
Exercise 1. Suppose X,Y are independent and identically distributed discrete
random variables. Show that P(X = Y ) ≥ e−H(X).

Exercise 2. Show that for any discrete random variable X (having values in a
�nite space M) and for any function f : M →M ′ we have H(f(X)) ≤ H(X).

Exercise 3. Show that for any discrete random variables X1, . . . , Xn : Ω→ R we
have H(X1 + . . .+Xn) ≤ H(X1) + . . .+H(Xn).

Exercise 4. Take q > 1. For a discrete random variable X let us de�ne the
q-entropy,

Hq(X) =
1−

∑n
i=1 p

q
i

q − 1
.

(a) Observe that limq→1Hq(X) = H(X).
(b) Prove that Hq(X,Y ) ≤ Hq(X) +Hq(Y ) for any random variables X,Y .
(c) Show that Hq(X,Y, Z) +Hq(Z) ≤ Hq(X,Z) +Hq(Z, Y ).

Exercise 5. For a discrete random variables X1, . . . , Xn and a subset S ⊆ [n] take
XS = {Xi : i ∈ S}. De�ne

h
(n)
k =

1(
n
k

) ∑
S:|S|=k

H(XS)

k
.

Show that h
(n)
1 ≥ h(n)

2 ≥ . . . ≥ h(n)
n .

Exercise 6. Let K3 be a triangle (complete graph with 3 vertices). Show that for

any L ≥ 3 there is a graph G with at most L edges such that Hom(K3, G) ≥ cL3/2,
where c is a universal constant.

Exercise 7. Let (pi)
n
i=1, (qi)

n
i=1 be two sequences of nonnegative real numbers such

that
∑n
i=1 pi =

∑n
i=1 qi = 1. Prove the inequality

n∑
i=1

pi ln

(
pi
qi

)
≥ 1

2

(
n∑
i=1

|pi − qi|

)2

.

Exercise 8. Let (X,µ) be a measure space and let 1 < p ≤ 2. Show that for
f, g ∈ Lp(X,µ) we have

‖f + g‖pp + ‖f − g‖pp ≥ (‖f‖p + ‖g‖p)
p + | ‖f‖p − ‖g‖p |

p.

Exercise 9.

(a) Let A ⊆ {−1, 1}n and let v ∈ A. Take dA(v) = |{u ∈ A : u ∼ v}|. Then

|A| ≥ 2d̄, where d̄ =
1

|A|
∑
v∈A

dA(v).

(b) Let A ⊆ {−1, 1}n, |A| = m. Prove that |E(A,Ac)| ≥ m(n− log2m).
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(c) Deduce the inequality

E(A,Ac) ≥ 2nµn(A) log2

(
1

µn(A)

)
,

where µn is the uniform measure on the hypercube.

Exercise 10. We say that f : {−1, 1}n → R is monotone if for any x = (x1, . . . , xn),
y = (y1, . . . , yn) with xi ≤ yi, i = 1, . . . , n we have f(x) ≤ f(y). Consider the
Walsh-Fourier expansion of f , namely f =

∑
S aSwS .

(a) Prove that for any Boolean function f : {−1, 1}n → {−1, 1} we have Ii(f) ≥
|a{i}|, i = 1, . . . , n.

(b) Show that I(f) ≤ deg(f), where deg(f) is the degree of the multivariate
polynomial

∑
S aSwS .

(c) Prove that for monotone Boolean f we have Ii(f) = a{i}.

Exercise 11. Let n be odd. Take f : {−1, 1}n → {−1, 1} given by f(x) =
sgn(x1 + . . .+ xn).

(a) Compute the in�uences of f .
(b) Show that for any monotone function g : {−1, 1}n → {−1, 1} we have

I(g) ≤ I(f).

Exercise 12. Let f : {−1, 1}n → {−1, 0, 1}. De�ne supp(f) = {x : f(x) 6= 0}.
(a) Show that for non zero f and any δ ∈ [0, 1] we have δdeg(f) ≤ µn(supp(f))

1−δ
1+δ .

(b) Deduce that for non zero f we have µn(supp(f)) ≥ e−2 deg(f).

Exercise 13. Suppose f : {−1, 1}n → {0, 1} has the Walsh-Fourier expansion
f =

∑
S aSwS . Show that

∑n
i=1 a

2
{i} ≤ 2(Ef)2 ln(1/Ef).

Exercise 14. Let n be odd. Show that in the 3-candidate Condorcet elections
using f(x) = sgn(x1 + . . . + xn), the probability of a Condorcet winner tends to
3

2π arccos(−1/3) ≈ 91.2%, as n→∞.

Exercise 15. Take n = mk and divide n variables into m groups (tribes), each of
cardinality k. De�ne

Tribesk,m(x1, . . . , xn) = OR
(
AND(x1, ..., xk), ...,AND(x(m−1)k+1, ..., xmk))

)
.

Here AND : {−1, 1}k → {−1, 1}, AND(x1, ..., xk) = min{x1, . . . , xk} and OR :
{−1, 1}m → {−1, 1}, OR(y1, . . . , ym) = max{y1, . . . , ym}.

(a) Compute Ii(Tribesk,m) and I(Tribesk,m).
(b) Compute E[Tribesk,m].
(c) Prove that for any p ∈ [0, 1] there is a sequence of functions (fn)n≥1, fn :
{−1, 1}n → {−1, 1} such that limn→∞ µn({x : fn(x) = 1}) = p and

max
i=1,...,n

Ii(fn) ≥ cVarµn(fn)
lnn

n
.
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Exercise 16. Let f : Rn → [0,∞) be compactly supported (to avoid any non-
essential problems with integrability) with

∫
Rn f = 1. De�ne S(f) = −

∫
Rn f ln f

and N(f) = exp( 2
nS(f)). Let (Pt)g≥0 be the heat semigroup. Prove that the

function t 7→ N(Pt(f)) is concave.

Exercise 17. Assume that (X,Y ) is a symmetric log-concave random vector in
R2, such that X ∼ Y . Prove that S(X + Y ) ≤ S(2X).

Exercise 18. Let f : R → [0,∞) be such that
∫
R f = 1 and f = e−V for some

convex function V . Let ‖f‖∞ = sup(f). Prove that

e−1‖f‖∞ ≤ e−S(f) ≤ ‖f‖∞.

Exercise 19. Let A ⊆ Rn and let f : A → [0,∞) satisfy
∫
A
f = 1. Prove that

S(f) ≤ ln |A|, where |A| is the Lebesgue measure of A.

Exercise 20. Let (Ω, µ) be a probability space. Show that for any f, g : Ω→ [0,∞)
and any λ ∈ [0, 1] we have

Entµ(λf + (1− λ)g) ≤ λEntµ(f) + (1− λ) Entµ(g),

where Entµ(f) =
∫
f ln fdµ−

(∫
fdµ

)
ln
(∫
fdµ

)
.

Exercise 21. We say that f : {−1, 1}n → R is monotone if for any x = (x1, . . . , xn),
y = (y1, . . . , yn) with xi ≤ yi, i = 1, . . . , n we have f(x) ≤ f(y). Let Pt be the
semigroup generated by the continuous time random walk on {−1, 1}n and let µn
be the uniform measure on {−1, 1}n.

(a) Prove that t 7→
∫
Pt(f)Pt(g)dµn is non-increasing.

(b) Deduce that
∫
fgdµn ≥

∫
fdµn

∫
gdµn.

Exercise 22. Let (Pt)t≥0 be the semigroup generated by some �nite Markov chain
with a spectral gap α and stationary measure π. Prove that

Entπ(Ptf) ≤ e−2αt Entπ(f).

Exercise 23. Consider the symmetric random walk on the cyclic group {0, 1, . . . , n−
1}, i.e., p(n, n+ 1) = p(n, n− 1) = 1/2.

(a) Find the spectral gap of this chain.
(b) Show that the above chain mixes in time O(n2).

Exercise 24. Let λ1 ≤ λ2 ≤ . . . ≤ λn be the eigenvalues of I − 1
dA, where A is the

adjacency matrix of a graph G.

(a) Prove that λ2 ≤ n
n−1 with equality for complete graph on n vertices.

(b) Suppose G is not a complete graph. Show that λ2 ≤ 1.


