2C)+,

which is (say, for C = 1) roughly n2 ln 2
4

. As we will see, the log-Sobolev constant give better
bound. Indeed, from Proposition 8 we get

‖pxt − 1‖2 ≤ e1−C for t =
n

4
ln(n ln 2) +

Cn

2
.

For fixed C this is roughly n
4

lnn. Let us see that this is in fact the correct order. We have

δx(y) = 2n1y=x = 2n
n∏
i=1

1 + xiyi
2

=
∑
S

wS(x)wS(y).

Therefore,

Ptδx =
∑
S

e−2t
|S|
n wS(x)wS

and

‖pxt − 1‖2
2 = Varπ(P x

t δx) =
∑
k>0

(
n

k

)
e−4t k

n =
(

1 + e−
4t
n

)n
− 1.

Thus we have ‖pxt − 1‖2
2 = e2−2C for t = −n

4
ln
(

(1 + e2−2C)
1
n − 1

)
≈ n

4
lnn. To see the last

asymptotics it suffices to note that for any a > 1 we have limn→∞(ln(a
1
n − 1)/ lnn) = −1.

5.6. Some spectral graph theory. Let us recall some properties of symmetric matrices.
Suppose M is a symmetric n × n matrix. Then M has real eigenvalues λ1 ≤ λ2 ≤ . . . ≤ λn
with orthonormal eigenvectors x1, x2, . . . , xn, i.e., Mxk = λkxk, k = 1, . . . , n. Moreover,

λk = min
x 6=0,x⊥x1,...,x⊥xk−1

xTMx

xTx
.

Moreover, any minimizer is an eigenvector with eigenvalue λk. In particular,

λ1 = min
x 6=0

xTMx

xTx
.

Let x1 be the minimizer in the above expression, thus the eigenvector of M with eigenvalue
λ1. Then

λ2 = min
x 6=0,x⊥x1

xTMx

xTx
.
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We also have the following min-max principle,

λk = min
V−subspace of Rn, dimV=k

max
x∈V, x 6=0

xTMx

xTx
.

Consider a simple random walk on d regular graph, i.e., let us take

K(x, y) =

{
1
d

x ∼ y
0 x � y

.

Thus, (−L) = I − 1
d
A, where A is the adjacency matrix of G,

A(x, y) =

{
1 x ∼ y
0 x � y

.

We prove the following proposition.

Proposition 9. Let G be a d regular graph on n vertices. Let λ1 ≤ . . . ≤ λn be eigenvalues
of L = −L. Then

(a) λ1 = 0,
(b) λk = 0 if and only if G has at least k connected components,
(c) λn ≤ 2 and λn = 2 if and only if at least one connected component of G is bipartite.

Proof. (a) From Proposition 2 we get

xTLx =
1

d

∑
{u,v}∈E

(xu − xv)2,

where the notation {u, v} ∈ E means that every edge is counted ones. As for general Markov
chains we get

λ1 = min
x 6=0

xTLx
xTx

= min
x 6=0

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

≥ 0.

Moreover, a constant vector x = (1, . . . , 1) gives λ1 = 0 and this vector is an eigenvector of
L with eigenvalue 0.

(b) Assume λk = 0. Since

λk = min
V−subspace of Rn, dimV=k

max
x∈V, x 6=0

xTMx

xTx
,

we see that there is a k dimensional subspace S such that for every x ∈ S we have
∑
{u,v}∈S(xu−

xv)
2 = 0. But this means that x has to be constant on every connected component of G.

Thus, the dimension of S is at most the number of connected components of G. Thus, G has
at least k connected components.

Conversely, if G has at least k connected components then we can take S to be a subspace
of vectors constant on each component of G. We have dim(S) ≥ k. For every element of
x ∈ S we have

∑
{u,v}(xu − xv)2 = 0. This gives λk = 0 by the min-max principle.

(c) Let us recall that

λn = max
x 6=0

xTLx
xTx

.

We have

xTLx =
1

d

∑
{u,v}∈E

(xu − xv)2 = |x|2 − 2

d

∑
{u,v}∈E

xuxv = 2|x|2 − 1

d

∑
{u,v}∈E

(xu + xv)
2.
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Thus,

λn = max
x 6=0

xTLx
xTx

= max
x6=0

(
2− 1

d

∑
{u,v}∈E(xu + xv)

2

xTx

)
≤ 2.

Moreover, if λn = 2 then there must be a non-zero vector x such that∑
{u,v}∈E

(xu + xv)
2 = 0.

Let v0 be a vertex with xv0 = a 6= 0. Define

A = {v : xv = a}, B = {v : xv = −a}, R = {v : |xv| 6= a}.
We see that A ∪ B is disconnected from the rest of the graph R. Otherwise any edge {u, v}
from R to A ∪ B would give (xu + xv)

2 > 0. Moreover, for the same reason if v ∈ A and
{u, v} ∈ E then u ∈ B. Thus, A and B gives a bipartition of A ∪ B, which is a sum of
connected bipartite components of G. �

5.7. Maximal Cut. Let us define the maximal cut for the graph G = (V,E),

MaxCut(G) = max
S⊆V

E(S, V \ S)

|E|
.

Note that MaxCut(G) ≤ 1 and MaxCut(G) = 1 if and only if G is bipartite. Observe that

max
x∈{−1,1}n

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

= max
S⊆V

4E(S, V \ S)

dn
= 2 max

S⊆V

E(S, V \ S)

|E|
= 2MaxCut(G).

We get
2MaxCut(G) ≤ λn.

5.8. Cheeger inequality. Recall that

λ2 = min
x 6=0, x⊥1

∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

.

For x ⊥ 1 we have∑
u,v∈V

(xu − xv)2 = 2n
∑
v

x2
v − 2

∑
u,v

xuxv = 2n
∑
v

x2
v − 2

(∑
v

xv

)2

= 2n
∑
v

x2
v.

Thus,

λ2 = min
x 6=0, x⊥1

∑
{u,v}∈E(xu − xv)2

d
2n

∑
u,v∈V (xu − xv)2

= min
x−non-constant

∑
{u,v}∈E(xu − xv)2

d
2n

∑
u,v∈V (xu − xv)2

= min
x−non-constant

1
nd/2

∑
{u,v}∈E(xu − xv)2

1
n2

∑
u,v∈V (xu − xv)2

= min
x−non-constant

E{u,v}∈E(xu − xv)2

Eu,v∈V (xu − xv)2
,

where E{u,v}∈E is the expectation with respect to the uniform distribution on E and Eu,v refers
to independent uniform choice of u and v. The above minimization problem is a relaxation
of uniform sparsest cut problem,

USC(G) =
n

d
min
S⊆V

E(S, V \ S)

|S| · |V \ S|
= min

x− non-constant
x ∈ {−1, 1}n

E{u,v}∈E(xu − xv)2

Eu,v∈V (xu − xv)2
.
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Clearly we have USC(G) ≥ λ2.

Definition 5. Let S ⊆ V . We define the conductance of S and the conductance of graph G,

φ(S) =
E(S, V \ S)

d|S|
, φ(G) = min

0<|S|≤|V |/2
φ(S).

Let us observe that USC(G) ≤ 2φ(G). Indeed,

USC(G) =
n

d
min
S⊆V

E(S, V \ S)

|S| · |V \ S|
≤ n

d
min

0<|S|≤|V |/2

E(S, V \ S)

|S| · |V \ S|

≤ 2 min
0<|S|≤|V |/2

E(S, V \ S)

d|S|
= 2φ(G).

Theorem 11. We have λ2 ≤ USC(G) ≤ 2φ(G) ≤
√

8λ2.

Proof. The only non-trivial inequality is φ(G) ≤
√

2λ2. Given a solution x of the minimiza-
tion problem for λ2 we are to find a good Boolean approximation (set S). We do this in
several steps.

Step 1. Given a solution x with x ⊥ 1 it is enough to construct a vector y ∈ Rn such that
yv ≥ 0, |{v : yv > 0}| ≤ n/2, maxv yv = 1 and∑

{u,v}∈E |yu − yv|
d
∑

v |yv|
≤ 2

√∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

= 2
√
λ2.

Indeed, having such a vector y we construct the set S ⊆ V (in fact we will find S ⊆ {v : yv >
0} and thus we will get |S| ≤ |V |/2) as follows. Take a random threshold t ∼ Unif[0,maxv yv]
and define S = {v : yv ≥ t}. We have

EE(S, V \ S)

dE|S|
=

∑
{u,v}∈E P(|{u, v} ∩ S| = 1)

d
∑

v P(v ∈ S)
=

∑
{u,v}∈E |yu − yv|
d
∑

v |yv|
.

Now it suffices to observe that

min
0<|S|≤|V |/2

E(S, V \ S)

d|S|
≤ EE(S, V \ S)

dE|S|
.

This is due to the general and easy inequality min
(
X
Y

)
≤ EX

EY valid for any positive real

random variable X, Y . Indeed, the inequality X
Y
> EX

EY leads to XEY > Y EX which is, after
taking expectation of both sides, a contradiction.

Step 2a. Take zv = x−Med(x). Observe that∑
{u,v}∈E(zu − zv)2

d
∑

v z
2
v

≤
∑
{u,v}∈E(xu − xv)2

d
∑

v x
2
v

.

This follows from the fact that

|z|2 = |x−Med(x)1|2 = |x|2 −Med(X) 〈x,1〉+ nMed(X)2 = |x|2 + nMed(X)2 ≥ |x|2.

Step 2b. Define

z+
v =

{
0 zv < 0
zv zv ≥ 0

, z−v =

{
0 zv < 0
−zv zv < 0

.
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Thus, z = z+ − z− and z+ ⊥ z−. Note that |zu − zv|2 ≥ |z+
u − z+

v |2 + |z−u − z−v |2 Therefore,

λ2 ≥
∑
{u,v}∈E(zu − zv)2

d
∑

v z
2
v

≥
∑
{u,v}∈E(z+

u − z+
v )2 +

∑
{u,v}∈E(z−u − z−v )2

d
∑

v(z
+
v )2 + d

∑
v(z
−
v )2

.

We get that

λ2 ≥
∑
{u,v}∈E(z+

u − z+
v )2

d
∑

v(z
+
v )2

or λ2 ≥
∑
{u,v}∈E(

∑
{u,v}∈E(z−u − z−v )2

d
∑

v(z
−
v )2

.

Note that since z has median 0, we have |{v : z+
v > 0}| ≤ n/2 and |{v : z−v > 0}| ≤ n/2.

Moreover z±v ≥ 0.
Step 2c. We have constructed a vector w such that wv ≥ 0, |v : wv > 0| ≤ n/2 and

λ2 ≥
∑
{u,v}∈E(wu − wv)2

d
∑

v w
2
v

Take yv = w2
v. Clearly yv ≥ 0, |v : yv > 0| ≤ n/2. We have∑
{u,v}∈E

|w2
u − w2

v| =
∑
{u,v}∈E

|wu − wv||wu + wv|

≤

 ∑
{u,v}∈E

|wu − wv|2
1/2 ∑

{u,v}∈E

|wu + wv|2
1/2

.

Moreover, ∑
{u,v}∈E

|wu + wv|2 ≤ 2
∑
{u,v}∈E

(w2
u + w2

v) = 2d
∑
v

w2
v.

We arrive at∑
{u,v}∈E |yu − yv|
d
∑

v |yv|
=

∑
{u,v}∈E |w2

u − w2
v|

d
∑

v w
2
v

≤

√∑
{u,v}∈E |wu − wv|2

d
∑

v w
2
v

≤ λ2.

�

6. Gaussian log-Sobolev inequality

6.1. Tensorization of general LSI. We say that a probability measure µ on a metric space
X satisfies the LSI with constant C if for any Lipschitz f : Rn → R we have

(4) Entµ(f 2) ≤ C

∫
Rn
|∇f |2dµ,

where ∇ is some notion of gradient. We have already seen that γn satisfies (4) with constant
C = 2 and with the standard Euclidean gradient. We will provide a certain generalization of
this fact. Before that, we prove a tensorization property of LSI.

Lemma 9. Let (Xi, di, µi)i=1,...,n be metric probability spaces equipped with some notions
of gradient ∇1, . . . ,∇n. Take X = X1 × . . . ×Xn, µ = µ1 ⊗ . . . ⊗ µn and assume that X is
equipped with a gradient |∇f |2 =

∑n
i=1 |∇if |2. Suppose µi satisfies log-Sobolev inequality

with constant Ci. Then the measure µ on X satisfies log-Sobolev inequality with constant
C = max1≤i≤nCi.

To prove Lemma 9 we need the following sub-additivity property of the entropy.
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Lemma 10. Let µ1, . . . , µn be probability measures on X1, . . . , Xn. Take the measure µ =
µ1 ⊗ . . .⊗ µn on X = X1 × . . .×Xn. Then for f : X → (0,∞) we have

Entµ(f) ≤
n∑
i=1

∫
Entµi(f) dµ.

Here Entµi(f) is the entropy of the function Xi 3 xi 7→ f(x1, . . . , xi, . . . , xn), where variables
other than xi are fixed.

Proof. Let g : X → R be such that
∫
X
g dµ ≤ 1. Take

gi(x1, . . . , xn) = ln

(∫
eg(x1,...,xn)dµ1(x1)...dµi−1(xi−1)∫
eg(x1,...,xn)dµ1(x1)...dµi(xi)

)
.

We have
n∑
i=1

gi = ln(eg)− ln

(∫
eg dµ

)
≥ g.

Note that ∫
eg
i

dµi =

∫ ∫
egdµ1 . . . dµi−1∫
eg ddµ1 . . . dµi

dµi = 1.

Hence, ∫
fg dµ ≤

n∑
i=1

∫
fgi dµ =

n∑
i=1

∫ ∫
fgi dµi dµ ≤

n∑
i=1

∫
Entµi(f) dµ.

We finish the proof by taking supremum over all functions g with
∫
eg dµ ≤ 1. �

Proof of Lemma 9. We have

Entµ(f 2) ≤
n∑
i=1

∫
Entµi(f

2) dµ ≤
n∑
i=1

Ci

∫ ∫
|∇if |2 dµi dµ ≤ C

∫
|∇f |2 dµ.

�

6.2. LSI on the discrete cube. Consider the discrete cube {−1, 1}n equipped with the

product measure µn =
(

1
2
δ{−1} + 1

2
δ{1}
)⊗n

. For x = (x1, . . . , xn) ∈ {−1, 1}n take σi(x) =
(x1, . . . , xi−1,−xi, xi+1, . . . , xn). And define the ith gradient by

(∇if)(x) =
f(x)− f(σi(x))

2
.

Then the full gradient is defined via |∇f |2 =
∑n

i=1 |∇if |2. We now prove the LSI for the
discrete cube {−1, 1}n.

Theorem 12. Let f : {−1, 1}n → (0,∞). Then

Entµn(f 2) ≤ 2

∫
|∇f |2 dµn.
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Proof. Because of the tensorization property of log-Sobolev inequality it suffices to prove
the theorem in the case n = 1. By homogenity we can assume that

∫
f 2 dµ = (f(1)2 +

f(−1)2)/2 = 1. Clearly, there exists t ∈ [−1, 1] such that f(1)2 = 1 + t, f(−1)2 = 1− t. We
have ||f(1)| − |f(−1)|| ≤ |f(1)− f(−1)|, therefore we can assume that f ≥ 0. Hence

|∇f |2 =
1

4

(√
1 + t−

√
1− t

)2

=
1

2
− 1

2

√
1− t2.

We also have

Entµ(f 2) =
1 + t

2
ln(1 + t) +

1− t
2

ln(1− t).

We would like to prove

1−
√

1− t2 ≥ 1 + t

2
ln(1 + t) +

1− t
2

ln(1− t).

Define

α(t) = 1−
√

1− t2 − 1 + t

2
ln(1 + t)− 1− t

2
ln(1− t).

The function α is even, therefore it suffices to prove α(t) ≥ 0 for t ≥ 0. Note that f(0) = 0.
It suffices to prove that

α′(t) =
t√

1− t2
− 1

2
ln(1 + t) +

1

2
ln(1− t) ≥ 0.

Again f ′(0) = 0 and it suffices to observe that

α′′(t) =

√
1− t2 + t2√

1−t2

1− t2
− 1

2

1

1 + t
− 1

2

1

1− t

=
1

1− t2

(
t2√

1− t2
−
√

1− t2 − 1

)
=

1

1− t2

(
t2√

1− t2
− t2

1 +
√

1− t2

)
≥ 0.

�

6.3. From the cube to Gaussian space. We show that Theorem 12 indeed generalizes the
Gaussian LSI. Let γ1 be the one dimensional standard Gaussian measure and let f : R→ R
be a bounded function with bounded first and second derivatives. Define fn : {−1, 1}n → R
by

fn(x1, . . . , xn) = f

(
x1 + . . .+ xn√

n

)
.

Note that by the Central Limit Theorem we have

lim
n→∞

∫
fn dµn =

∫
f dγ1.

Moreover,

|∇fn|2(x) =
1

4

n∑
i=1

(
f

(
x1 + . . .+ xn√

n

)
− f

(
x1 + . . .+ xn√

n
− 2xi√

n

))2

=
1

4

n∑
i=1

∣∣∣∣f ′(x1 + . . .+ xn√
n

)∣∣∣∣2 4x2
i

n
+O(1/n)

=

∣∣∣∣f ′(x1 + . . .+ xn√
n

)∣∣∣∣2 +O(1/n).
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Therefore,

lim
n→∞

∫
{−1,1}n

|∇fn|2dµn =

∫
R
|f ′|2dγ1.

Thus, passing to the limit in Entµn(f 2) ≤ 2
∫
|∇f |2 dµn we get LSI for γ1. Tensorization

yields LSI for γn.

6.4. Gaussian concentration of measure.

7. Information theory

7.1. ... The logarithmic Sobolev inequality (LSI) has been introduced [1] by L. Gross. It
states that the standard Gaussian measure γn on Rn, i.e. the probability measure with
density ϕn(x) = (2π)−n/2 exp(−|x|2/2), where ‖ · ‖ is the standard Euclidean norm, satisfies
the inequality

(5)

∫
Rn
f 2 ln(f 2)dγn −

(∫
Rn
f 2dγn

)
ln

(∫
Rn
f 2dγn

)
≤ 2

∫
Rn
|∇f |2dγn,

for every function f : Rn with
∫
Rn f

2 ln+(f 2) < ∞. Here we adopt the standard notation
g+ = max{g, 0}. One can write (5) using the notion of entropy,

(6) Entµ(f) =

∫
Rn
f ln(f)dµ−

(∫
Rn
fdµ

)
ln

(∫
Rn
fdµ

)
.

Thus, the log-Sobolev inequality read as

(7) Entγn(f 2) ≤ 2

∫
Rn
|∇f |2dγn.

This inequality has several equivalent formulations. An easy equivalence is a consequence of
the homogeneity of both sides under scaling g → λg. Indeed, it is easy to see that for any
probability measure µ we have Entµ(λg) = λEntµ(g). Therefore, in the above inequality we
can always assume that

∫
f 2dγn = 1. Then g = f 2 is the density of a certain probability

measure. We have |∇g|2 = 4f 2|∇f |2. As a consequence (7) is implied by

(8)

∫
Rn
g ln g dγn ≤

1

2

∫
Rn

|∇g|2

g
dγn, g ≥ 0,

∫
gdγn = 1.

On the other hand it is easy to show that (7) implies (8). Indeed, it suffices to assume that
g > 0 and take f =

√
g.

The aim of our next section is to get read of the measure γn in the above formulations and
thus express the log-Sobolev inequality in terms of the so-called Shannon entropy and Fisher
information. These are the main quantities studied in the information theory.

7.2. From LSI to information theory. Let us come back to the inequality (7) and take

f(x)2 = (2π)n/2e|x|
2/2g(ax), with a > 0, g ≥ 0,

∫
g(x)dx = 1.

Note that

f(x)2dγn(x) = g(ax)dx, 2f(x)∇f(x) = (2π)n/2e|x|
2/2(a∇g(ax) + xg(ax)).
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Therefore,

|∇f(x)|2dγn(x) =
1

4
· (2π)ne|x|

2
(a∇g(ax) + xg(ax))2

(2π)n/2e|x|2/2g(ax)
· 1

(2π)n/2
e−|x|

2/2dx

=
1

4

(a∇g(ax) + xg(ax))2

g(ax)
dx.

As a consequence, (7) is equivalent with∫
g(ax) ln

(
(2π)n/2e|x|

2/2g(ax)
)

dx−
(∫

g(ax)dx

)
ln

(∫
g(ax)dx

)
≤ 1

2

∫
(a∇g(ax) + xg(ax))2

g(ax)
dx.

Changing variables (y = ax) we get

1

an

∫
g(y) ln

(
(2π)n/2e|y|

2/2a2g(y)
)

dy −
(

1

an

∫
g(y)dy

)
ln

(
1

an

∫
g(y)dy

)
≤ 1

2an

∫
(a∇g(y) + y

a
g(y))2

g(y)
dy.

Multiplying both sides by an and using
∫
g(y)dy = 1 gives

ln((2π)n/2) +

∫
g(y)
|y|2

2a2
dy +

∫
g(x) ln g(x)dx+ n ln a ≤

1

2

∫ (
a2 |∇g(y)|2

g(y)
+ y · ∇g(y) + g(y)

|y|2

2a2

)
dy.

Let us define the Shannon entropy, Fisher information and entropy power of a prob-
ability density g,

S(g) = −
∫
g(y) ln g(y)dy, I(g) =

∫
|∇g(y)|2

g(y)
dy N (g) =

1

2πe
exp

(
2

n
S(g)

)
.

Integrating by parts we get that∫
y · ∇g(y)dy =

∫
∇(

1

2
|y|2) · ∇g(y)dy = −

∫
∆(

1

2
|y|2)g(y) = −n.

Thus, we can further rewrite the above inequality in the form of

ln((2π)n/2)− S(g) + n ln a ≤ 1

2
a2I(g)− n.

Equivalently,

n

2
ln(2π)− S(g) ≤ inf

a

(
1

2
a2I(g)− n− n ln a

)
= −n

2
− n

2
ln

(
n

I(g)

)
.

After multiplying by 2/n and taking the exponent one gets

2π exp

(
− 2

n
S(g)

)
≤ e−1I(g)

n
.

This is

(9) N (g)I(g) ≥ n.

Thus, we have written the log-Sobolev inequality in terms of information theoretic quantities.
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7.3. Heat semigroup. Up to now we did not yet prove the Gross log-Sobolev inequality.
Before we do this we need to introduce the notion of heat semigroup of operators (Pt)t≥0,

(Ptf)(x) =

∫
Rn
f
(
x+ y

√
t
)

dγn(y).

We leave the following easy fact as an exercise for the reader.

Fact 10. The family (Pt)t≥0 is a Markov semigroup of operators, namely

• Pt(1) = 1, t ≥ 0,
• f ≥ 0 a.s. =⇒ Pt(f) ≥ 0, a.s.,
• Pt+s = Pt ◦ Ps, P0 = Id.

Moreover, Pt(f) solves the heat equation ∂u
∂t

= 1
2
∆u with an initial condition u0 = f . In

other words, we have ∂
∂t
Pt(f) = 1

2
∆(Pt(f)) = 1

2
Pt(∆f).

We prove the following lemma.

Lemma 11. Let (Pt)t≥0 be the heat semigroup. Then

Pt(f ln f)− Pt(f) ln(Pt(f)) =
1

2

∫ t

0

Ps
(
|∇Pt−s(f)|2

Pt−s(f)

)
ds.

Proof. We have

Pt(f ln f)− Pt(f) ln(Pt(f)) =

∫ t

0

∂

∂s
[Ps (Pt−s(f) ln(Pt−s(f)))] ds

=

∫ t

0

( ∂

∂s1

[Ps1 (Pt−s2(f) ln(Pt−s2(f)))]
∣∣∣
s1=s2=s

)
ds

+
∂

∂s2

[Ps1 (Pt−s2(f) ln(Pt−s2(f)))]
∣∣∣
s1=s2=s

)
ds

=
1

2

∫ t

0

Ps [∆ (Pt−s(f) ln(Pt−s(f)))] ds+

∫ t

0

Ps
[
∂

∂s
(Pt−s(f) ln(Pt−s(f)))

]
ds.

Note that

∆(g ln g) =
∑
i

(g ln g)xixi =
∑
i

(gxi(1 + ln g))xi = (∆g)(1 + ln g) +
∑
i

g2
xi

g

= (∆g)(1 + ln g) +
|∇g|2

g
.

Applying this with g = Pt−s(f) we get

Pt(f ln f)− Pt(f) ln(Pt(f)) =
1

2

∫ t

0

Ps
[
∆(Pt−s(f))(1 + ln(Pt−s(f))) +

|∇Pt−s(f)|2

Pt−s(f)

]
ds

− 1

2

∫ t

0

Ps [(1 + ln(Pt−s(f)))∆(Pt−s(f))] ds

=
1

2

∫ t

0

Ps
(
|∇Pt−s(f)|2

Pt−s(f)

)
ds.

�
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7.4. First proof of LSI. Let us first prove that |Ps(∇f)| ≤ Ps(|∇f |), where we adopt the
notation Ps(∇f) = (Ps(fx1), . . . ,Ps(fxn)). Indeed, for any vector a ∈ Rn with |a| = 1 we
have 〈a,∇f〉 ≤ |∇f |. Thus, 〈a,Ps(∇f)〉 = Ps(〈a,∇f〉) ≤ Ps|∇f |. Now it suffices to use the
fact that sup|a|=1 〈a,Ps(∇f)〉 = |Ps(∇f)|.

Note that from the Cauchy-Schwarz inequality we get (Ps(fg))2 ≤ Ps(f 2)Ps(g2). Thus,

|∇Pt−s(f)|2 = |Pt−s(∇f)|2 ≤ Pt−s(|∇f |)2 ≤ Pt−s(f) · Pt−s
(
|∇f |2

f

)
.

We arrive at

Pt(f ln f)− Pt(f) ln(Pt(f)) =
1

2

∫ t

0

Ps
(
|∇Pt−s(f)|2

Pt−s(f)

)
ds

≤ 1

2

∫ t

0

PsPt−s
(
|∇f |2

f

)
ds =

t

2
Pt
(
|∇f |2

f

)
.

This is a poinwise inequality valid for every x ∈ Rn and t ≥ 0. Taking t = 1 and x = 0 one
gets ∫

Rn
f ln fdγn −

(∫
Rn
fdγn

)
ln

(∫
Rn
fdγn

)
≤ 1

2

∫
Rn

|∇f |2

f
dγn,

since P1(g)(0) =
∫
Rn gdγn. Assuming

∫
Rn fdγn = 1, we get (8).

7.5. Reverse LSI. Observe that

[Pt(fxi)]2 = [Ps(Pt−s(fxi))]2 ≤ [Ps(Pt−s(f))] ·
[
Ps
(

[Pt−s(fxi)]2

Pt−s(f)
.

)]
Summing over i we get

|Pt(∇f)|2 ≤ [Ps(Pt−s(f))] ·
[
Ps
(

[Pt−s(∇f)]2

Pt−s(f)

)]
.

Thus, using Lemma 11, we get

Pt(f ln f)− Pt(f) ln(Pt(f)) =
1

2

∫ t

0

Ps
(
|∇Pt−s(f)|2

Pt−s(f)

)
ds

≥ 1

2

∫ t

0

|Pt(∇f)|2

Pt(f)
ds =

t

2

|Pt(∇f)|2

Pt(f)
.

Again taking x = 0, t = 1 and assuming
∫
Rn fdγn = 1, one gets

(10)

∫
Rn
f ln fdγn ≥

1

2

∫
Rn |∇f |

2dγn∫
Rn fdγn

.

This is called the reverse log-Sobolev inequality.
Using the ideas from the Section 7.2 one can show that the reverse LSI is equivalent with

the inequality

N (g) ≤ TrK(g)

n
, g ≥ 0,

∫
Rn
g(x)dx = 1,

which is further equivalent with

(11) N (g) ≤ |K(g)|1/n, (K(g))i,j =

∫
xixjg(x)dx,
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where | · | denotes the determinant. The matrix K(g) is called the covariance matrix of a
random variable X with density g.

Let us give a direct proof of (11). We need the following lemma

Lemma 12. Let K be a symmetric positive definite matrix. Then

ϕK(x) =
1

(2π)n/2|K|1/2
exp(−1

2
xTK−1x)

is the Gaussian density with covariance matrix K. Moreover,

S(ϕK) =
1

2
ln ((2πe)n|K|) , N (ϕK) = |K|1/n.

Proof. The first part is standard. Let us only compute the entropy,

S(ϕK) = −
∫
ϕK lnϕK = ln((2π)n/2|K|1/2) +

1

2

∫
ϕKx

TK−1x.

Let (X1, . . . , Xn) be the random vector with density ϕK . We have∫
ϕKx

TK−1x = EXTK−1X =
∑
i,j

EXi(K
−1)ijXj =

∑
i,j

Kij(K
−1)ij

=
∑
i,j

Kji(K
−1)ij =

∑
j

(KK−1)jj = n.

We get

S(ϕK) = ln((2π)n/2|K|1/2) +
n

2
=
n

2
ln
(
2πe|K|1/n

)
= .

Thus,

N (ϕK) =
1

2πe
exp

(
2

n
S(ϕK)

)
= |K|1/n.

�

To prove the inequality 11 it suffices to establish the following fact.

Fact 11. Let g be a probability density and let ϕg be the Gaussian density with K(g) =
K(ϕg). Then S(g) ≤ S(ϕg).

Proof. Let us define the Kulback-Liebre dirergence (or, in other word, the relative entropy)
for the probability densities f, g,

D(f‖g) =

∫
f ln

(
f

g

)
.

We first prove that D(f‖g) ≥ 0. Recall the famous inequality ln(1 + x) ≤ x, x > −1. This
gives

−D(f‖g) = −
∫
f ln

(
f

g

)
=

∫
f ln

(
g

f

)
≤
∫
f

(
g

f
− 1

)
=

∫
f −

∫
g = 0.

The inequality D(g‖ϕg) ≥ 0 gives

S(g) = −
∫
g ln g ≤ −

∫
g lnϕg = −

∫
ϕg lnϕg = S(ϕg).

�
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7.6. de Bruijn’s identity.

Proposition 10. Let X be a random vector in Rn and let G be a standard Gaussian in Rn.
Then

d

dt
S(X +

√
tG) =

1

2
I(X +

√
tZ).

In other words the evolution Pt(f), where f is the density of X, satisfies

d

dt
S(Pt(f)) =

1

2
I(Pt(f)).

Proof. Note that Pt(f) satisfies d
dt
Pt(f) = ∆Pt(f). Thus,

d

dt
S(Pt(f)) = − d

dt

∫
Pt(f) lnPt(f) = −

∫
dPt(f)

dt
(1 + lnPt(f))

= − d

dt

∫
Pt(f)− 1

2

∫
∆Pt(f) lnPt(f)

= − d

dt
(1) +

1

2

∫
|∇Pt(f)|
Pt(f)

2

=
1

2
I(Pt(f)).

�

7.7. Entropy power inequality. We are now ready to state and prove three equivalent
formulation of the famous entropy power inequality.

Proposition 11. Let X, Y be independent random vectors on Rn. The following conditions
are equivalent

(a) We have N (X+Y ) ≥ N(GX+GY ), where GX , GY are independent Gaussian random
vectors with proportional covariance matrices and S(X) = S(GX), S(Y ) =
S(GY ),

(b) N (X + Y ) ≥ N (X) +N (Y ),

Proof. We first show that (a) implies (b). Note that K(GX +GY ) = K(GX) +K(GY ). Since
the matrices K(GX) and K(GY ) are proportional (say, K(GY ) = aK(GX)), we have

|K(GX +GY )|1/n = |K(GX) +K(GY )|1/n = |(1 + a)K(GX)|1/n = (1 + a)|K(GX)|1/n

= |K(GX)|1/n + |aK(GX)|1/n = |K(GX)|1/n + |K(GY )|1/n.
Thus, from Lemma 12 we get

N (X + Y ) ≥ N (GX +GY ) = |K(GX +GY )|1/n = |K(GX)|1/n + |K(GY )|1/n

= N (GX) +N (GY ) = N (X) +N (Y ).

Similarly, (b) implies (a) since

N (X + Y ) ≥ N (X) +N (Y ) = N (GX +GY ).

�

To prove the entropy power inequality it suffices to establish the following proposition.

Proposition 12. For any pair of independent random vectors X, Y on Rn and any λ ∈ [0, 1]
we have

S(
√
λX +

√
1− λY ) ≥ λS(X) + (1− λ)S(Y ).
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We first show that Proposition 12 implies inequality (b) from the Proposition 11. Note
that

S(X + Y ) = S
(√

λ · X√
λ

+
√

1− λ · Y√
1− λ

)
≥ λS

(
X√
λ

)
+ (1− λ)S

(
Y√

1− λ

)
= λS(X) + (1− λ)S(Y )− n

2
[λ lnλ+ (1− λ) ln(1− λ)] .

We have used the fact that
S(aX) = S(X) + n ln a.

The optimal choice of λ is λ = N (X)/(N (X) +N (Y )). This gives

S(X + Y ) ≥ 1

N (X) +N (Y )

[
N (X)S(X) +N (Y )S(Y )

− n

2
N (X) ln

(
exp( 2

n
S(X))

exp( 2
n
S(X)) + exp( 2

n
S(Y ))

)
− n

2
N (Y ) ln

(
exp( 2

n
S(Y ))

exp( 2
n
S(X)) + exp( 2

n
S(Y ))

)]

=
n

2
· 1

N (X) +N (Y )
(N (X) +N (Y )) ln

(
exp

(
2

n
S(X)

)
+ exp

(
2

n
S(Y )

))
.

Equivalently,
2

n
S(X + Y ) ≥ ln

(
exp

(
2

n
S(X)

)
+ exp

(
2

n
S(Y )

))
.

Taking exponent of both sides gives N (X + Y ) ≥ N (X) +N (Y ).
To prove Proposition 12 we need a corresponding fact for Fisher information, called the

Blachman-Stam inequality.

Proposition 13. Let X, Y be independent random vectors and let λ ∈ [0, 1]. Then

(12) I(X + Y ) ≤ λ2I(X) + (1− λ)2I(Y ).

Moreover,

(13)
1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
.

We postpone its proof till the next section and show how it implies Proposition 12.

Proof of Proposition 12. Let GX and GY be two independent standard Gaussian random
vectors in Rn. Let us define

Xt =
√
tX +

√
1− tGX , Yt =

√
tY +

√
1− tGY .

Moreover, let us take

Vt =
√
λXt +

√
1− λYt.

Note that

Vt =
√
t(
√
λX +

√
1− λY ) +

√
1− t(

√
λGX +

√
1− λGY ) =

√
tV1 +

√
1− tV0,

Take
ψ(t) = S(Vt)− λS(Xt)− (1− λ)S(Yt).

We have X1 = X, Y1 = Y and V1 =
√
λX +

√
1− λY . Thus, our goal is to prove that

ψ(1) ≥ 0. Since X0 = GX , Y0 = GY and V0 =
√
λGX +

√
1− λGY ∼ GX , we get ψ(0) = 0.

As a consequence, we are to prove that ψ(1) ≥ ψ(0).
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To this end we show that ψ′(t) ≥ 0 on [0, 1]. Due to the scaling S(aX) = S(X) +n ln(|a|),
we have

ψ(t) = S

(
V1 +

√
1− t
t

V0

)
− λS

(
X1 +

√
1− t
t

X0

)
− (1− λ)S

(
Y1 +

√
1− t
t

Y0

)
.

From de Bruijn’s identity we get

−2t2ψ′(t) = I

(
V1 +

√
1− t
t

V0

)
− λI

(
X1 +

√
1− t
t

X0

)
− (1− λ)I

(
Y1 +

√
1− t
t

Y0

)
.

Using I(aX) = a−2I(X) we get

2tψ′(t) = −I(
√
tV1 +

√
1− tV0) + λI(

√
tX1 +

√
1− tX0) + (1− λ)I(

√
tY1 +

√
1− tY0)

= −I(Vt) + λI(Xt) + (1− λ)I(Yt)

= −I(
√
λXt +

√
1− λYt) + λI(Xt) + (1− λ)I(Yt).

Let X̃t =
√
λXt and Ỹt =

√
1− λYt. Then

2tψ′(t) = −I(X̃t + Ỹt) + λ2I(X̃t) + (1− λ)2I(Ỹt) ≥ 0

due to Proposition 13. �

7.8. Blachman-Stam inequality. For a random vector X with density f let us introduce
the notion of score function

ρX(x) =
(∇f)(x)

f(x)
∈ Rn.

Note that the Fisher information satisfies

I(X) =

∫
|∇f |2

f
= EX |ρX |2,

where we set EXg to be the expectation of g with respect to X having density f . Note that
for any a ∈ R and b ∈ Rn we have

(14) S(aX + b) = S(X) + n ln(|a|), I(aX + b) = a−2I(X), N (aX + b) = a2N (X).

Let us prove one simple lemma.

Lemma 13. Let X, Y be independent random vectors in Rn. Consider Z = X + Y and let
ρX , ρY , ρZ be the corresponding score functions. Then

ρZ(z) = E[ρX(X)|Z = z] = E[ρY (Y )|Z = z].

Proof. Let fX , fY , fZ be the densities of X, Y, Z, respectively. Recall that1

E[h(X, Y )|Z = z] =

∫
h(x, z − x)

fX(x)fY (z − x)

fZ(z)
dx.

1Those who are not familiar with conditional expectation can treat this equality as a definition of the right
hand side.
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We have

(∇fZ)(z) = ∇z

(∫
fX(x)fY (z − x)dx

)
=

∫
fX(x)∇zfY (z − x)dx

= −
∫
fX(x)∇xfY (z − x)dx =

∫
∇xfX(x)fY (z − x)dx.

Thus,

(∇fZ)(z)

fZ(z)
=

∫
∇xfX(x)

fX(x)
· fX(x)fY (z − x)

fZ(z)
dx = E[ρX(X)|Z = z].

The second equality follows by symmetry. �

We are ready to prove the Blachman-Stam inequality.

Proof of Proposition 13. By Lemma 13 we have

ρZ(z) = E [λρX(X) + (1− λ)ρY (Y )|Z = z] , λ ∈ [0, 1].

Thus,

I(X + Y ) = EZ [ρZ(Z)]2 = EZ
[
E [λρX(X) + (1− λ)ρY (Y )|Z = z]2

]
≤ EZ

[
E
[
(λρX(X) + (1− λ)ρY (Y ))2 |Z = z

]]
= E (λρX(X) + (1− λ)ρY (Y ))2

= λ2I(X) + (1− λ)2I(Y ) + 2λ(1− λ)E[ρX(X) · ρY (Y )].

Here we have used the inequality

E[h(X, Y )|Z = z]2 ≤ E[h(X, Y )2|Z = z],

which follows from the Cauchy-Schwarz inequality and the very easy equality

EZ [E[h(X, Y )|Z = z]] = Eh(X, Y ).

Due to independence we have

E[ρX(X)ρY (Y )] = E[ρX(X)] · E[ρY (Y )] =

∫
∇fX ·

∫
∇fY = 0 · 0 = 0.

We thus get

I(X + Y ) ≤ λ2I(X) + (1− λ)2I(Y ).

Optimizing with respect to λ ∈ [0, 1] one gets (by taking λ = I(Y )
I(X)+I(Y )

)

I(X + Y ) ≤
(

I(Y )

I(X) + I(Y )

)2

I(X) +

(
I(X)

I(X) + I(Y )

)2

I(Y ) =
I(X)I(Y )

I(X) + I(Y )
,

which is exactly

1

I(X + Y )
≥ 1

I(X)
+

1

I(Y )
.

�
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8. Entropic Central Limit Theorem

The simplest version of the Central Limit Theorem (CLT) states that for any sequence of
i.i.d. random variables X1, . . . , Xn with mean zero and variance 1 the sequence

Yn =
X1 + . . .+Xn√

n

converges in distribution to the standard Gaussian random variable G. Since the random
variable Yn has variance 1, one has S(Yn) ≤ S(G), due to Fact 11. From the EPI we deduce

e2S(X1+X2) ≥ e2S(X1) + e2S(X2) = 2e2S(X1).

Taking the logarithm, we get

S(X1 +X2) ≥ ln(
√

2) + S(X1).

This gives

S(Y1) = S(X1) ≤ S
(
X1 +X2√

2

)
= S(Y2).

It is therefore natural to conjecture, that the sequence S(Yn) is non-decreasing. This is indeed
true, due to the celebrated theorem of S. Artstein, K. Ball, F. Barthe and A. Naor.

Theorem 13. Let X1, . . . , Xn be a sequence of i.i.d. random variables with mean zero and
variance 1. Take Yn = (X1 + . . .+Xn)/

√
n. Then the sequence S(Yn) is non-decreasing.

Before we prove this theorem, we need to develop several useful tools.

8.1. ANOVA decomposition. Here we prove the following lemma.

Lemma 14. Let µ = µ1⊗ . . .⊗µn be a product measure on Rn and let L2 = L2(Rn, µ). For
S ⊂ [n] let us define linear subspaces

HS =

{
φ ∈ L2

∣∣∣ ∫ φ(x)dµj(xj) = φ(x)1{j /∈S} ∀j ∈ [n]

}
.

Then L2 is the orthogonal direct sum of HS. In particular, every φ ∈ L2 can be written in
the form φ =

∑
S⊂[n] φS, where φS ∈ HS.

Proof. For S ⊂ [n] let us define linear operators ES by

ESφ =

∫
φ(x1, . . . , xn)

∏
j∈S

dµj(xj).

Moreover, let us set Ej = E{j}. Clearly, E1, . . . ,En are commuting projection operators in
L2. We have

φ =
n∏
j=1

[Ej + (I − Ej)]φ =
∑
S⊂[n]

∏
j /∈S

Ej
∏
j∈S

(I − Ej)φ =
∑
S⊂[n]

φS,

where
ψS = ESc

∏
j∈S

(I − Ej)φ = ĒSφ, ĒS := ESc
∏
j∈S

(I − Ej).

We show that φS ∈ HS. Indeed, let j0 ∈ S. Then

EjφS = ESc
∏

j∈S,j 6=j0

(I − Ej)Ej(I − Ej)φ = 0
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since Ej(I − Ej) = Ej − E2
j = Ej − Ej = 0. If j0 /∈ S, then Ej0ESc = ESc and therefore

Ej0φS = φS.
Finally, we prove that HS are orthogonal. Suppose S, T ⊂ [n] are such that S 6= T and

let f ∈ HS, g ∈ HT . There is j ∈ [n] such that j ∈ S∆T , for example j ∈ S, j /∈ T . Thus,
Ejf = 0 and Ejg = g. We arrive at

Efg = EEj(fg) = EEj(fEjg) = E(EjgEjf) = 0.

�

8.2. Variance drop lemma. We prove the following lemma.

Lemma 15. Let φ : Rn → R and let µ = µ1⊗ . . .⊗µn be a product measure on Rn. Suppose
that for every j ∈ [n] the function φj(x) = φ(x1, . . . , xj−1, xj+1, . . . , xn) has mean 0. Then

E

(
n∑
j=1

φj

)2

≤ (n− 1)
∑
j∈[n]

Eφ2
j .

Proof. Let ĒS be operators defined in the previous section. Then

φj =
∑
S⊂[n]

ĒSφj, j = 1, . . . , n.

Moreover, ĒSφj ∈ HS. If j ∈ S then we have ĒSφj = ĒSEjφj = EjĒSφj = 0, where the first
equality follows from the fact that φj does not depend on j and the second from the fact
that ĒS ∈ HS. We get

E

∑
j∈[n]

φj

2

= E

∑
S⊂[n]

∑
j∈[n]

ĒSφj

2

= E

∑
S⊂[n]

∑
j /∈S

ĒSφj

2

=
∑

S,T⊂[n]

∑
j,k/∈S

E
(
ĒS[φj]ĒT [φk]

)

=
∑
S⊂[n]

∑
j,k/∈S

E
(
ĒS[φj]ĒS[φk]

)
=
∑
S⊂[n]

E

∑
j /∈S

ĒSφj

2

.

In the last sum we can ignore S = ∅, since Ē∅φj = Eφj = 0, due to our assumption. Thus,

E

∑
j∈[n]

φj

2

≤
∑

S⊂[n],S 6=∅

E

∑
j /∈S

ĒSφj

2

.

For S 6= ∅ the set {j : j /∈ S} has cardinality at most n − 1. Thus, by Cauchy-Schwarz
inequality we get ∑

j /∈S

ĒSφj

2

≤ (n− 1)
∑
j /∈S

(ĒSφj)2.
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We arrive at

E

∑
j∈[n]

φj

2

≤ (n− 1)
∑

S⊂[n],S 6=∅

E
∑
j /∈S

(ĒSφj)2 = (n− 1)
∑
S⊂[n]

E
∑
j∈[n]

(ĒSφj)2

= (n− 1)
∑
j∈[n]

E

∑
S⊂[n]

ĒSφj

2

= (n− 1)
∑
j∈[n]

Eφ2
j .

�

8.3. Monotonicity of Fisher information. Using the techniques developed in the last
two chapters, we prove the monotonicity of Fisher information in CLT, i.e. the inequality

I(Yn) ≤ I(Yn−1).

This will allow us to deduce (in the next section) the corresponding result for the Shannon
entropy.

Let us define

Vn =
∑
i∈[n]

Xi, V (j) =
∑
i 6=j

Xi, Y (j) =
1√
n− 1

∑
i 6=j

Xi.

Note that ρaX(z) = 1
a
ρX(z/a). Thus, ρaX(aX) = 1

a
ρX(X). Using this principle twice we get,

for any j = 1, . . . , n,

ρYn(Yn) =
√
nρVn(Vn) =

√
nE[ρV (j)(V (j))|Vn] =

√
n

n− 1
E[ρY (j)(Y (j))|Vn]

=

√
n

n− 1
E[ρY (j)(Y (j))|Yn].

Here the second equality follows from Lemma 13 applied to X = V (j), Y = Xj. From the
linearity of conditional expectation we get

ρYn(Yn) =
1√

n(n− 1)

n∑
j=1

E[ρY (j)(Y (j))|Yn] =
1√

n(n− 1)
E

[
n∑
j=1

ρY (j)(Y (j))
∣∣∣Yn] .

Let ρj = ρY (j)(Y (j)). From the Cauchy-Schwarz inequality for the conditional expectation we
get

I(Yn) = E[ρYn(Yn)2] =
1

n(n− 1)
E

(
E

[
n∑
j=1

ρj

∣∣∣Yn])2

≤ 1

n(n− 1)
EE

( n∑
j=1

ρj

)2 ∣∣∣Yn


=
1

n(n− 1)
E

(
n∑
j=1

ρj

)2

.

From the variance drop lemma we get

E

(
n∑
j=1

ρj

)2

≤ (n− 1)
n∑
j=1

E[ρ2
j ] = n(n− 1)I(Yn−1).

Thus, we get I(Yn) ≤ I(Yn−1).
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8.4. Proof of entropic CLT. Let G be the standard Gaussian random variable. Define

Yn(t) =
√
tYn +

√
1− tG, Yn−1(t) =

√
tYn−1 +

√
1− tG, t ∈ [0, 1].

We prove that S(Yn(t)) ≥ S(Yn−1(t)) for t ∈ [0, 1] and get the desired inequality by taking
t = 1. For t = 0 we clearly have equality. Thus, it suffice to prove that

d

dt
S(Yn(t)) ≥ d

dt
S(Yn−1(t)).

Using de Bruijn’s identity we get

d

dt
S(Yn(t)) =

d

dt

(
ln(
√
t) + S

(
Yn +

√
1− t
t

G

))
=

1

2t
− 1

2t2
I

(
Yn +

√
1− t
t

G

)
=

1

2t
− 1

2t
I
(√

tYn +
√

1− tG
)

Let G1, . . . Gn be i.i.d. standard Gaussian random variables and take Xi(t) =
√
tXi +√

1− tGi. Then

√
tYn +

√
1− tG ∼ (

√
tX1 +

√
1− tG1) + . . .+ (

√
tXn +

√
1− tGn)√

n
=
X1(t) + . . .+Xn(t)√

n
.

Thus, from the last section we deduce

I
(√

tYn +
√

1− tG
)
≤ I

(√
tYn−1 +

√
1− tG

)
and
d

dt
S(Yn(t)) =

1

2t
− 1

2t
I
(√

tYn +
√

1− tG
)
≥ 1

2t
− 1

2t
I
(√

tYn−1 +
√

1− tG
)

=
d

dt
S(Yn−1(t)).
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