Selected theorems in mathematics
Part I, prepared by: Piotr Nayar

Problem 1. (15 points)

(a) Let IF be an arbitrary field and let P(x1, ..., z,) be a polynomial in Flxy, ..., z,].
Suppose that the degree of P is ). | k;, where each k; is a non-negative inte-
ger and suppose that the coefficient of z§' - - .- - 2% is non-zero. Then for any
subsets Ay, ..., A, of F satisfying |A;| > k; + 1 for all i = 1,...,n, there exist
a; € Ay,...,a, € A, such that P(ay,...,a,) #0.

(b) Suppose that the hyperplanes Hy, ..., H,, C R" cover the set {0,1}"\{0} and
that 0 ¢ |U;~, H;. Prove that m > n.

Problem 2. (15 points)

(a) Let f be a trigonometric polynomial of order n, i.e.,

n

flx) = Z(ak cos kx + by sin kx).

k=0

n

Let us define the function D,(z) = 5 + Zk: cos kz + 3 cosnx and the set

A, ={%2r, k=1,2,...,2n}. Prove the identity

f(z) = a,cosnx + % Z f#®)Dy(x —t).

teAn,

(b) Prove that D, (x) = 2:;;12;/362)' Prove the identities

0 = LS U e
f(0) = n Z ) (2sin(t/2))*’ Z (2sin(t/2))?

teEA, teAn
and deduce that
Py =LY farn
€Tr) = — X - .
ne= (2sin(t/2))?



(c) Show that for every non-decreasing convex function ¢ : [0,00) — R we have

/¢<M') ars [ oUs@N ar

Deduce that for 1 < p < oo we have

([Trwr ) Ve ([T ar) "

Jmax |f(@)] <n max |f(z)]

Moreover,

Problem 3. (10 points)

(a) Let A be a family of subsets of {1,2,...,n} such that for any pair of subsets
A, B € A we have A ¢ B. Prove that

4% (1)

and determine the extremal case.
(b) Let vq,...,v, be real numbers such that |v;| > 1 for i = 1,...,n. Define
A={x=(x1,...,2,) € {=1,1}", o121+ -+ vpx,| < 1}.

Prove that |A| < ([ /2})
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Problem 1. (5 points) Let A = (a;;);';—; be a symmetric matrix with eigenvalues
AL, ..oy An. Prove that D77 af; = 30 A7

Problem 2. (10 points) Take d > 1 and let us consider 1, 2o, ..., 7, € R% where
n > d + 2. Prove that there exists a partition of {1,...,n} into two sets I, J such
that the convex hulls of the sets {z; : ¢ € I} and {z; : j € J} have a nonempty
intersection.

Problem 3. (10 points) Let d > 1 and let A C RY. Suppose z € conv(A). Prove
that there exists a set B C A with #B < d + 1 such that x € conv(B).

Problem 4. (10 points) Let f : R — R be a continuous function with period 1 and
let « be irrational. Prove that

lim fla)+ f(2a) + ...+ f(na) :/lf(t) dt.

n—00 n

Prove that for every interval [a, b] C [0, 1] and every irrational real number o we have

fim #{1 <k <n: {ka} € la,b]}
n—o00 n

=b—a,

where {z} € [0,1) is the fractional part of x € R.

Problem 5. (10 points) Let 7,0 > 1. Prove that there exists a number R(r,b)
depending only on r and b with the following property: for every complete graph
G with R(r,b) vertices whose edges are coloured red or blue, there exists either a
complete subgraph on r vertices which is entirely red, or a complete subgraph on b
vertices which is entirely blue.

Problem 6. (15 points)



(a) Let f:4{0,1,...,n} — {0,1}. Prove that there exists the unique polynomial
W : R — R with deg(W) < n such that W (k) = f(k) for 0 < k < n. Prove
that deg(WW) = 0 or deg(W) > n/2.

(b) Let f:4{0,1,...,n} — R and let us consider the unique polynomial W : R — R
with deg(WW) < n such that W (k) = f(k) for 0 < k <n. Then for 0 <r <n
the following are equivalent

(1> deg(W) S n-—r,

(ii) for n —r < m < n we have Zogjgm(—l)j(?)f(j) =0.

Problem 7. (5 points) Let xy, 2o, ..., x, be real numbers. Prove the identity
n
max{ry, g, ..., Tpn} = sz - Zmin{xi, T} + Z min{z;, z;, x5} — ...
i=1 i<j i<j<k
+ (=) min{zy, 29,..., 2, }.

Problem 8. (20 points) Let A be a symmetric matrix with eigenvalues \; < Ay <
<A,

(a) Prove that for every k = 1,2,...,n we have
. (Ax,x) , (Az, )
A = max min ——— = min max .
U: dim(U)=n—k+1 z€U, 220 (x,x)  U:dim(U)=k z€U, z£0 (T,x)
In particular
A A
A —minﬂ, )\n:max< a:,:c>‘
220 (X, ) 220 (z,x)
(b) Let A = (a;;);,—, be a symmetric matrix with eigenvalues A;,..., \,. Prove

that D77 af; = 31, AF

(c) We define the operator norm and the Hilbert-Schmidt norm of a real n x n
matrix A = (a;5),

‘A ‘ 1/2
x
|All = sup \T|’ [All s = <Z a?j) ~

z€R™: x#£0 ij

Prove that ||A]]? is the maximal eigenvalue of the matrix A”A and AAT. De-
duce that is the case of symmetric matrices we have ||A|| = max; |\;|. Prove
that [[A] < [|A[| -



(d) Let n > 2 and let a;; € {—1,1} for 1 < i < j < n. Prove that there exists a
vector © € R™ with |z| = 1 such that ‘Z?§i<]’§n i TiT5| > e/

Problem 9. (10 points) We say that a polygon P (a subset of a plane bounded by
a piecewise linear curve without self-intersections) has an ear at a vertex V' if the
line V_V,, where V_,V, are adjacent to V lies entirely inside the polygon P. Two
ears are said to be non-overlapping if the interiors of triangles VV_V, are disjoint.

(a) Prove that except for triangles, every polygon has at least two non-overlapping
ears.

(b) Prove that there exists a triangulation of P with no additional vertices and a
3-coloring of the vertices of P such that each triangle does not have two vertices
with the same colour.

(c) The art gallery has a shape of an polygon P with n-vertices. Show that one
can place [n/3] guards in vertices of P who together can observe the whole
gallery.



Z matki obcej; krew jego dawne bohater,
A imie jego bedzie czterdziesci i cztery.
Adam Mickiewicz, Dziady*

Selected theorems in mathematics
Part ITI, prepared by: Piotr Nayar

Problem 1. (20 points) Let z,s,...,7, be vectors in a Euclidean space (RY,|-]|) and let
2 < k < n. Prove the inequality

> )

i=1

n—2 -
(:23) (Zumr -
=1
S hrall oot Dl =+ 1)

1< <9< <1 <n
In particular, prove that if x,y, z are vectors in a Euclidean space (R, ||-||) then we have

IA

[ +yll +[ly + 2l + 1z + ]| < =[] + [lyl] + []2]] + [l +y + =] .

Problem 2. (20 points) Let 21, 29, ..., 2z, be complex numbers. Prove that there exists a subset
Iof{1,2,...,n} such that
>

n

>3 Jal

k=1

Is the constant 1/7 optimal?

Problem 3. (20 points) Consider a n x m matrix A with 0, 1 entries. We assume that the number
of 1’s in the matrix A equals 25, where j is an integer. Is it always possible to remove some number
of columns and rows of A is such a way that the number of 1’s in the remaining matrix is j7

Problem 4. (30 points)
(a) Let A and B be non-empty compact sets in R. Prove that for every A € [0, 1] we have
M+ (1 —=XN)B| > (1= \)|A| + \|B].

(b) Let f,g and m be nonnegative measurable functions on R and let A € [0,1]. Assume that
for all z,y € R we have

m((1 =Nz +Ay) > fz)"Pg(y)™.

L= (L) (L) 2

Prove that

(c) Prove the inequality (1) in R™.
Problem 5. (15 points)

(a) Prove that any sequence of real numbers z,xz5,... contains a non-increasing or a non-
decreasing subsequence.

(b) Let n,m > 1 be integers. Suppose we have a sequence of (n — 1)(m — 1) 4+ 1 real numbers.
Prove that there exists a non-decreasing sequence of length n or a non-increasing sequence
of length m.

Y Born from a foreign mother, his blood of ancient heroes, And his name will be forty and four, Adam Mickiewicz,
Forefathers.
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Problem 1. (15 points) Let A = (ay;)7;_, be a skew-symmetric real matrix, i.e. A" = —A. Prove
that there exists a polynomial P in variables a;; such that det(A) = P2.

Problem 2. (15 points)

(a) Prove the Brunn-Minkowski inequality, which states that if A and B are non-empty compact
sets then for all A € [0, 1] we have

(1= X)A+AB| > |A* B

and
(1= XA+ AB|Y™ > (1 = N)|A]Y™ + \|B|Y".

(b) Prove the isoperimetric inequality, i.e., show that when |A| = |B|, where A is a measurable set
in R” and B is an Euclidean ball in R”, then | A;| > | By, where A; = {x € R", dist(z, A) < t}.

(¢) Let A be a compact subset of R” and let us define

A B — A
|(9A|zliminf| +t55] — |Al

t—0+ t '

where BY is an Euclidean ball. Show that the condition |A| = |B|, where B is a Euclidean
ball in R™ implies |[0A| > |0B|.

Problem 3. (10 points) Fix 1 < k < n. Let A, As,..., A, be distinct subsets of {1,2,...,n}
such that |A; N A;| = k for all i # j. Prove that m < n.

Problem 4. (10 points) Suppose that G is a graph on n vertices with more than n*/4 edges.
Prove that GG contains a triangle. Show that for an even number n there exists a graph G with n
vertices and n?/4 edges containing no triangle.

Problem 5. (20 points) Let XY be independent identically distributed real random variables.
Prove that
EX +Y|>E|X -Y]|.

Problem 6. (20 points) Let (Z¢, E) be an integer lattice, i.e., a graph such that {x,y} € E if and
only if |x —y| = 1. A path from z, to z, is a sequence xg, 1, ..., z, € Z% such that {z;,7,,,} € E
for i = 0,1,...,n — 1. Such a path is called a path of length n from z to z,. For u,v € Z? let
P*(u,v) be the number of paths from u to v having length k. Prove that for every k& > 1 and every
u,v € Z% we have P?*(u,u) > P?*(u,v).
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Problem 1. (10 points) Let f : R® — R be C*. Prove that there exist smooth functions
g1, - - -, gn such that g;(0) = g—i(()) and

f(z) = f(0)+ legz(x>

Problem 2. (20 points) Let ¢ > 0 be a real number. Prove the inequalities

n

1 2n 1
— < _ < —.
c2 + 1 Z (’I’L2 + 62)2 c2

2 n=1

Problem 3. (15 points) Let A be a complex n x n matrix. Prove that the following conditions
are equivalent,

(a) A is nilpotent, i.e., there exists p > 1 such that AP =0,
(b) A" =0,
(c) the characteristic polynomial of A is equal to A",
(d)

)

(e) tr(A?) =0forp=1,...,n.

all the eigenvalues of A are 0,

Problem 4. (10 points) Let t(n) = [{1 <k <n: k|n}|. Prove that for n > 1 we have

H1) +H2) + ... +t(n)

—Inn| <1.

Problem 5. (20 points) Let G = (V, E) be a graph. The choice number ch(G) is the minimal
number k such that for every assignment of a set S(v) of k colors to every vertex v of G, there is
a choice k, € S(v) of colors such that {u,v} € E implies k, # k,,.

Prove that for every bipartite n x n graph with n > 3 we have ch(G) < 2log,n. Show that
this bound is optimal, up to the multiplicative constant.

Problem 6. (15 points)

(a) Let ag > a; > ay > ... > a, > 0 be real numbers and consider the polynomial P : C — C
given by P(2) = a,2" + a,_12""' + ... + a1z + ag. Suppose that P(z) = 0 for some z, € C.
Prove that |zo| > 1.

(b) Let ag,...,a, > 0. Then all the zeros of P(2) = a,2" + a, 12" '+ ... + a1z + qp lie in the

annulus
ag ag

=: R.

ro= min

<zl £ max
k=0,1,..n—1 Q41 k

=0,1,..n—1 Qg1
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Problem 1. (10 points) Let z1,...,%,,%1,...,Y, be real numbers such that z; +y; # 0 for
i,j=1,...,n. Let A= (a;);;—;, where a;; = (v; + y;)~". Prove that
Hj>i(37j —x)(Yy; — yi)

[T, (@i +y;)

det (A) =

Problem 2. (20 points) Let I be a finite field. A polynomial P € F[zy,...,x,] over F is a finite
formal expression of the form

i i
P(zy,...,x,) = E Ciy o i T

We define the set
Z(P)[F]=A{(x1,...,x,) € F": P(xy,...,2,) =0}.

(a) Show that if F C F” has cardinality less than (‘H") then there exist a non-zero polynomial
P € Flxy,...,x,| of degree at most d such that £ C Z(P)[F].

(b) Show that if P € F[zy,...,z,] is a non-zero polynomial of degree at most d, then we have
|Z(P)[F]| < d|F|*~'. Show that if P, regarded as a function P : F" — F, vanishes on F",
then deg(P) > |F|.

Problem 3. (15 points) A family A of subsets of [n] = {1,...,n} is called monotone if B € A
implies C' € A for any set C' C B. Prove that if A and B are monotone families of subsets of [n]
then we have

2"ANB| = |Al-[B].

Problem 4. (10 points) Let X be the random vector uniformly distributed on the cube [—+/3, v/3]".

Prove that
E(|X|—vn)’ <1

Problem 5. (15 points) Let 1, s, ..., 2, be a non-increasing sequence of positive real numbers.
Prove the inequality!

i
L

,_.
&I| —
~.

<.
I

1On the left hand side there is no 1, this is not a mistake.
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Problem 1. (20 points) Let C be a smooth closed curve on the unit sphere S? of
length less than 2. Prove that this curve is contained in a certain open hemisphere.

Problem 2. (10 points) Let A be a measurable set on S* with |A| = 7. Prove that
there exists a complex number z with |z| = 1 such that AU (zA)| > 37.

Problem 3. (20 points) Let wug,us,...,u, be non-zero vectors in the Euclidean
space R™ satisfying the condition (u;,u;) <0 for all i # j.

(a) Prove that if >, , ayu; = 0 for some I C [m] and non-zero a;,i € I and for
every J C I, J # I we have > ._,a;u; # 0 then all the numbers «; have the
same sign.

icJ

(b) Prove that m < 2n.

(c) Let d > 1 be an integer. Prove that C1,..., C,, are binary vectors of length 2d
such that for all i # j the vectors C; and C; have different bits on at least d
coordinates, then m < 4d.

Problem 4. (15 points) Let f(z) =), a,sin(kz). Prove that f has at least 2n
zeros in the interval [0, 27).

Problem 5. (15 points) Let 2k < n and let A be a family of subsets of [n] such
that each subset has size k and for every A, B € A we have AN B # (). Prove that
Al < (-
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Problem 1. (15 points) Suppose that a probability measure x on [0, 00) is absolutely
continuous with respect to the Lebesgue measure. Let T'(x) = u([x, o0)). Prove that
for every non-decreasing function g : [0, 00) — (0, 00) we have

Bu(9) < - [ o) (14 T (@) dto),
where Ent,(g) = [ glng dp— (J;° g dp) In (J7 g dp).

Problem 2. (15 points) A family F of subsets of [n] = {1,...,n} shatters a set
S C [n] if for every R C S there is F' € F such that S N F = R. Prove that if

7> (g)+(q)+...+(g)

then there exists a set S C [n] of cardinality k + 1 such that F shatters S.

Problem 3. (15 points) Let F be a finite field with ¢ elements and let n > 1. Let
N C F" be a subset such that for every x € F™ there exists v € F" for which the line
L(z) = {x + vt : t € F} satisfies |L(xz) N N| > q/2. Prove that |N| > ¢,q", where ¢,
depends only on n.

Problem 4. (15 points) Let ¢y, ¢a, ..., ¢, € C. Find the eigenvalues and eigenvectors
of the matrix
Cl C2 .« .. Cn
A — Ch C1 **+ Cp—1
C2 C3 - 1

Problem 5. (10 points) Let |-| be the standard Euclidean norm and let vy, ..., v, €
{=1,1}". Prove that there exist 1,...,&, € {—1,1} such that

n
E EiU;
i=1

<n.
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Problem 1. (15 points) Let K be a convex compact set in R", where n > 2. Take
0 € S"1 and define H, = {z € R", (z,0) = r}. Prove that the function

i (vol(K N H,))Y b

is concave on its support.

Problem 2. (50 points) Consider n x n matrices with independent symmetric 41
entries. Prove that

lim P(det M, = 0) = 0.

n—o0

Hint.

(a)

(b)

Let X4,..., X, be the rows of M,,. Observe that

n—1
P(det M, = 0) < Y P(Xi1 € span(Xy,..., X;)).

=1

Prove that every d dimensional subspace of R” contains at most 2¢ vectors with
+1 entries. Deduce that
2i

IP’(X,-HGspan(Xl,...,Xi))g2—n, i=1,....,n—1

We say that a n x n matrix is [-universal if for any set of [ indices 41, ...%; and
any set of signs €1,...,¢;, there is a row X where the ¢;-th entry of X has sign
gj , forall 1 < j <I[. Prove that the probability that M,, is not [-universal is
less then (7)2'(1 — 27"

Show that if M,, is [-universal then any vector v orthogonal to X, ..., X, must
have at least [ non-zero coordinates. Moreover, prove that if v is a vector with [
non-zero coordinates then P (X, - v = 0) < Cy/v/1, where C; > 0 is a universal
constant.



(e) Prove that

C
P (X, € span(Xy,..., X, 1)) < ——.
In'/%n
(f) Divide the sum into two parts,
n—1 k-1
Y P (Xi €span(Xy,..., X)) = Y P(Xip € span(Xy, ..., X;))
i=1 i=1
n—1
+ ZIP’ (X1 € span(Xy, ..., X;)).
i=k

Threat the first sum as in point (b) and the second sum as in points (¢)-(e).

Problem 3. (20 points)

(a) Consider a function f: {—1,1}" — {—1,1}. For z = (z1,...,2,) € {—1,1}"
define z* = (xy,...,—x;,...,2,). Let p be a uniform probability measure on
{—1,1}". Prove the Poincaré inequality

Var, (f) < / () = F) d

(b) Let A C {—1,1}". We write z ~ y when y = 2’ for some i = 1,...,n. Define
the edge boundary of A,

0A={(z,y) e {-1, 1}z ~y,x € Ay ¢ A}.
Prove the isoperimetric type inequality

[0A] = 2" u(A) (1 — p(A)).
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Problem 1. (10 points) For a function f : {—1,1}" — R with a Walsh-Fourier
expansion f = > g, asws and 6 € [0, 1] we define

Ts5(f) = Z as0w,.

SC[n]

Prove that

TPy = [ f K@) K ) duty)- ().

where K (z,y) = 1+ dyx and p is a uniform measure on {—1,1}.

Problem 2. (20 points) Let ¢ > p > 1 and let (2, 1), (Q2,12) be two finite
probability spaces. Let K; : €); x €); — R for ¢« = 1,2. We define two operators

L)) = [ Kiwy) du), =12
Q;
Moreover, for f: €y x 25 — R let us take

(Th @ o) (f) (21, 22) = / fyr,y2) K (21, y1) Ko (22, y2) dpa(ye) dpa (y1)-
0 Ja,
Suppose that for : = 1,2 we have

||Tif||Lq(Qi,m) < ||f||LP(Qi7ui) ) for all f:€Q; — R

Then
H(Tl ® T2>f“Lq(Q1><QQ,u1®u2) S HfHLp(QlXQQ,/“@,U,Q) .

Problem 3. (30 points) Prove that for any f: {—1,1}" — R and any ¢ € [0, 1] we
have

IT5flly < [1f1l14s, -
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Problem 1. (15 points)

(a) Let F be an arbitrary field and let P(xy,...,2,) be a polynomial in . Suppose
that the degree of P is > ! | k;, where each k; is a non-negative integer and
suppoF[x1, ..., x,]se that the coefficient of z%* - ... z¥» is non-zero. Then for

any subsets Ay, ..., A, of F satisfying |A;| > k; + 1 for all ¢ = 1,...,n, there
exist a; € Ay,...,a, € A, such that P(ay,...,a,) #0.

(b) Suppose that the hyperplanes Hy, ..., H,, C R" cover the set {0,1}"\{0} and
that 0 ¢ |U;~, H;. Prove that m > n.

Solution. a) This theorem is called the Combinatorial Nullstellensatz and was proved
by Noga Alon in [A]. The proof is taken from [M]. We proceed by induction on
deg(P). If deg(P) = 1 then our assertion is trivial. Suppose that deg(P) > 1 and P
satisfies the assumptions of the theorem but the assertion is false, that is P(x) = 0
for every x € Ay x --- x A,. Without loss of generality we assume that k; > 0. Fix
a € Ay. There exist polynomials @ € F[zy,...,x,] and R € F[x,, ..., x,] such that

P=(x;—a)Q+R. (1)

Note that deg(Q) = deg(P) — 1 and that @) has a non-vanishing monomial of the
form x§''ak2 ... 2k Take any x € {a} x Ay x --- x A,. Since P(z) = 0
we obtain R(z) = 0. However, R does not contain z;, thus R(z) = 0 for all z €
(A1\{a}) x Ay x - -+ x A,,. Take such an = and substitute it to (1). Since x; —a is non-
zero and P(z) = R(z) = 0 we obtain Q(z) = 0. So, deg(Q) = deg(P)—1, @ contains
a monomial 2§tk .. ... 2 and @ vanishes on the set (A;\{a}) x Ay x -+ x A,
where |A;\{a}| > ki, |As| > ko +1,...,]A,| > k, + 1. This contradicts the inductive
assumption.

b) The solution is take from [A]. Suppose that the hyperplane H; is given by the
equation < a;,x >= b;. We have b; # 0 since H; does not cover the origin. Assume
that our assertion is false and m < n. Define the following polynomial,

m n m

P(z) = (=) b [ [ — )+ [ (< @iz > =)

j= i=1 i=1



The degree of this polynomial is n and the coefficient of [ [\, 2; is (=1)"*"+' ", b; #
0. Therefore, from part a) there exists o € {0,1}" such that P(zq) # 0. This point
is not the origin since clearly P(0) = 0. Therefore, on zo the polynomial []7_, (z;—1)
vanishes and

H < a;,xg > —b;) #0.
=1

It means that < a;,zgp ># b; for all i = 1,...,m and therefore o ¢ | J;*, H;. This is
a contradiction. O

Problem 2. (15 points)

(a) Let f be a trigonometric polynomial of order n, i.e.,

n

flz) = Z(ak cos kx + by sin kx).

k=0

Here the coefficients (ag), (bx) can be complex. Let us define the function
D, (z) = %%—ZZ;} cos kz+ 5 cos nx and the set A, = 2]"' 17r k=1,2,...,2n}.
Prove the identity

f(z) = an cos nx + % > f(t)Dulz — 1), (2)

teAy,

(b) Prove that D, (z) = 3222 Prove the identities

2tg(x/2)
/ 1 (_1>k+1 1 9
0) =— . T\ o w2 n
F0) =7 tEZAn /) (2sin(t/2))? tEZAn (2sin(t/2))
and deduce that (—1)k+1
A 3
teZA us 2sm(t/2)) @)

(c) Show that for every non-decreasing convex function ¢ : [0,00) — R we have

/¢(MD dxé/j%dﬂx)bdx. n

Deduce that for 1 < p < oo we have

([irwr dx)l/p <o ([T 1 ar) " )

2




Moreover,

max |f'(z)] <n max |f( ). (6)

x€[0,27] z€[0,27

Solution. The inequality (4) is the so-called Zygmund inequality, see |Z]. The in-
equality (6) is the classical Bernstein inequality.
(a) Our identity is linear. Therefore, it suffices to check it for functions f(z) =

e*® k= —n,...,n. Note that D, is a sum of functions of this form. Let us compute
ZteA etfle iz, ,where [ = —n,...nand k = —n,...,n. If |k| < n and k # [ then
2n 2n—1
Z ikt pil(z—t) _ 6ilzz (k=025 _ il —i(k=D) gy Z pilk=D3Em
teA, k=1
2i(k—)m _ 1
_ —i(k—) & € _
= ¢il7e GO0E 1 0.

Note that in this case e?* D% £ 1. If k = [ then we have

E :ezkt il(x—t) __ Qnezk:p

teAn,

It follows that for |k| < n we have

1 )
— Z ’ktD (x —1t) =5 - 2petht = otk
A,

. ika —ika
where we have use the equality coskr = &—+&—

Now we are left with the cases f(z) = ™ and f(x) = e™"*. Note that (2) is
invariant under conjugation. Therefore, we only need to consider f(z) = ¢™*. Note
that €® = cosnz + isinnz. Thus, a, = 1. The expression

E emtezl(ac—t)

teA,
is non-zero only when |I| = n and it is equal to 2ne™® if [ = n. If | = —n then
Z e'mt il(z— t) o finm Z 62'm7§ —inx Z et i(2k—1)m — e in:r_
teAn, teAp teAn,
Thus,
1 ein:v + e—in;t 1
ay, COS NT + - Z f&)Dp(z —t) = — 5 5 Z f(t)ﬁ cos(n(x —t))
teAn teAn,
o re +26 + . (2ne™® — 2ne”"*) = €.



(b) One can compute D,,(z) easily by using the indentity

sin(kz + §) — sin(kxr — 7)
2sin(z/2) ’

cos kx = x/2m ¢ Z.

The identity

Fo =13 SV )

b (2 8111(15/2))2

follows by differentiating (2). To check that »,_, m = n? it suffices to take

/
f(z) = sinnx. To obtain (3) take t — f(t + x) instead of t — f(t) in (7).
(c) From (b) we have the identity of the form

= > Sl

teAn

where » .., A\ = 1. Using Jensen’s inequality and the monotonicity of ¢ we obtain

[ (o)

teA

<Z)\t o (f @+ D)) dr =Y "X\ ¢|f()|>

teA teAn 0

To obtain (5) it suffices to take ¢(x) = aP. Now (6) follows by taking p — co. O
Problem 3. (10 points)

(a) Let A be a family of subsets of {1,2,...,n} such that for any pair of subsets
A,B € A we have A ¢ B. Prove that

4% (i)

and determine the extremal case.
(b) Let vy,...,v, be real numbers such that |v;| > 1 for i = 1,...,n. Define
A={x=(x1,...,z,) € {=1,1}", |viz1 + -+ vpx,| < 1}.

Prove that |A] < ([ /2})



Solution. (a) This is the so called Spencer’s lemma, see [Al]. To prove the above
fact we consider the family 4 and we count pairs (7, S), where 7 is a permutation
of {1,...,n} and S is a set of the form S = {w(1),...,7(k)} for 7, such that S € A.
For each m we can have at most one S € A. Therefore, the number of pairs (7, .5)
is not greater than n!. Moreover, a fixed set S € A of cardinality k& will be counted
exactly k!(n — k)! times. So, if s is the number of sets in A of cardinality & then
the number of pairs (m,.5) is equal to >, _, sgk!(n — k)!. Thus,

> sikl(n — k)l < nl.
k=0

It means that

Al < Z Tk <1
([n/z] (k

The family for which we have equahty is the family of all subsets of cardinality
n/2].

(b) This is a special case of the Littlewood-Offord problem, see [E|. Without loss
of generality we can assume that v; > 1 for ¢ = 1,...,n. A point z in {—1,1}"
can be seen as a subset B, of {1,2,...,n}, i.e.,, i € B, if and only if x; = 1. Tt is
easy to observe that if |vjxy + -« + v,2,| < 1 for some x € {—1,1}", then changing
one or more signs z; from —1 to 1 gives a point, for which |vix; + -+ + vz, | > 1.
It means that {B,,z € A} satisfies the assumption of Spencer’s lemma. Thus,
Al < ([ /2}) 0
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Selected theorems in mathematics
Part II, prepared by: Piotr Nayar

Problem 1. (5 points) Let A (aij)ij=; be a symmetric matrix with eigenvalues
AL, ..oy An. Prove that D77 af; = 30 A7

Solution. Note that 37 a7, = tr(ATA). Our assertion is clearly valid for diagonal
matrices. If A is non-diagonal let us consider diagonal matrix D such that D =
CTAC, where C' is orthogonal. The eigenvalues of D and A are the same. Moreover,

> N =tx(D"D) = tr((CTAC)"CTAC) = tx((CTATC)CT AC)
= tr(CTATAC) = tr(ATACCT) = tr(AT A),

where we have used the fact that tr(XY) = tr(Y X).
We can also show that Z m is invariant under rotations by a simple compu-
tation, i.e. we show that we have > i =20, af; whenever A = (a;;), B = (bij)

are matrices satisfying B = CTAC, without using the above fact about the trace.
Indeed,

2
2

E bijzg (E Ckiaklclj> :E E Cl1iQky 11 Cly jChoiQlyly Cloj

ij

ij 1 k1,ka,ll2

= E lezlak2l2g Ck1iClyjChkoiClyj -

k1,k2,l1,l2

Now we observe that the rows of C' are orthonormal. Therefore,

E ChyiClyjChyiClyj = (E Cklz‘%z) <§ Cl1jcl2j> = Oky ko Oty 1y -

i 7 J

We arrive at

2 2
E bz’j = E ak1l1ak2125k’1,k2511712 = E :akl'
ij Kl

k1,k2,l1,l2



Problem 2. (10 points) Take d > 1 and let us consider 1, 2o, ..., 7, € R% where
n > d+ 2. Prove that there exists a partition of {1,...,n} into two sets I, J such
that the convex hulls of the sets {x; : ¢ € I} and {x; : j € J} have a nonempty
intersection.

Solution. This is the so-called Radon’s theorem. Without loss of generality we can
assume that n = d + 2. Note that {x; — z442,...Zg41 — Taya} is collection of d + 1
vectors. Thus, these vectors are linear dependent, i.e. there exists a sequence of real

numbers ay, . .., aq41 such that Zjﬁ aj(rj —x4+2) = 0 and a;, # 0 for some jo. Take
bl = a1,y... 7bd+1 = ad+1 and bd+2 = —(al + -+ ad+1). It follows that Zjif bj =0
and Zjﬁ bjx; =0. Thesets Iy = {i: b; >0}, I_ = {i: b; <0} are both nonempty

and ZiEI+ bi = ZieL(—bi). Thus,
Ziebr biti _ Eiel_(_bi)xi
ZiEI+ bl ZZGI,(_bZ) '

The left hand side of the above equality belongs to conv{z; : i € I} while the right
hand side is in conv{z; : i € I_}. O

Problem 3. (10 points) Let d > 1 and let A C R% Suppose z € conv(A). Prove
that there exists a set B C A with #B < d + 1 such that z € conv(B).

Solution. The above fact is the Carathéodory’s theorem. It is easy to see that

COHV(A): {Zklal OJZ'EA, )\120, Z)\lzl, nz 1}

i=1 i=1

Thus, we can write = > " Na;. If n < d+ 1 then there is nothing to prove.
Assume that n > d+ 1. As in the solution of the Problem 2, there exists a sequence
[ .- fy such that >°° 1, = 0and Y1 a; = 0 with pj, # 0 for some jo. Thus,
r =Y (N — cp;)a; for every ¢ € R. Take ¢ such that \; —cp; > 0,1 <i<n
and at least one such value is 0. We have expressed z as a convex combination of
n — 1 elements of A. We can further decrease the length of this sum as long as the
condition n > d + 1 is satisfied. ]

Problem 4. (20 points) Let f : R — R be a continuous function with period 1 and
let « be irrational. Prove that

lim fla)+ f2a) + ...+ f(na) :/Olf(t) dt. 1)

n— o0 n

2



Prove that for every interval [a, b] C [0, 1] and every irrational real number o we have

lim #{1 <k<n: {ka} € a,b]}

n— 00 n

=b—a,

where {z} € [0,1) is the fractional part of x € R.

Solution. The above theorem is the so-called Bohl-Sierpiniski-Weil theorem. This is
a version of ergodic theorem for the rotation on the circle. We first prove the above
fact for the functions of the form f(x) = ¢**2 where k € Z. These functions are
clearly 1-periodic. When k = 0 the assertion is obvious, thus we can assume that
k # 0. Moreover, we have

627”04 627rzno¢ -1

n e2ma _ 1

e 0.
n

’627”‘0‘ — 1‘ n—00

Note that we have used the fact that €™ — 1 # 0 for o ¢ Q. Since fol f(t)dt =0,
we obtain (1). By linearity the equality (1) is also true for every trigonometric
polynomial, i.e., the function of the form Y ;_  awe*™* where ), € C for k =
—n,...,n. From the Weierstrass theorem we know that these functions are dense
in the space of all continuous complex-valued functions, i.e., for every continuous
function ¢ : [0,1] — C and for every € > 0 there exists a trigonometric polynomial f
such that |g(t) — f(t)] < e for every t € [0,1]. If ¢ is real then one can choose g to
be real by taking the trigonometric polynomial Rg instead of g. Thus,

limsupl (g(a) + ...+ g(na)) < €+limsupl(f(oz) + ...+ f(na))

n—oo N n—oo N
1 1
—5+/ f(t) dt§25+/ g(t) dt.
0 0

Taking ¢ — 0 we obtain

lim sup ! (g(a) + ...+ g(na)) < /0 g(t) dt.

n—oo TN

In the same way we show that

lim inf 1 (9(a) + ...+ g(na)) > /0 g(t) dt.

n—oo M

We have verified (1) for every continuous function.

3



To solve the second part let us take the characteristic function of the interval
[a,b] C [0,1], extended periodically to the whole real line. Let us call this func-
tion f. Trivially, there exists a continuous function g such that f(z) < g(x) and
Jo 1f(t) = g(t)] dt < e. Thus,

limsupl (f(a)+ ...+ f(na)) <limsup 1 (9() + ...+ g(na))

n—oo N n—oo N
1 1
~ [otar<es [ romar
0 0

Taking ¢ — 0 we obtain
1 1
limsup — (f(a) + ... + f(no)) < / f(t) dt.
n—oo N 0

Using the same argument for the continuous function g with g(z) < f(z) we arrive
at limy, oo =(f(a) + ...+ f(na)) = fol f(t) dt. Therefore,

im 2 SRS dkaf€lably Loy L fna))

n— 00 n n—oo 1}
1
:/ F&)dt =b—a.
0

]

Problem 5. (10 points) Let 7,0 > 1. Prove that there exists a number R(r,b)
depending only on r and b with the following property: for every complete graph
G with R(r,b) vertices whose edges are coloured red or blue, there exists either a
complete subgraph on r vertices which is entirely red, or a complete subgraph on b
vertices which is entirely blue.

Solution. This is the so-called Ramsey’s theorem. Assume that R(r, b) is the smallest
number having the above property. We use induction on n = r + b and prove that

R(r,b) < R(r—1,b) + R(r,b—1), rb>1.

In the case r +b = 2, r = b = 1 we trivially have R(r,b) = 1. Assume that
R(r — 1,b) and R(r,b — 1) exist and are finite. Take a complete graph V with
R(r —1,b) + R(r,b — 1) elements and colour its edges. We are to show that there
exists a blue subgraph of b elements or a red subgraph of r element. Take any vertex

4



v € V. Since deg(v) = R(r — 1,b) + R(r,b — 1) — 1, there are at least R(r — 1,b)
red edges incident to v or at least R(r,b — 1) blue edges incident to v. Without loss
of generality we can assume the first possibility. Consider a subraph of R(r — 1,b)
vertices adjacent to v. If in this graph there exists a complete blue subgraph of b
vertices, then trivially our assertion follows. By the induction hypothesis we can
therefore assume that there are » — 1 vertices vy, ..., v,_; that form a red subgraph.
The graph induced by vy, ...,v,_1,v is red and has r vertices. O

Remarks. The above theorem is a cornerstone of the so-called Ramsey theory.
The numbers R(r,b) are called Ramsey numbers. The Ramsey numbers R(k, k) are
known only for & < 4. See |R| for more information and open problems on Ramsey
numbers.

Problem 6. (15 points)

(a) Let f:40,1,...,n} — {0,1}. Prove that there exists the unique polynomial
W : R — R with deg(W) < n such that W(k) = f(k) for 0 < k < n. Prove
that deg(WW) = 0 or deg(W) > n/2.

(b) Let f:4{0,1,...,n} — R and let us consider the unique polynomial W : R — R
with deg(WW) < n such that W (k) = f(k) for 0 < k <n. Then for 0 <r <n
the following are equivalent

(i) deg(W) <n—m,

(i) for n—r <m <nwe have > .. (=1)'(7) f(j) = 0.

Solution. (a) Let W(x) = a,z™ + ...+ ag. The system of equations W (k) = by, k =
0,1,...,n has always a unique solution due to the fact that (i/);; is a Vandermond
matrix. To prove the second part we can assume that deg(W) > 0. In the set
{0,1,...,n} there are at least n/2 roots of the polynomial W (zx) or at least n/2
roots of the polynomial W(x) — 1. It follows that deg(W') > n/2.

To prove part (b) we first consider the case r = 1. The unique interpolation

polynomial is given by
B T —1 _
W(z) =) (Hj_z.) ()

=0 \i#j

The condition deg(W) < n — 1 is equivalent to the fact that the leading therm in




W (z) vanishes. It suffices to observe that this therm is equal to

» 1 R f()
Z<H' ')f(”‘z'!(j—<j+1>>...<j—n>

=0 \i#j J = =0 J
- ;<_1)n_jj!(£<i)j)! N <_n1!)n ,:O<—1>j (?)f(j)-

We proceed by induction on 7. The condition deg(W) < n — r is equivalent to
the fact that W is also the unique interpolation polynomial for points 0,1,n —r and
values f(0), f(1),..., f(n —r). The condition deg(W) < n — r is also equivalent to
the fact that deg(W) <n —r+ 1 and

O<Z<m(—1)j (T;)f(j) =0, m=n—r+1.

The inequality deg(IW) < n —r + 1, from the induction hypothesis for » — 1 and for
values f(0), f(1),..., f(n) and points 0,1, ..., n is equivalent to

> (—1)j(m>f(j):o, m>n—r+1.

O

Remarks. The problem is take from [GR], where the authors suggested the fol-
lowing conjecture.

Open problem 1. Let f: {0,1,...,n} — {0, 1} and consider the unique polynomial
W : R — R with deg(W) < n such that W (k) = f(k) for 0 < k < n. Suppose that f
is not constant. Prove that deg(W) > n—3. At least, prove that deg(W) > n—0O(1).

Problem 7. (5 points) Let x,zo,...,x, be real numbers. Prove the identity

n
max{zy, g, ...,Tn} = Zml — Zmin{wi, z;} + Z min{x;, z;, x5} — ...
i=1

i<j i<j<k
+ (=) min{xy, 29, ..., 1, }.

Solution. We can assume that z; > 0. Indeed, if it does not hold it suffices to
consider b > 0 such that x; +b > 0 for every ¢ = 1,...,n and to notice that

min{z;, +0b,...,2; +b} =min{x;,,..., ;. } +0b.

6



Thus, one also has to verify the identity for vy = o = --- = x,, = b. This case
follows from the fact that

(00

which is equivalent to 0 = (1 —1)" =" (})(=1)*.
We can also assume that z; € [0,1] for every ¢ = 1,...,n, since we can always
divide these numbers by a sufficiently large constant (the identity is preserved under

this operation). To finish the proof it suffices to integrate the identity

1[x171] (t) e 1[m"71] (t) = (1 - 1[07x1}(t>> ..... (1 - 1[07ITJ(t>>

Problem 8. (20 points) Let A be a symmetric matrix with eigenvalues \; < Ay <
<,

(a) Prove that for every k = 1,2,...,n we have
. (Azx,z) . (Az, )
A = max min — = min max )
U: dim(U)=n—k+1 z€U, 20 (x,) U: dim(U)=k x€U, 20 (x, )
In particular
A A
)xlzmin< a:,m)7 )\n:max< m,a:>'
x#£0 <:L’, I> x#0 <x7 {L’>
(b) Let A = (a;;)7;—, be a symmetric matrix with eigenvalues Ay,..., \,. Prove

that 3, a2, = 31 X2

(c) We define the operator norm and the Hilbert-Schmidt norm of a real n x n
matrix A = (a;;),

|A ‘ 1/2
X
]

z€R™: x7#£0

Prove that ||A||? is the maximal eigenvalue of the matrix A”A and AAT. De-
duce that is the case of symmetric matrices we have ||A|| = max; |\;|. Prove
that [|A]| < [|A]| -

(d) Let n > 2 and let a;; € {—1,1} for 1 <i < j < n. Prove that there exists a
vector x € R"™ with |z| = 1 such that ‘ZTSKK” aijT;Ti| > cy/n.

7



Solution. (a) This is the so-called min-max theorem. Let uy, ..., u, be the orthonor-
mal basis for R™ such that u; is an eigenvector with an eigenvalue \;, ¢ = 1,... n.
Take a subspace U of R™ such that dim(U) = k and take V = span{uy,...,u,}.
Note that U NV contains a non-zero vector v. Thus, x = Y, a;u;. Therefore,

<A$7 .flf) _ Zz?k: )\Zaz > )\k
<$, {L'> Zi:k a? N

A
A < max Az, z)
wel, a0 (1, 1)

It follows that

and therefore

. (Az, )
e < min max )
U: dim(U)=k z€U, 220 (T, T)

To see the opposite inequality it suffices to take U = span{uy, ..., u;}. Observe that
every x € U has the form z = Zle it

<AQZ, x> _ Zf:l A

wo) e
Thus,
max (Az, z) < \i.
wel, a0 (1, 1)
We get
A\r > min max (Az, z)

T U dim(U)=k z€U, 220 (T, T)
The equality

. (Azx,x)
A = max min
U: dim(U)=n—k+1 z€U, 20 (T,x)

can be proved in a similar way.
(b) This is Problem 1.
(c) Take x # 0. We have

|Az|* Az, Ax) (AT Az, x)

2> () (za)

Thus, the first assertion follows from point (a). If A is symmetric then ATA = A?

and the eigenvalues of ATA are \?,... A\2. Thus,
Ax|?
max [Az] = max \}.
x#0 ’.1}‘2 7



Therefore, ||A|| = max; |\;]. To prove that ||A|” is also equal to the maximal eigen-
value of AAT is suffices to prove that the spectrum of AA” and the spectrum of
AT A are equal. We present the solution due to Kapitan Orlef teem. Take a sequence
e1, es, ... converging to 0 such that A. = A + €I is invertible. This sequence exists
since det(A + €I) = 0 is a polynomial equation in € and therefore has only finite
solutions. Let ¢ = ¢,,. We have

det(A.B — tI) = det(A.) det(B — tA-!) = det(B — tAZ") det(A.) = det(BA, — tI).

Taking € = ¢,, — 0 we get det(AB —tI) = det(BA —tI). Thus, the spectrum of AB
is the same as the spectrum of BA.
Let 0 < p1y < g < -+ < py, be eigenvalues of a symmetric matrix A7 A. We have

1/2
1A]l = (max )"/ < (Z m) = Vir(ATA) = [|A] s -

(d) Define the matrix A = (A;;) as follows,

aij/Q 1<
Aij = Clji/Q 1 >] .
0 =
The matrix A is symmetric and |A;;| = 1/2 for i # j. Let A\; < Xy <--- <\, be the
eigenvalues of A. From point (a) we have

E aijmixj

1<i<j<n

n )\2 1/2
= max] (A ] = ] > (Z2120) = o

ja|=1

max
|z|=1

v2

—n V2 ((n® —n)/4)" > .

N

]

Problem 9. (10 points) We say that a polygon P (a subset of a plane bounded by
a piecewise linear curve without self-intersections) has an ear at a vertex V' if the
line V_V,, where V_,V, are adjacent to V' lies entirely inside the polygon P. Two
ears are said to be non-overlapping if the interiors of triangles VV_V, are disjoint.

(a) Prove that except for triangles, every polygon has at least two non-overlapping
ears.



(b) Prove that there exists a triangulation of P with no additional vertices and a
3-coloring of the vertices of P such that each triangle does not have two vertices
with the same colour.

(c) The art gallery has a shape of an polygon P with n-vertices. Show that one
can place [n/3] guards in vertices of P who together can observe the whole
gallery.

Proof. (a) We provide a sketch of the proof, for details see [M|. The assertion is
clearly true for quadrilaterals. We proceed by induction of the number of vertices of
our polygon. Suppose P is an polygon with n > 4 vertices. Select a vertex V of P
at which the interior angle is less than 180°, and let V_ and V. denote the vertices
of P which are adjacent to V.

We consider the case when VV_V, is an ear. Let us call it Ey. If we remove this
ear, then the remaining polygon P’ has n — 1 vertices and therefore it has at least
two ears F1, Ey. One of pairs (Ey, E), (Ep, E5) must be a pair of non-overlapping
ears.

Suppose that VV_V, is not an ear. Then the triangle VV_V, must contain a
vertex in the interior or on the chord V_V,.. Let Z be such a vertex with an additional
property that the line through it and parallel to V_V, is as close to V' as possible.
Hence the chord V' Z lies entirely inside the polygon P and so divides it into two
polygons. Each of them has at least two ears, say E}, F3 for the first polygon and
FE3, E? for the second one. Only two of them can have V' Z as an edge. Therefore the
remaining two are non-overlapping ears of P.

(b) We proceed by induction. The assertion for triangles is trivial. Take a polygon
with n-vertices. From point (a) we know that P has an ear E = V(1115 at a vertex
Vo. We can remove this ear by removing V4 and obtain a polygon P’ with n — 1
vertices. From the induction assumption we know that P’ admits a triangulation
with a good 3-coloring. Now it suffices to color the removed vertex Vj with a colour
different than the colours of V; and V5.

(¢) This proof'is due to [F|. Take a coloring from point (b) with colours a, b, c. Let
V., Vi, V. be the sets of vertices having colours a, b, ¢, respectively. We can assume
that |V,| < |[Vs| < |VL|. Then |V,| < [n/3]. It is now immediate to see that if we
place guards in vertices from the set V, then they together can observe the whole
gallery (since they observe each triangle). O

10
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Selected theorems in mathematics
Part I1I, prepared by: Piotr Nayar

Problem 1. (20 points) Let z1, 29, ..., x, be vectors in a Euclidean space (RY, [-||)
and let 2 < k < n. Prove the inequality

(:72) (S5

< > (lwal e el =l + o )

1<d1 <ig < <0 <n

In particular, prove that if z,y, z are vectors in a Euclidean space (R™,]|-||) then we
have
e +yll + lly + 2l + Iz + =l] < [lzll + Iyl + =l + |z +y + =]

Proof. This inequality is due to Djokovié, see |D]. By a straightforward computation
we prove the following identity,

(:25) (g ||:ci||>2— Zw

= Y (Ul 4 ) = 4 4 ) -

1< <o << <n

2

This is the Adamovi¢ identity, see [A]. Our inequality follows from this identity and
the inequality

Y

il + o il + sy 4+ 2 < S ol +
=1

n
PRE
i=1

which is equivalent to the triangle inequality,

n
D_al| < D mf + 1>
=1

el ig I

< +

)

<3 il +

il

n
>
i=1

where [ = {iy, ..., 4}



The inequality
[+ yll + 1y + 2l + 1z + 2l < 2l + llyll + [[20 + llz +y + 2|

is the famous Hlawka’s inequality. This inequality follows immediately by taking
= 2 and n = 3 in the Djokovi¢ inequality. ]

Problem 2. (20 points) Let 2, 29,..., 2, be complex numbers. Prove that there
exists a subset [ of {1,2,...,n} such that

n
IETEES IR
k=1

kel

Is the constant 1/7 optimal?

Solution. For a real number x we write = = max{x,0}. Let z; = ry(cosf;+isinby),
where 1, = |z¢| and 6y € [0,27), k =1,...,n. We define

We have
1 27T

2T
+ 3p _
7 i 0) do = QWZTk/ cos(0 — 6;))" do = o Zrk/ cos(f

Thus, there exists 6 € [O, 27r) such that f(9) > L5 [zk]- We fix this 6. Let
I'={1<Fk<mn:cos(d—0) >0}
Then,

IR

kel

e~ E 2| =

kel

= Zrk cos(O — 0) = Zrk cos(0 — 0y,) = Zrk(cos(ﬁ —0)"
ke k=1

kel

Z rkei(ﬁ'k*@

kel

> Re (Z rkei(9k9)>

kel

n

£0) > %Zmr.

k=1



The constant 1/7 is optimal. To see this we take z, = exp(2(k — 1)7wi/n), k =
1,...,n. Let I be a subset of {1,...,n} such that |}, ; z| is maximal and let
V=) ,cr 2k It is easy to see that

{1<k<n:{(v,z) >0} CI.

Indeed, if (v,2;) > 0 and k ¢ I then |v + z;| > |v|, which contradicts the definition
of I. Similarly, we have

{1<k<n:(vz) <0} C{1,...,n}\I.

Indeed, if (v, z;) < 0 and k € I then |v — 2| > |v|, so we can remove k from [ and
increase the value of | ), zx|.

In particular, we can assume that [ = {1,...,m} for some m € {1,...,n}. In
this case we have

|Zke[zk’ :l 627:1@ :l eT—l <2 .1 '
EZ:l ‘Zk“ n 0 n e% —11  n e% -1
2 I
n |6%—€_77z”| n‘Sln%|
Thus, for every I C {1,...,n} we have
1 n
sz < —— | 2|
n sin
kel n k=1
Taking n — oo we obtain lim,,_,, ﬁ =1/m. O]

Problem 3. (20 points) Consider a n x m matrix A with 0,1 entries. We assume
that the number of 1’s in the matrix A equals 27, where j is an integer. Is it always
possible to remove some number of columns and rows of A is such a way that the
number of 1’s in the remaining matrix is j7

Solution. The solution is due to Prof. Keith Ball. The answer is no. It suffices to
consider the following 5 x 9 matrix with 44 entries equal to 1,

0 1

e
— = = =
I T =
[ e T T e S
— e
e e
el e

1
1
1
1

—_ = = =



It is easy to see that the number of 1’s in the matrix A, after removing some number
of rows a and columns, must be equal to kl or kl — 1 for some integers 0 < k£ < 5 and
0 <1 <9. On the other hand it must be equal to 22. In this range the equations
kl =22=2-11 and kil = 23 do not have a solution. ]

Problem 4. (30 points)

(a) Let A and B be non-empty compact sets in R. Prove that for every A € [0, 1]
we have

M+ (1 =N)B| > (1 = \)|A| + A|B|.

(b) Let f,g and m be nonnegative measurable functions on R and let A € [0, 1].
Assume that for all z,y € R we have

m((1 =Nz + Ay) > f(z)" gy

f=(L) (L) 2

(c) Prove the inequality (1) in R™.

Prove that

Solution. (a) The proofs are taken from [GNT|, where one can find historical remarks
on the statements. The inequality from point (a) is the one-dimensional Brunn-
Minkowski inequality. Observe that the operations A — A4+ vy, B — B + v
where v1,v2 € R do not change the volumes of A, B and (1 — \)A + AB (adding a
number to one of the sets only shifts all of this sets). Therefore we can assume that
sup A = inf B = 0. But then, since 0 € A and 0 € B, we have

(1-=XMNA+ABD(1—-XNAU(AB).
But (1 — A)A and (AB) are disjoint, up to the one point 0. Therefore
(1 =XNA+AB| > (1 = NA[+ [\B].

(b) This is the Prékopa-Leindler inequality in dimension 1. We can assume,
considering f1ls<y and gl,<)s instead of f and g, that f, g are bounded. Note also
that this inequality possesses some homogeneity. Indeed, if we multiply f, g, m by
numbers cy, ¢g, ¢, satisfying

o 1-A
Cm = C; "Cg,



then the hypothesis and the assertion do not change. Therefore, taking c¢; = || ..,

¢ = llgll} and ¢, = Hf||;o(1_/\) lgll} we can assume (since we are in the situation
when f and g are bounded) that || f|| = |lg|l,, = 1. But then

L= [ tm= s

/szfoll{erHdr,
[o=[ tta=riar

Note also that if x € {f > r} and y € {g > r} then by the assumption of the
theorem we have (1 — Az + Ay € {m > r}. Hence,

A=Mfzrf+Mgzrfc{m=r}

Moreover, the sets {f > r} and {g > r} are non-empty for r € [0,1). This is
very important since we want to use the 1-dimensional Brunn-Minkowski inequality
proved in step (a). For any non empty compact subsets A C {f > r} and B C {g >
r} we have |{m > r}| > (1 — A)|A| + A\|B|. Since Lebesgue measure is inner regular,
we get that

{m=ri = (1= N{f =7} +A{g =7}

We have
[m=[tonzritarz [omz s [10-0002 0002 dar
>0 [rzatao [gzna=0-n [0 [

(f0) (]

Observe that we have proved

[mza-x[rex [0

but this inequality does not have the previous homogeneity, hence it requires the
assumption || f||. = |lg|l., =1 to hold.



(¢) (the inductive step). Suppose our inequality is true in dimension n — 1. We
will prove it in dimension n.

Suppose we have numbers o, y1, y2 € R satisfying yo = (1 — A)y; + Ays. Define
Myos fons Gyo : R" = Ry by

myo(x) = m(y())x)v fy1 ($) = f(y1>$)v gyz(z) = (y2>$)7
where x € R"™!. Note that since yo = (1 — \)y; + Ayo we have

My (1= A)zy + Axz) = m((1 — AN)y1 + Aya, (1 = N)x1 + Axo)
> f(yr, 21) gy, 22)* = fy, (21) gy (22)

hence my,, f,, and g,, satisfy the assumption of the (n — 1)-dimensional Prékopa-
Leindler inequality. Therefore we have

fomez (L) (o)

Define new functions M, F,G : R — R,

M) = [ e F) = [ e Gl = [ o

Rn—1

We have seen (the above inequality) that when yo = (1 — A)y; + Ay2 then there holds
M((1 =Ny + Ay2) > F(y)' 7Glya).

Hence, by 1-dimensional Prékopa-Leindler inequality proved in Step 1, we get

[a=([r)7([e)
ek e Lo [ L
L= (L) (La)-

Problem 5. (15 points)



(a) Prove that any sequence of real numbers xq, x5, ... contains a non-increasing
or a non-decreasing subsequence.

(b) Let n,m > 1 be integers. Suppose we have a sequence of (n — 1)(m — 1) + 1
real numbers. Prove that there exists a non-decreasing sequence of length n or
a non-increasing sequence of length m.

Solution. (a) The assertion clearly holds when xy,z,... is not bounded (take a
monotone sequence converging to oo or to —oo). If our sequence is bounded then
from the Bolzano-Weierstrass theorem we can find its converging subsequence A =
{4, ®iy, ... }. Let g be the limit of this subsequence. One of the sets AN(—o0, g], AN
[g,00) is infinite. In the first case we can find a non-decreasing subsequence of A and
in the second case we can find a non-increasing subsequence of A.

(b) This is the Erdos-Szekeres theorem, see |[ES|. The presented proof can be
found in [AZ]. Assume, by way of contradiction, that there is no non-decreasing
sequence of length n. Define the function f : {1,2,...,(n — 1)(m — 1) + 1} —
{1,2,...,n— 1} in the following way,

f(i) = length of the longest increasing subsequence that ends with z;.

The function f has domain of size (n — 1)(m — 1) + 1 and the range of size n — 1.
Thus, there exist i1 < iy < +-- < i, and a number k € {1,...,n — 1} such that

flxi) = flay,) = = fl2:,,) = k.

Note that x;;, > x;,, since otherwise f(x;,,) = k+ 1 (add the point z;,,, to the
longest sequence that ends with ;). Thus, the sequence

Ty > Tjy > 000 > Ty,

is a decreasing sequence of length m. [
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Selected theorems in mathematics
Part 1V, prepared by: Piotr Nayar

Problem 1. (15 points) Let A = (a;;)7;—; be a skew-symmetric real matrix, i.e.
AT = — A. Prove that there exists a polynomial P in variables a;; such that det(A) =

P2,
Solution. We present the proof published in [P]. Note that if n is odd then
det(A) = det(—AT) = (—=1)"det(A") = (—1)"det(A) = — det(A).

Thus, det(A) = 0. It suffices to consider the case when n is even and det(A) # 0.
We proceed by the induction on n. In the case n = 2 we clearly have a1 = as =0
and a;o = —ay;. Thus det(A) = a?,.

Take n > 4. Let M;; be the (i, j)-th minor of A (i.e. the determinant of a matrix
obtained by removing the ith row and jth column of A). Let A;; = (—1)"M;;. We
have

An An oo Am
Ay Ay ... A,
1 1 '12 '22 . 2 | (1)
det(A) : DT
Aln A2n s Ann

Let A, = det(a;;)7,—; and A, » = det(a;;);;_3. From (1) we have

All A21 . Anl
dot A.lg A.QQ . Ang _ Az_l
Aln A2n v Ann



Moreover, we have

1 0 0O ... 0 A Ay .. A
0 1 O cee O A12 A22 e An2
a31 Q32 a3z ... A3p X Az Aoy ... Aps
L An1 QAp2 Apz ... (0797 | L Aln A2n e Ann i
[ An Axn Az ... An |
Ay Agg Az ... Apo
— 0 0 A, L. 0
i 0 0 0 A, |

Computing the determinant of both sides gives

A A
Ay oAl = A2 det | M T2
20 " ¢ {Au Agg

Since A;; and Ay are determinants of skew symmetric matrices of odd size we
obtain Aj; = Ay, = 0. Moreover, M{, = —Mjy; and therefore A5 = —Ay;. Thus,
Ap oA, = —Ay Ay = A2, By the induction assumption we know that A, 5 is a
square of some polynomial. Since the ring of all multivariate polynomial over a field
is a unique factorization domain, we get that A, must also be a square of a certain
polynomial. O]

Problem 2. (15 points)

(a) Prove the Brunn-Minkowski inequality, which states that if A and B are non-
empty compact sets then for all A € [0, 1] we have

(1= N)A+ AB| > |A* B

and
(1= NA+ABIY™ > (1= N)|AY™ + N BV

(b) Prove the isoperimetric inequality, i.e., show that when |A| = |B|, where A is a
measurable set in R" and B is an Euclidean ball in R", then |A;| > |B,|, where
A; = {zx e R, dist(x, A) < t}.



(c) Let A be a compact subset of R” and let us define

|0A| = lim inf [A+tB3] — |A

t—0t+ t

Y

where BY is an Euclidean ball. Show that the condition |A| = |B|, where B is
a Euclidean ball in R™ implies |[0A| > |0B].

Solution. (a) To prove the first statement it suffices to use Prékopa-Leindler inequal-
ity (Part III, Problem 4) for function f = 14, g = 1p and m = 13_xa4a. To
deduce the second inequality we take

B )\|B|1/n
B L= N A + A B
Then
(1-NA+AB _la-w .
1-— VO n 4+ A(vo nl VO n VO n
N (vol A)/7 + A(vol B/ ol Ay T Flvol BYY
A " B |
> =1.
- ‘\AW" | B|/n

(b) The Brunn-Minkowski inequality yields the isoperimetric inequality for the
Lebesgue measure on R™. Indeed, suppose we have a compact set A C R™ and
let B be a Euclidean ball of the radius r4 such that |B| = |A|. Then from the
Brunn-Minkowski inequality we have

]At|1/" =|A —l—th\l/" > ‘All/n + ‘tB;L|1/n
— |Bg|1/nrA + |B£L|1/nt _ |B_'_tB£L|1/TL _ ‘Bt|1/n.
It means that
|Ay| > (ra+1t)"|By| = | Byl.
(c) We have
|0A| g ATBE AL e A= 1A zhminf—’ = l,

t—0+ t t—0+ t t—0+

and therefore |0A| > |0B]. One can also deduce that

n—1
o 2 nrg ) = () = nlBg A
2



Problem 3. (10 points) Fix 1 < k < n. Let A;, Ay, ..., A, be distinct subsets of
{1,2,...,n} such that |A; N A;| =k for all i # j. Prove that m < n.

m,n

Solution. This is the so-called Fisher’s inequality. Consider a matrix A = (a;;);27
where a;; = |A; N A;|. Let vy,...,v, € R” be the rows of A. It suffices to prove
that these vectors are linear independent. Suppose, by contradiction, that for some
AL, ..., Ay We have 2111 Av; = 0, with not all coefficients being zero. Note that
(vi,vj) =k for i # j and (v;,v;) = |A;| for e = 1,...,m. We have

1=1 i=1 =1

i#]
m m 2
=) N(Al - k) +k (Z )\i> .
i=1 i=1
It follos that |A;| = |As| = ... = |A,u| = k. This contradicts the condition |A;NAs| =
k and Al 7& AQ. O

Problem 4. (10 points) Suppose that G is a graph on n vertices with more than
n?/4 edges. Prove that G contains a triangle. Show that for an even number n there
exists a graph G with n vertices and n?/4 edges containing no triangle.

Solution. Assume that G has no triangles. Let m be the number of edges in G and
let V' be the set of vertices. Let {z,y} be an edge of G. The vertices z,y have no
common neighbours. Thus, d(z) + d(y) < n. We obtain

Sd@)?= Y (dz) +d(y)) < mn.

zeV {z,y}€FE
On the other hand, by the Cauchy-Schwarz inequality we have

2

2
1 4m
d(z)? > — d(x = —.
S o> gy (St ) -
zeV eV
Thus, m < n?/4, a contradiction.
To give an example of a graph on n vertices (n even) containing n?/4 edges and
no triangle it suffices to consider the complete § x 7 bipartite graph.
O

Problem 5. (20 points) Let X, Y be independent identically distributed real random
variables. Prove that
E|X +Y|>E|X -Y].



Solution. This inequality comes from the paper [B|. Define the function f : R? — R,

f(s,2) = sgn(@)Lissi<iapy (5)-
It is easy to verify that

/R f(s,2)f(s,) ds = |z + 9] — o — yl.

Indeed, for z,y > 0 both sides are clearly equal to min{z,y}. To get the other cases
it suffices to observe that both sides are invariant under changing the signs of x and
Y.

We arrive at

E(X +Y]—|X - Y]) :]E/Rf(s,X)f(s,Y) ds:/R]E(f(s,X)f(s,Y)) ds
= /RIELf(s,X)Ef(s,Y) ds = / (Ef(s, X))*ds >0,

R

where in the second inequality we have used Fubini’s theorem, the third equality
follows from the fact that X, Y are independent, and the fourth equality — from the
fact that they have the same distribution. O

Problem 6. (20 points) Let (Z¢, E) be an integer lattice, i.e., a graph such that
{z,y} € E if and only if |z —y| = 1. A path from zy to z, is a sequence
To,T1,..., 2T, € Z% such that {z;,7,,1} € E for i = 0,1,...,n — 1. Such a path
is called a path of length n from x( to z,. For u,v € Z% let P*(u,v) be the number
of paths from u to v having length k. Prove that for every k > 1 and every u,v € Z¢
we have P (u,u) > P%*(u,v).

Solution. Note that for every sequence of real numbers aq,as ..., a, and every per-
mutation 7 : [n] — [n] we have Y a7 > > | a;ax). Indeed, we have

n n 1 n
Z; a; — Z; Gitniy = 5 ) (01 = ax(p)* > 0.
1= 1=

=1
Clearly, for every u,w € Z? we have P*(u,w) = P*(w,u). Thus,
P?*(u,v) = Z P*(u, w)P*(w,v) = Z P*(u, w) P* (v, w).
weZd wezZd

The two vectors (P*(u,w)),eze and (P¥(v,w))yeze can be obtained from each other
by permuting the coordinates. Thus, from the above fact the right hand side in the
above equality is maximal for u = v. O
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Selected theorems in mathematics
Part VI, prepared by: Piotr Nayar

Problem 1. (20 points) Let C' be a smooth closed curve on the unit sphere S? of length less then
2m. Prove that this curve is contained in a certain open hemisphere.

Solution. Consider two points P, () on our curve that divide it into two curves C4, Cs of the same
length. Then the distance from P to ) along the sphere is less than 7 so there is a unique minor
arc from P to (). Let M be the midpoint of this arc. We show that no point of G hits the equatorial
great circle with M as north pole. Suppose, by contradiction, that C hits the equator at a point
A. Then we may construct a curve C; by rotating C; one-half turn about the axis through M.
Clearly in this procedure P goes to (), @ goes to P while A goes to the antipodal point A. The
curve Cy U C, has the same length as C' and contains two antipodal points A, A. Thus, the length
of this curve is greater or equal 2. This is a contradiction. O]

Problem 2. (10 points) Let A be a measurable set on S' with |A| = 7. Prove that there exists
a complex number z with |z| = 1 such that [AU (zA)| > 3.

Solution. We identify S with an interval [0,27). Let A be a set in [0,27) with |A| = 7. Let us
consider a quantity |A N ((A + ¢) mod 27)|, where t € [0,27). Note that usin Fubini’s theorem we
have

1 2

1 27 27
— |AN ((A+t)mod27)| dt = —/ / 14(s)1a((s —t)mod27) ds dt
2 0 2T 0 0

1 27 2 1 2 1
= —/ / 14(5)14((s —t)mod 2m) dt ds = —/ 14(s)|A| ds = —|A]* = il
m™Jo Jo 21 Jo 2 2
Thus, there exists ¢y such that |[A N ((A + tp) mod 27)| < /2. It follows that
|AU ((A+to)mod 2m)| > |A| + [(A+ to) mod 27| — [AN ((A+ty) mod27m)| > 7w+ 7 —7/2 = ;ﬂ'

]

Problem 3. (20 points) Let uy, ua, ..., u,, be non-zero vectors in the Euclidean space R" satisfying
the condition (u;,u;) <0 for all ¢ # j.

(a) Prove that if ),
J # I we have )

a;u; = 0 for some I C [m] and non-zero a;,i € I and for every J C I,
ey @iy 7 0 then all the numbers a; have the same sign.
(b) Prove that m < 2n.

(c) Let d > 1. Prove that Cy,...,C,, are binary vectors of length 2d such that for all i # j
vectors C; and C; have different signs on at least d coordinates then m < 4d.



Solution. The solution is taken from |[W|.
(a) Suppose that >, ., aju; = 0. We can assume that for every J C I, J # I we have
ZieJ a;u; # 0. Indeed, if oy, u; + aj,u, = 0 and oy, < 0 < «, then

0= vy (wip, wiy ) + gy (U, wi,) <0,

which is a contradiction. Therefore a; u;, + a;,u;, # 0 and we can construct a minimal set I such
that {iy, i} C I.

Suppose that not all o;,7 € I have the same sign. Then we have a partition [ = I; U I, such
that > .., Biug = Dy, Biug and B; > 0 for all i € 1. Let w =3, _; Biu;. We have

0< (w,w) = <Z@ui,2@ui> = Y BB (wi,u) <0

i€ly i€la i€ly,j€l2

It follows that w = 0. This contradicts the minimality of /.

(b) We proceed by the induction on n. The case n = 1 is trivial. We can assume that
m >n > 2. Let {wy,...,w,} be a minimal subset of linearly independent vectors chosen from
{ug, ..., un}t. We write

{uy, ... up} ={wy,...;,w. U{wy, ..., 0wy}

Choose aq,...,a, such that Z _ya;w; = 0. By the first part we can assume that o; > 0. For

each v; we have
O— U], g Q; w’L;U] <0,

therefore we must have (w;, v;) = 0. Thus, the subspaces spanned by (w;); and (v;); are orthogonal.
The space spanned by (w;); has dimension r — 1 so (v;)j lie in a subspace of dimension n —r + 1.
By the induction assumption we have m —r < 2(n —r +1). Thus, m <2n —r + 2 < 2n.

(c) if we represent C1, ..., C,, as elements of {—1,1}?* then (C;,C;) < 0 for i # j. From (b)
we deduce that m < 4d. This bound in called the Plotkin bound. O

Problem 4. (15 points) Let f(z) = > /" ay,sin(kz). Prove that f has at least 2n zeros in the
interval [0, 27).

Solution. We can assume that a,, > 0. Take a function

Z le Lsin(kx).

Clearly, for sufficiently large [ we have

> 3l

B

In this case

2k 2k
fl(_ﬂ_S_W)>0, fl(—w_l><0, k=1,2,...,n.

n 2n n 2n
From the mean value property there exist point xq,xs,...,Tq, € [0,27) such that f(zx) = 0
for K —1,...,2n. Using Role’s theorem 2/ times we deduce that f = (fz—zllfl also has at least 2n
ZEros. O



Problem 5. (15 points) Let 2k < n and let A be a family of subsets of [n] such that each subset

in of size k and for every A, B € A we have AN B # (. Prove that [A] < (7).

Solution. This is the so-called Erdés-Ko-Rado theorem. The idea is to count pairs (7, S) where 7
is a circular permutation (7(1),7(2),...,7(n)) and S is an interval of length & in this permutation
such that S € A. In other words S is an interval on the discrete circle, where the numbers are
placed according to m and the elements in this interval must form a set from A. We have (n — 1)!
cyclic permutations. Each of them contains at most k pairwise intersecting intervals of length &
and thus at most k elements of our family. In this step we have used the fact that 2k < n. Each
set in our family occurs in precisely k!(n — k)! cyclic permutations. Thus,

AR (n — k)! < E(n — 1)\,

Our assertion follows. O
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