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Abstract

In this note we consider Boolean functions defined on the dis-
crete cube {−γ, γ−1}n equipped with a product probability measure
µ⊗n, where µ = βδ−γ + αδγ−1 and γ =

√
α/β. This normaliza-

tion ensures that the coordinate functions (xi)i=1,...,n are orthonor-
mal in L2({−γ, γ−1}n, µ⊗n). We prove that if the spectrum of a
Boolean function is concentrated on the first two Fourier levels, then
the function is close to a certain function of one variable. Our the-
orem strengthens the non-symmetric FKN theorem due to Jendrej,
Oleszkiewicz and Wojtaszczyk.

Moreover, in the symmetric case α = β = 1
2 we prove that if

a [−1, 1]-valued function defined on the discrete cube is close to a
certain affine function, then it is also close to a [−1, 1]-valued affine
function.
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1 Introduction and notation

Let α, β > 0 with α + β = 1 and α ∈ (0, 1
2
). We consider the discrete cube

{−γ, γ−1}n equipped with the L2 structure given by the product probability
measure µn = µ⊗n, where µ = βδ−γ + αδγ−1 and γ =

√
α/β. For f, g :

{−γ, γ−1}n → R let us define the expectation Ef =
∫
f dµn, the standard

scalar product 〈f, g〉 = Efg and the induced norm ‖f‖ =
√
〈f, f〉. We also
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define the Lp norm, ‖f‖p = (E|f |p)1/p. Let [n] = {1, 2 . . . , n}. For T ⊆ [n]
and x = (x1, . . . , xn) let wT (x) =

∏
i∈T xi and w∅ ≡ 1. Note that we have

Exi = 0 and Exixj = δij. It follows that (wT )T⊆[n] is an orthonormal basis
of L2({−γ, γ−1}n, µn). Therefore, every function f : {−γ, γ−1}n → R admits
the unique expansion f =

∑
T⊆[n] aTwT . The functions wT are sometimes

called the Walsh-Fourier functions. If the function f is {−1, 1}-valued then
it is called Boolean.

The Fourier analysis of Boolean functions plays an important role in many
areas of research, including learning theory, social choice, complexity theory
and random graphs, see e.g. [O1] and [O2]. One of the most important an-
alytic tools in this theory is the so-called hypercontractive Bonami-Beckner-
Gross inequality, see [Bo], [Be], [G1] and [G2] for a survey on this topic. This
inequality has been used in the celebrated papers by J. Kahn, G. Kalai and
N. Linial, [KKL], and E. Friedgut, [F]. It can be stated as follows. Take
α = β = 1

2
and q ∈ [1, 2]. Then we have∥∥∥∥∥∥

∑
T⊆[n]

(q − 1)|T |/2aTwT

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
T⊆[n]

aTwT

∥∥∥∥∥∥
q

(1)

for every choice of aT ∈ R. This inequality has been generalized in [Ol1] to
the non-symmetric case. Namely, the following inequality holds true,∥∥∥∥∥∥

∑
T⊆[n]

cq(α, β)|T |aTwT

∥∥∥∥∥∥
2

≤

∥∥∥∥∥∥
∑
T⊆[n]

aTwT

∥∥∥∥∥∥
q

, (2)

where

cq(α, β) =

√√√√√ β2− 2
q − α2− 2

q

αβ
(
α−

2
q − β−

2
q

) .
One can easily check that (1) is a special case of (2), namely

√
q − 1 =

limε→0 cq(
1
2
− ε, 1

2
+ ε). Moreover, it is easy to see that cq(α, β) ∈ [0, 1].

In [FKN] the authors proved the following theorem, which is now called
the FKN Theorem. Suppose α = β = 1

2
and we have a Boolean func-

tion f whose Fourier spectrum is concentrated on the first two levels, say∑
|T |>1 a

2
T < ε2. Then f is Cε-close in the L2 norm to the constant function

or to one of the functions ±xi. Here and in what follows C is a universal

2



constant that may vary from one line to another. The authors gave two
proofs of this theorem. One of them contained an omission which was fixed
by G. Kindler and S. Safra in their unpublished paper, [KS], see also [K].

The FKN Theorem was originally devised for applications in discrete
combinatorics and social choice theory. It is useful in the proof of the robust
version of the famous Arrow’s theorem on Condorcet’s voting paradox, see
[A] and [KG]. It was also applied is theoretical computer science, e.g., it is
useful in analyzing the Long Code Test in the proof of the PCP theorem by I.
Dinur, [D]. Also the FKN Theorem in the biased case is worthy of attention,
e.g., p-biased long code was used by I. Dinur and S. Safra in their PCP proof
of NP-hardness of approximation of the Vertex Cover problem, see [DS].

In [JOW] the authors gave a proof of the following version of the FKN
Theorem,

Theorem 1 ([JOW], Theorem 5.3 and Theorem 5.8). Let f =
∑

T aTwT
be the Walsh-Fourier expansion of a function f : {−1, 1}n → {−1, 1} and

let ρ =
(∑

|T |>1 a
2
T

)1/2
. Then there exists B ⊆ [n] with |B| ≤ 1 such that∑

|T |≤1,T 6=B a
2
T ≤ Cρ4 ln(2/ρ) and |aB|2 ≥ 1−ρ2−Cρ4 ln(2/ρ). In particular,

distL2(f, wB) ≤ ρ+ Cρ2 ln(2/ρ). (3)

Moreover, in the non-symmetric case, f : {−γ, γ−1}n → {−1, 1}, there
exists k ∈ [n] such that

∥∥f − (a∅ + a{k}w{k})
∥∥ ≤ 8

√
ρ.

The inequalities (3) is sharp, up to the universal constants. In the proof
the inequality (1) has been used. However, in the non-symmetric case one
can ask for a better bound involving bias parameter α. In this note we use
inequality (2) to prove such an extension of the FKN Theorem. Namely, we
have

Theorem 2. Let f =
∑

T aTwT be the Walsh-Fourier expansion of a function

f : {−γ, γ−1}n → {−1, 1} and let ρ =
(∑

|T |>1 a
2
T

)1/2
. Then there exists

k ∈ [n] such that for ρ ln(e2/ρ) < 3
210e4

α we have∥∥f − (a∅ + a{k}w{k})
∥∥ ≤ 2ρ (4)

and ∥∥f − sgn(a∅ + a{k}w{k})
∥∥ ≤ 4ρ. (5)
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In this paper we use the {−1, 1}-valued function sgn(x) = −I(−∞,0)(x) +
I[0,∞)(x).

Our proof of Theorem 2, which is given in the Section 2, is an application
of the ideas used in the proof of Theorem 5.3 in [JOW]. Our inequality is
closely related to the inequality of A. Rubinstein, see [R, Corollary 10]. Ru-
binstein’s inequality states that for every function f : {−γ, γ−1}n → {−1, 1}
with

∑
|T |>1 a

2
T = ρ2 we have∥∥f − (a∅ + a{k}w{k})

∥∥ ≤ Kρ

(1− a2∅)1/2
, K = 13104. (6)

However, our inequality (4) is a better bound in the regime ρ ln(e/ρ) < c0α.
To see this consider the case when f0 = sgn(a∅ + a{k}w{k}) is constant and

equal to ε ∈ {−1, 1}. Then from (5) we have ‖f − ε‖2 ≤ 16ρ2. It follows
that 1 − a2∅ = ‖f − Ef‖2 ≤ ‖f − ε‖2 ≤ 16ρ2. Thus, the right hand side of
(6) is greater than K/4, which gives no information. In the case when f0 is
not constant we have |Ef0| = |1− 2α|. Thus,

||a∅| − |1− 2α|| = ||Ef | − |Ef0|| ≤ |E(f − f0)| ≤ ‖f − f0‖ ≤ 4ρ.

It follows that 1− a2∅ ≤ 2(1− |a∅|) ≤ 2(2α+ 4ρ) ≤ 12α. Therefore, the right

hand side in the Rubinstein bound is in this case Kρ/
√

12α which is much
greater than ρ when α→ 0.

In the Section 3 we consider the case γ = 1 and we deal with the prob-
lem concerning [−1, 1]-valued functions defined on the cube {−1, 1}n with
uniform product probability measure. A function f : {−1, 1}n → R is called
affine if f(x) = a0+

∑n
i=1 aixi, where a0, a1, . . . , an ∈ R and x = (x1, . . . , xn).

We will denote the set of all affine functions by A. Moreover, let A[−1,1] ⊆ A
stands for the set of all affine functions satisfying |f(x)| ≤ 1 for every
x ∈ {−1, 1}n. Note that f ∈ A[−1,1] if and only if

∑n
i=0 |ai| ≤ 1. The

function f(x) = xi will be denoted by ri, i = 1, . . . , n. Let us also notice that
if f is [−1, 1]-valued then |aT | = |EwTf | ≤ E|wTf | ≤ 1.

In [JOW] the authors gave the following example. Take g : {−1, 1}n →
R given by g(x) = s−1n−1/2

∑n
i=1 xi. Note that g ∈ A. Define φ(x) =

−1(−∞,−1)(x)+x1[−1,1](x)+1(1,∞)(x) and take f = φ◦g. Clearly, f is [−1, 1]-
valued but may not be affine. The authors proved that limn→∞ distL2(f,A) =
O(e−s

2/4) and limn→∞ distL2(f,A[−1,1]) = Θ(s−1).
Here we prove that this is the worst case as far as the dependence of these

two quantities is concerned. Namely, we have the following theorem, which
is the analogue of (3) in the case of [−1, 1]-valued functions.
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Theorem 3. Let us take f : {−1, 1}n → [−1, 1] and define ρ = distL2(f,A).
Then distL2(f,A[−1,1]) ≤ 18√

ln(1/ρ)
.

2 Proof of Theorem 2

In this section we give a proof of Theorem 2. We begin with a simple lemma.

Lemma 1. Let 0 < α < β < 1 with α + β = 1 and let γ ∈ (0, 1]. Then

α−2+γ − β−2+γ

βγ − αγ
≤ 2− γ

γ
· α
−2+γ

βγ
.

Proof. Let x ∈ (0, 1) and µ ≥ 1. From the mean value theorem we have
1−xµ
1−x ≤ µ. Applying this with µ = 2−γ

γ
and x = (α/β)γ yields an equivalent

version of the statement.

Proof of Theorem 2. Let k be given by Theorem 1. Let h = f− (a∅+a{k}xk)

and h̃ = f − sgn(a∅ + a{k}xk). Moreover, let δ = ‖h‖. It follows that δ ≤ 1.
Note that for every u ∈ R and ε ∈ {−1, 1} we have |u − sgn(u)| ≤ |u − ε|.
Therefore,

|ε− sgn(u)| ≤ |ε− u|+ |u− sgn(u)| ≤ 2|u− ε|. (7)

It follows that |h̃| ≤ 2|h|. Thus, using the fact that h̃ is {−2, 0, 2}-valued,
we have

P(h̃ 6= 0) =
1

4
‖h̃‖2 ≤ ‖h‖2 = δ2.

Let us consider the expansion h̃ =
∑

T ãTwT . Clearly, ãT = aT for T 6= ∅, {k}.
Using (2) we obtain

4δ4/q ≥ 4P(h̃ 6= 0)2/q = ‖h̃‖2q =

∥∥∥∥∥∑
T

ãTwT

∥∥∥∥∥
2

q

≥

∥∥∥∥∥∑
T

cq(α, β)|T |ãTwT

∥∥∥∥∥
2

2

=
∑
T

cq(α, β)2|T |ã2T ≥ cq(α, β)2
∑
|T |≤1

ã2T ,

where q ∈ [1, 2]. Using Lemma 1 with γ = 2− 2/q we obtain

∑
|T |≤1, T 6=∅,{k}

ã2T ≤
∑
|T |≤1

ã2T ≤
4δ4/q

cq(α, β)2
= 4δ4/qαβ· α

− 2
q − β−

2
q

β2− 2
q − α2− 2

q

≤ 4δ4/q

q − 1

(
α

β

)1− 2
q

.
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Take 1
q

= 1− 1
ln(e2/δ)

∈ [1
2
, 1]. Note that (α/β)1−2/q ≤ α1−2/q ≤ α−1. It follows

that ∑
|T |≤1, T 6=∅,{k}

ã2T ≤ 4δ4α−1e
4 ln(1/δ)

ln(e2/δ) ln
(
e2/δ

)
≤ 4e4δ4α−1 ln

(
e2/δ

)
.

From Theorem 1 we have ρ ≤ δ ≤ 8
√
ρ. Thus,

4e4δ4α−1 ln
(
e2/δ

)
≤ 28e4α−1δ2ρ ln(e2/ρ) ≤ 3

4
δ2.

Note that a2∅ + a2{k} = 1− δ2. We deduce

1− ρ2 =
∑
|T |≤1

a2T = a2∅ + a2{k} +
∑

|T |≤1, T 6=∅,{k}

ã2T ≤ 1− δ2 +
3

4
δ2 = 1− 1

4
δ2.

Therefore, δ ≤ 2ρ.
The inequality (5) follows from (7).

Remark. The condition ρ ln(e2/ρ) ≤ 1
29e4

α cannot be significantly improved.
Indeed, if we take f : {−γ, γ−1}2 → {−1, 1} given by

f(x1, x2) = 2(β −
√
βαx1)(β −

√
βαx2)− 1,

see the remark after the proof of Theorem 5.8 in [JOW], then we obtain
ρ = 2αβ ≤ 2α and δ = 2β3/2α1/2. Thus δ =

√
2ρβ ≥

√
ρ/2.

One can easily see that if we replace our assumption ρ ln(e2/ρ) ≤ 1
29e4

α by
a slightly stronger condition, say ρ ln2(e2/ρ) ≤ α then we obtain δ ≤ ρ+o(ρ),
which means that

∑
|T |≤1, T 6=∅,{k} a

2
T = o(ρ2) and a2∅ + a2{k} ≥ 1− ρ2 − o(ρ2).

3 Proof of Theorem 3

We need the following lemma due to P. Hitczenko, S. Kwapień and K.
Oleszkiewicz.

Lemma 2. ([HK], Theorem 1 and [Ol2], Theorem 1) Let a1 ≥ a2 ≥ . . . ≥
an ≥ 0 and let us take S : {−1, 1}n → R given by S =

∑n
i=1 airi. Then for

t ≥ 1 we have

P (|S| ≥ ‖S‖) > 1

10
(8)
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and

‖S‖t ≥
1

4

√
t
(∑

i>t

a2i

)1/2
. (9)

We give a proof of Theorem 3.

Proof of Theorem 3 . Step 1. If f =
∑

T aTwT then distL2(f,A) = ‖f − S‖,
where S =

∑
|T |≤1 aTwT . For every u ∈ [−1, 1] we have |x−u| ≥ |x−φ(x)| for

all x ∈ R. Taking x = S and u = f we obtain E(|S| − 1)2+ = ‖S − φ(S)‖2 ≤
‖S − f‖2 ≤ ρ2. For all g ∈ A[−1,1] we have

‖g − f‖ ≤ ‖g − S‖ + ‖S − f‖ ≤ ‖g − S‖ + ρ.

Therefore,
distL2(f,A[−1,1]) ≤ distL2(S,A[−1,1]) + ρ. (10)

It suffices to prove that E(|S| − 1)2+ ≤ ρ2 implies an appropriate bound on
distL2(S,A[−1,1]), whenever S = a0 +

∑n
i=1 airi, where a0, a1, . . . , an ∈ R.

Step 2. Suppose that for all n ≥ 1 we can prove that E(|S| − 1)2+ ≤ ρ2

implies distL2(S,A[−1,1]) ≤ M for some M > 0, assuming that a0 = 0. Then

we can deal with the case a0 6= 0 as follows. Let us take S̃ : {−1, 1} ×
{−1, 1}n → R given by S̃ = a0x0 +

∑n
i=1 aixi. Clearly, E(|S̃|−1)2+ = E(|S|−

1)2+ ≤ ρ2. We can find a [−1, 1]-valued function S̃0 = b0x0 +
∑n

i=1 bixi such

that
∥∥∥S̃ − S̃0

∥∥∥ ≤M . Take S0 = b0+
∑n

i=1 bixi. Now it suffices to observe that

the function S0 is [−1, 1]-valued and to notice that
∥∥∥S̃ − S̃0

∥∥∥ = ‖S − S0‖.
Step 3. Take S =

∑n
i=1 airi. Without loss of generality we can assume

that 1 ≥ a1 ≥ a2 ≥ . . . ≥ an ≥ 0. Let τ = max{t ≥ 1 :
∑t

i=1 ai ≤ 1}.
Clearly, τ ≥ 1. If f is already in A[−1,1] then there is nothing to prove.
Therefore we can assume that τ < n. We can also assume that ρ ≤ 1/3,
since otherwise we have

distL2(f,A[−1,1]) ≤ distL2(f, 0) = ‖f‖ ≤ 1 ≤ 18√
ln(1/ρ)

.

Let A = {|S| ≥ 1
2
‖S‖t}. For t ≥ 1 we have

E|S|t = E|S|t1A + E|S|t1Ac ≤
√

E|S|2t
√

P(A) +
1

2t
E|S|t.
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Since by the Khinchine inequality we have (E|S|2t)1/2t ≤
√

2t−1
t−1 (E|S|t)1/t, we

arrive at

P
(
|S| ≥ 1

2
‖S‖t

)
≥
(

1− 1

2t

)2
(E|S|t)2

E|S|2t
≥ 1

4

(E|S|t)2

E|S|2t
≥ 1

4

(
t− 1

2t− 1

)t
.

By the Chebyshev inequality we obtain

P (|S| ≥ 1 + ε) ≤
E(|S| − 1)2+

ε2
≤ ρ2

ε2
, (11)

for all ε > 0. Let t ≥ 1 and assume that ‖S‖t > 2. Take ε = 1
2
‖S‖t − 1 > 0.

We get
1

4

(
t− 1

2t− 1

)t
≤ P

(
|S| ≥ 1

2
‖S‖t

)
≤ ρ2(

1
2
‖S‖t − 1

)2 .
It follows that

‖S‖t ≤ 2 + 4ρ

(
2t− 1

t− 1

)t/2
which is also true in the case ‖S‖t ≤ 2. From inequality (9) we obtain

1

4

√
t
(∑

i>t

a2i

)1/2
≤ ‖S‖t ≤ 2 + 4ρ

(
2t− 1

t− 1

)t/2
. (12)

Step 4. We consider the case τ ≥ 2
ln 3

ln(1/ρ) ≥ 1. Let us now take
t = 2

ln 3
ln(1/ρ) ≥ 2 > 1 and define S1 =

∑
i≤ 2

ln 3
ln(1/ρ) airi. Notice that∑

i≤ 2
ln 3

ln(1/ρ) ai ≤
∑

i≤τ ai ≤ 1 . Thus, S1 ∈ A[−1,1]. Moreover, since t ≥ 2,

we have ρ
(
2t−1
t−1

)t/2 ≤ ρ3t/2 = 1 and therefore by (12) we have

distL2(S,A[−1,1]) ≤ ‖S − S1‖ =

 ∑
i> 2

ln 3
ln(1/ρ)

a2i

1/2

≤ 24√
2

ln 3
ln(1/ρ)

.

In this case (10) yields

distL2(f,A[−1,1]) ≤
24√

2
ln 3

ln(1/ρ)
+ ρ ≤ 18√

ln(1/ρ)
.
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Step 5. We are to deal with the case τ < 2
ln 3

ln(1/ρ). Let us take S2 =∑
i≥τ+2 airi. From inequality (8) we have

P

(
|S| ≥

∑
i≤τ+1

ai + ‖S2‖

)
≥ 1

2τ+1
P (|S2| ≥ ‖S2‖) ≥

1

2τ+1
· 1

10
≥ 1

20
ρ

2 ln 2
ln 3 .

Note that
∑

i≤τ+1 ai > 1. Therefore, from inequality (11) we obtain

P

(
|S| ≥

∑
i≤τ+1

ai + ‖S2‖

)
≤ ρ2(∑

i≤τ+1 ai + ‖S2‖ − 1
)2 .

It follows that ∑
i≤τ+1

ai + ‖S2‖ − 1 ≤
√

20ρ1−
ln 2
ln 3 .

Take S1 =
∑τ

i=1 airi+(1−(a1+. . .+aτ ))rτ+1. Clearly, S1 ∈ A[−1,1]. Moreover,

‖S − S1‖ =
(
(1− (a1 + . . .+ aτ )− aτ+1)

2 + ‖S2‖2
)1/2

≤ |a1 + . . .+ aτ + aτ+1 − 1|+ ‖S2‖ ≤
√

20ρ1−
ln 2
ln 3 .

Therefore, from (10) we have

distL2(f,A[−1,1]) ≤
√

20ρ1−
ln 2
ln 3 + ρ ≤ 18√

ln(1/ρ)
.

Remark. If we perform our calculation with ln(2.03) instead of ln 3 we will
obtain the theorem with a constant 14.5 instead of 18.

Acknowledgements

I would like to thank Prof. Krzysztof Oleszkiewicz for his useful comments.
I would also like to thank the anonymous referee for his comment regarding
the statement of Lemma 1.

9



References

[A] K. J. Arrow, A difficulty in the concept of social welfare, Journal of
Political Economy 58(4), 1950, 328–346.

[Be] W. Beckner, Inequalities in Fourier analysis, Annals of Math. 102
(1975), 159–182.

[Bo] A. Bonami, Etude des coefficients Fourier des fonctiones de Lp(G), Ann.
Inst. Fourier 20 (1970), 335–402.

[D] I. Dinur, The PCP theorem by gap amplification, Journal of the ACM
54, no. 3 (2007), article 12.

[DS] I. Dinur, S. Safra, On the hardness of approximating minimum vertex
cover, Annals of Mathematics, 162 (2005), 439–485.

[F] E. Friedgut, Boolean functions with low average sensitivity depend on
few coordinates, Combinatorica 18 (1998), 27–35.

[FKN] E. Friedgut, G. Kalai and A. Naor, Boolean functions whose Fourier
transform is concentrated on the first two levels, Advances in Applied
Mathematics 29, no. 3 (2002), 427–437.

[G1] L. Gross, Logarithmic Sobolev inequalities, Amer. J. Math. 97 (1975),
1061–1083.

[G2] L. Gross, Hypercontractivity, logarithmic sobolev inequalities and appli-
cations: a survey of surveys, preprint, 2005.
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