Exercise 1. Suppose X, Y are independent and identically distributed discrete random variables. Show that $\mathbb{P}(X=Y) \geq e^{-H(X)}$.

Exercise 2. Show that for any discrete random variable X (having values in a finite space M) and for any function $f: M \rightarrow M^{\prime}$ we have $H(f(X)) \leq H(X)$.

Exercise 3. Show that for any discrete random variables $X_{1}, \ldots, X_{n}: \Omega \rightarrow \mathbb{R}$ we have $H\left(X_{1}+\ldots+X_{n}\right) \leq H\left(X_{1}\right)+\ldots+H\left(X_{n}\right)$.

Exercise 4. Take $q>1$. For a discrete random variable X let us define the q-entropy,

$$
H_{q}(X)=\frac{1-\sum_{i=1}^{n} p_{i}^{q}}{q-1}
$$

(a) Observe that $\lim _{q \rightarrow 1} H_{q}(X)=H(X)$.
(b) Prove that $H_{q}(X, Y) \leq H_{q}(X)+H_{q}(Y)$ for any random variables X, Y.
(c) Show that $H_{q}(X, Y, Z)+H_{q}(Z) \leq H_{q}(X, Z)+H_{q}(Z, Y)$.

Exercise 5. For a discrete random variables X_{1}, \ldots, X_{n} and a subset $S \subseteq[n]$ take $X_{S}=\left\{X_{i}: i \in S\right\}$. Define

$$
h_{k}^{(n)}=\frac{1}{\binom{n}{k}} \sum_{S:|S|=k} \frac{H\left(X_{S}\right)}{k} .
$$

Show that $h_{1}^{(n)} \geq h_{2}^{(n)} \geq \ldots \geq h_{n}^{(n)}$.

Exercise 6. Let K_{3} be a triangle (complete graph with 3 vertices). Show that for any $L \geq 3$ there is a graph G with at most L edges such that $\operatorname{Hom}\left(K_{3}, G\right) \geq c L^{3 / 2}$, where c is a universal constant.

Exercise 7. Let $\left(p_{i}\right)_{i=1}^{n},\left(q_{i}\right)_{i=1}^{n}$ be two sequences of nonnegative real numbers such that $\sum_{i=1}^{n} p_{i}=\sum_{i=1}^{n} q_{i}=1$. Prove the inequality

$$
\sum_{i=1}^{n} p_{i} \ln \left(\frac{p_{i}}{q_{i}}\right) \geq \frac{1}{2}\left(\sum_{i=1}^{n}\left|p_{i}-q_{i}\right|\right)^{2}
$$

Exercise 8. Let (X, μ) be a measure space and let $1<p \leq 2$. Show that for $f, g \in L_{p}(X, \mu)$ we have

$$
\|f+g\|_{p}^{p}+\|f-g\|_{p}^{p} \geq\left(\|f\|_{p}+\|g\|_{p}\right)^{p}+\left|\|f\|_{p}-\|g\|_{p}\right|^{p} .
$$

Exercise 9.

(a) Let $A \subseteq\{-1,1\}^{n}$ and let $v \in A$. Take $d_{A}(v)=|\{u \in A: u \sim v\}|$. Then

$$
|A| \geq 2^{\bar{d}}, \quad \text { where } \quad \bar{d}=\frac{1}{|A|} \sum_{v \in A} d_{A}(v)
$$

(b) Let $A \subseteq\{-1,1\}^{n},|A|=m$. Prove that $\left|E\left(A, A^{c}\right)\right| \geq m\left(n-\log _{2} m\right)$.
(c) Deduce the inequality

$$
E\left(A, A^{c}\right) \geq 2^{n} \mu_{n}(A) \log _{2}\left(\frac{1}{\mu_{n}(A)}\right)
$$

where μ_{n} is the uniform measure on the hypercube.

Exercise 10. We say that $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is monotone if for any $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right)$ with $x_{i} \leq y_{i}, i=1, \ldots, n$ we have $f(x) \leq f(y)$. Consider the Walsh-Fourier expansion of f, namely $f=\sum_{S} a_{S} w_{S}$.
(a) Prove that for any Boolean function $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ we have $I_{i}(f) \geq$ $\left|a_{\{i\}}\right|, i=1, \ldots, n$.
(b) Show that $I(f) \leq \operatorname{deg}(f)$, where $\operatorname{deg}(f)$ is the degree of the multivariate polynomial $\sum_{S} a_{S} w_{S}$.
(c) Prove that for monotone Boolean f we have $I_{i}(f)=a_{\{i\}}$.

Exercise 11. Let n be odd. Take $f:\{-1,1\}^{n} \rightarrow\{-1,1\}$ given by $f(x)=$ $\operatorname{sgn}\left(x_{1}+\ldots+x_{n}\right)$.
(a) Compute the influences of f.
(b) Show that for any monotone function $g:\{-1,1\}^{n} \rightarrow\{-1,1\}$ we have $I(g) \leq I(f)$.

Exercise 12. Let $f:\{-1,1\}^{n} \rightarrow\{-1,0,1\}$. Define $\operatorname{supp}(f)=\{x: f(x) \neq 0\}$.
(a) Show that for non zero f and any $\delta \in[0,1]$ we have $\delta^{\operatorname{deg}(f)} \leq \mu_{n}(\operatorname{supp}(f))^{\frac{1-\delta}{1+\delta}}$.
(b) Deduce that for non zero f we have $\mu_{n}(\operatorname{supp}(f)) \geq e^{-2 \operatorname{deg}(f)}$.

Exercise 13. Suppose $f:\{-1,1\}^{n} \rightarrow\{0,1\}$ has the Walsh-Fourier expansion $f=\sum_{S} a_{S} w_{S}$. Show that $\sum_{i=1}^{n} a_{\{i\}}^{2} \leq 2(\mathbb{E} f)^{2} \ln (1 / \mathbb{E} f)$.

Exercise 14. Let n be odd. Show that in the 3 -candidate Condorcet elections using $f(x)=\operatorname{sgn}\left(x_{1}+\ldots+x_{n}\right)$, the probability of a Condorcet winner tends to $\frac{3}{2 \pi} \arccos (-1 / 3) \approx 91.2 \%$, as $n \rightarrow \infty$.

Exercise 15. Take $n=m k$ and divide n variables into m groups (tribes), each of cardinality k. Define
$\left.\operatorname{Tribes}_{k, m}\left(x_{1}, \ldots, x_{n}\right)=\operatorname{OR}\left(\operatorname{AND}\left(x_{1}, \ldots, x_{k}\right), \ldots, \operatorname{AND}\left(x_{(m-1) k+1}, \ldots, x_{m k}\right)\right)\right)$.
Here AND : $\{-1,1\}^{k} \rightarrow\{-1,1\}, \operatorname{AND}\left(x_{1}, \ldots, x_{k}\right)=\min \left\{x_{1}, \ldots, x_{k}\right\}$ and OR : $\{-1,1\}^{m} \rightarrow\{-1,1\}, \operatorname{OR}\left(y_{1}, \ldots, y_{m}\right)=\max \left\{y_{1}, \ldots, y_{m}\right\}$.
(a) Compute $I_{i}\left(\operatorname{Tribes}_{k, m}\right)$ and $I\left(\operatorname{Tribes}_{k, m}\right)$.
(b) Compute $\mathbb{E}\left[\operatorname{Tribes}_{k, m}\right]$.
(c) Prove that for any $p \in[0,1]$ there is a sequence of functions $\left(f_{n}\right)_{n \geq 1}, f_{n}$: $\{-1,1\}^{n} \rightarrow\{-1,1\}$ such that $\lim _{n \rightarrow \infty} \mu_{n}\left(\left\{x: f_{n}(x)=1\right\}\right)=p$ and

$$
\max _{i=1, \ldots, n} I_{i}\left(f_{n}\right) \geq c \operatorname{Var}_{\mu_{n}}\left(f_{n}\right) \frac{\ln n}{n}
$$

Exercise 16. Let $f: \mathbb{R}^{n} \rightarrow[0, \infty)$ be compactly supported (to avoid any nonessential problems with integrability) with $\int_{\mathbb{R}^{n}} f=1$. Define $S(f)=-\int_{\mathbb{R}^{n}} f \ln f$ and $N(f)=\exp \left(\frac{2}{n} S(f)\right)$. Let $\left(P_{t}\right)_{g \geq 0}$ be the heat semigroup. Prove that the function $t \mapsto N\left(P_{t}(f)\right)$ is concave.

Exercise 17. Assume that (X, Y) is a symmetric log-concave random vector in \mathbb{R}^{2}, such that $X \sim Y$. Prove that $S(X+Y) \leq S(2 X)$.

Exercise 18. Let $f: \mathbb{R} \rightarrow[0, \infty)$ be such that $\int_{\mathbb{R}} f=1$ and $f=e^{-V}$ for some convex function V. Let $\|f\|_{\infty}=\sup (f)$. Prove that

$$
e^{-1}\|f\|_{\infty} \leq e^{-S(f)} \leq\|f\|_{\infty}
$$

Exercise 19. Let $A \subseteq \mathbb{R}^{n}$ and let $f: A \rightarrow[0, \infty)$ satisfy $\int_{A} f=1$. Prove that $S(f) \leq \ln |A|$, where $|A|$ is the Lebesgue measure of A.

Exercise 20. Let (Ω, μ) be a probability space. Show that for any $f, g: \Omega \rightarrow[0, \infty)$ and any $\lambda \in[0,1]$ we have

$$
\operatorname{Ent}_{\mu}(\lambda f+(1-\lambda) g) \leq \lambda \operatorname{Ent}_{\mu}(f)+(1-\lambda) \operatorname{Ent}_{\mu}(g)
$$

where $\operatorname{Ent}_{\mu}(f)=\int f \ln f \mathrm{~d} \mu-\left(\int f \mathrm{~d} \mu\right) \ln \left(\int f \mathrm{~d} \mu\right)$.

Exercise 21. We say that $f:\{-1,1\}^{n} \rightarrow \mathbb{R}$ is monotone if for any $x=\left(x_{1}, \ldots, x_{n}\right)$, $y=\left(y_{1}, \ldots, y_{n}\right)$ with $x_{i} \leq y_{i}, i=1, \ldots, n$ we have $f(x) \leq f(y)$. Let P_{t} be the semigroup generated by the continuous time random walk on $\{-1,1\}^{n}$ and let μ_{n} be the uniform measure on $\{-1,1\}^{n}$.
(a) Prove that $t \mapsto \int P_{t}(f) P_{t}(g) \mathrm{d} \mu_{n}$ is non-increasing.
(b) Deduce that $\int f g \mathrm{~d} \mu_{n} \geq \int f \mathrm{~d} \mu_{n} \int g \mathrm{~d} \mu_{n}$.

Exercise 22. Let $\left(P_{t}\right)_{t \geq 0}$ be the semigroup generated by some finite Markov chain with a spectral gap α and stationary measure π. Prove that

$$
\operatorname{Ent}_{\pi}\left(P_{t} f\right) \leq e^{-2 \alpha t} \operatorname{Ent}_{\pi}(f)
$$

Exercise 23. Consider the symmetric random walk on the cyclic group $\{0,1, \ldots, n-$ $1\}$, i.e., $p(n, n+1)=p(n, n-1)=1 / 2$.
(a) Find the spectral gap of this chain.
(b) Show that the above chain mixes in time $O\left(n^{2}\right)$.

Exercise 24. Let $\lambda_{1} \leq \lambda_{2} \leq \ldots \leq \lambda_{n}$ be the eigenvalues of $I-\frac{1}{d} A$, where A is the adjacency matrix of a graph G.
(a) Prove that $\lambda_{2} \leq \frac{n}{n-1}$ with equality for complete graph on n vertices.
(b) Suppose G is not a complete graph. Show that $\lambda_{2} \leq 1$.

