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Abstract

In this paper we study a sixth order Cahn-Hilliard type equation that arises as
a model for the faceting of a growing surface. We show global in time existence of
weak solutions and uniform in time a priori estimates in the H3 norm. These bounds
enable us to show the uniqueness of weak solutions.
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1 Introduction

During the last two or three decades it has become popular to model the evolu-
tion of thin solid �lms in terms of continuum theory. One example for a thin �lm
approximation of a surface di�usion based process that describes the faceting of a
growing surface has been given by Savina et al. [3]. It can be extended to more
complex self-assembly systems such as quantum dots [5-8]. However here, we stick to
the one-material model established before. Additional information on self-arranging
nano-surfaces, quantum dots and faceting of growing surfaces can be found in the
references mentioned above. Mathematically, the problem is interesting and chal-
lenging, since the regularizing Wilmore term in the surface energy results, when
applying a long wave approximation, in a sixth order term that dominates the semi-
linear partial di�erential equation. More precisely, the model describes an evolving
surface, a graph of function h : Ω ⊂ R2 × [0, T ] → R. The surface is governed in Ω
by

ht =
D

2
|∇h|2+∆2h+∆3h−∆[β(h2

yhxx+h2
xhyy+4hxhyhxy)+α(h2

xhxx+h2
yhyy)]. (1)

Here, α, β > 0 are anisotropy coe�cients, D > 0 is a parameter related to the
deposition rate, ∆ is the standard Laplacian and subscripts indicate di�erentiation
with respect to the noted variables. Furthermore, as described in the derivation of
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this equation (see Savina et al. [3] or Korzec [6]), the overall surface is in a moving
frame. As usually, an initial condition supplements the problem,

h(x, y, 0) = h0(x, y), for (x, y) ∈ Ω (2)

and also boundary conditions have to be imposed. There are various possibilities,
but the two most common ones are given by de�ning the domain as

Ω = R2 or Ω = T2 ,

where T2 is the �at torus. The latter one yields a periodic surface, it seems as realistic
as an in�nite domain. Hence we choose the bounded version to gain additional
technical advantages in the analysis.

We establish the existence of global weak solutions, i.e. we show that there exists
a function h ∈ C([0, T ], H3) with ht ∈ L∞((0, T ), H−3), such that h satis�es (1) in
the distributional sense.

The main result is stated below, it will be proved in Section 3.

Theorem 1 Let us assume that h0 ∈ H3(T2), then there exists a unique weak solu-

tion (1), which is well-de�ned on [0,∞).

Before we proceed with the proof, we want to record the structure of the problem,
which has also been found in the originating paper [3]. Basically, equation (1) is a
perturbed gradient system

ht =
D

2
|∇h|2 + ∆H. (3)

For a proper de�nition of H, see (4) below.
It turns out that getting an a priori estimate in H3 is the crucial part of the work,

this is the content of Theorem 4. We achieve that by a bootstrapping argument,
where we use the constant variation formula representation of the solution. On the
other hand the H2 estimates are much easier to establish. We take advantage of the
boundedness of the domain and availability of the Sobolev inequalities. It turns out
that we cannot repeat this part of the argument on an unbounded domain, e.g. R2.

Once we set the objectives, we describe the methods to achieve that goal. We use
the notation and the guidance of the semigroup theory, see [3]. From our perspective,
problem (1) does not justify the full-�edged theory. We choose an easier approach
that bases on Fourier series.

Here, we are content with establishing global in time existence. We do not study
here the asymptotic behavior of the system. We postpone it for a future work.

We should also mention, that [6], [7] and [8] are the only closely related papers
we are aware of. In [6] the authors are concerned with the one-dimensional version
of the same problem. However, the approach applied there is completely di�erent,
for the authors use the Galerkin method. This general tool is not best suited for the
regularity study, so that they have to overcome additional technical di�culties which
are absent here, in their uniqueness result. Moreover, [6] presents also numerical
results on coarsening and stationary states.

The other papers are [7] and [8]. The authors study a similar sixth order prob-
lem, which also belongs to a class of Cahn-Hilliard equations. The motivation to
study that problem comes from a di�erent physical phenomenon, namely the phase
transitions in ternary oil-water-surfactant systems considered in a bounded domain.
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They obtain similar results by di�erent methods, i.e. the typical tools of the theory
of parabolic equations due to Solonnikov [9].

Notation We will clarify the notation we use. We identify the �at torus T2 with
[0, 2π)2, (x, y) is a generic point of T2. By dV = dxdy we denote the Lebesgue
measure. For h : T2 → R, we will write

‖h‖ = ‖h‖L2(T2), ‖∇h‖ =
(∫

T2

((hx)2 + (hy)2) dV
)1/2

.

Since we work on the torus, in place of the Fourier transform we consider the Fourier
series, which may be written formally as

h(x, y) =
∑

(k,l)∈Z2

e−i(xk+yl)ĥ(k, l) =
∫

R2

e−i(xk+yl)ĥ(k, l) dµ(k, l),

where µ is the standard counting measure supported on Z2. In this formula we use

ĥ(k, l) =
1

(2π)2

∫
T2

h(x, y)ei(xk+yl) dV (x, y).

For the sake of consistency we also recall the inverse Fourier transform for f : Z2 →
R. Namely, we de�ne

f̌(x, y) =
∑

(k,l)∈Z2

e−i(xk+yl)f(k, l).

Moreover, we notice that for any s ∈ R, the norm in the Sobolev space Hs(T2) is
equivalent to

‖f‖Hs(T2) = ‖(1 + | · |2)s/2f̂(·)‖L2(µ).

2 Local in time existence

We want to discover as much structure of (1) as possible. For this purpose we de�ne
a vector �eld

F =
α

3
(h3
x, h

3
y) + β(h2

yhx, h
2
xhy)

and the functions

Ψ = β(h2
yhxx + h2

xhyy + 4hxhyhxy) + α(h2
xhxx + h2

yhyy),

Φ =
1
2

(hxx + hyy)2 − 1
2

(h2
x + h2

y) +
α

12
(
h4
x + h4

y

)
+
β

2
h2
xh

2
y.

Note that div F = Ψ. Subsequently we shall write

H = ∆h+ ∆2h−Ψ = div (∇h+∇∆h− F ). (4)

Thus, indeed (1) takes the form (3). We notice that due to the periodic boundary
condition the average of H vanishes,

∫
T2 H dV = 0.
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Finally, we de�ne the functional

L =
∫

T2

Φ dV. (5)

The �rst stage of our analysis of (1) is a study of the following linear equation

ht = ∆3h+ f, h(0, ·) = h0(·), (6)

where f : T2 → R is a given function whose regularity has to be speci�ed yet.
Although we �rst treat (6), we keep in mind that we �nally want to consider

f(h) =
D

2
|∇h|2 + ∆2h−∆Ψ(h). (7)

We proceed formally by applying the Fourier transform to both sides, this yields,

d

dt
ĥ(t, ξ) = −|ξ|6ĥ(t, ξ) + f̂ , ĥ(0, ξ) = ĥ0(ξ).

After solving this ODE we obtain an explicit formula for the Fourier transform of
the solution,

ĥ(t, ξ) = e−|ξ|
6tĥ0(ξ) +

∫ t

0
e−|ξ|

6(t−s)f̂(s, ξ) ds.

Thus, we can write

h(t, (x, y)) =
(
e−|ξ|

6tĥ0(ξ) +
∫ t

0
e−|ξ|

6(t−s)f̂(s, ξ) ds
)∨

(x, y).

After introducing the following shorthand

e∆3tf =
(
e−|·|

6tf̂(·),
)∨

(8)

we can write a solution of (6) in the form:

h(t) = e∆3th0 +
∫ t

0
e∆3(t−s)f(s) ds.

Once we derived the above constant variation formula for solutions to (6), we intro-
duce the operator

F(h)(t, ·) = (e∆3th0)(·) +
∫ t

0
e∆3(t−s)f(h(s, ·)) ds (9)

with f given by (7). We notice that the above F is well-de�ned on the following
space

XT = C
(
[0, T ];H3(T2)

)
.

The ball centered at zero with radius M will be denoted by XM
T ,

XM
T = XT ∩ {v : sup

t∈[0,T ]
||v(t)||H3 ≤M}.
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Theorem 2 Let us assume that h0 ∈ H3 and let us �x M/2 > ||h0||H3 . Then, there

exists T > 0 such that F : XM
T → XM

T and F is a contraction on XM
T . In particular,

there exists a unique solution of the integral equation F(h) = h in XM
T .

Remark. The solution constructed in the above theorem will be called a mild

solution to (1).

Proof. We shall write L2 for L2(µ), where µ is the counting measure. For any s ∈ R
we will use Hs = Hs(T2). We shall �rst check that the operator de�ned by (8) is
continuous on Hs for any s and all t > 0. Indeed,

‖e∆3th0‖Hs = ‖(1 + |ξ|2)s/2(e∆3th0)∧(ξ)‖L2 = ‖(1 + |ξ|2)s/2e−|ξ|
6tĥ0(ξ)‖L2

≤ ‖(1 + |ξ|2)s/2ĥ0(ξ)‖L2 = ‖h0‖Hs .

We also want to use continuity of the function, t 7→ e∆3th0 ∈ C([0, T ];Hs). It follows
from the Lebesgue's dominated convergence theorem, namely

lim
t→t0
‖(e∆3t − e∆3t0)h0‖Hs = lim

t→t0
‖(1 + |ξ|2)s/2(e−|ξ|

6t − e−|ξ|6t0)ĥ0(ξ)‖L2 = 0.

We shall establish a regularizing property of F which is a crucial point in our
theory. We claim that for any p ∈ R, 0 < ε, 0 ≤ t0 ≤ t and a function v ∈
C([t0, t], Hp−6(1−ε)) we have

‖
∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp ≤ C(ε) et(t− t0)ε ‖v‖C([0,t];Hp−6(1−ε)). (10)

Indeed, let us notice

‖
∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp = ‖(1 + |ξ|2)p/2
(∫ t

t0

e∆3(t−s)v(s, ·) ds
)∧

(ξ)‖L2

= ‖(1 + |ξ|2)p/2
∫ t

t0

e−|ξ|
6(t−s)v̂(s, ξ) ds‖L2

≤
∫ t

t0

‖(1 + |ξ|2)p/2e−|ξ|
6(t−s)v̂(s, ξ)‖L2 ds.

At this point we make a simple observation, for t > s > 0

−|ξ|6(t− s) ≤ t− (1 + |ξ|6)(t− s) ≤ t− 1
4

(1 + |ξ|2)3(t− s).

As a result, for any ε ∈ (0, 1] we have

‖
∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp ≤

et
∫ t

t0

‖e−
1
4

(1+|ξ|2)3(t−s)(t− s)1−ε(1 + |ξ|2)3(1−ε) 1
(t− s)1−ε (1 + |ξ|2)

p
2
−3(1−ε)v̂(s, ξ)‖L2 ds.

If y = (1 + |ξ|2)3(t− s), then

e−
1
4

(1+|ξ|2)3(t−s)(t− s)1−ε(1 + |ξ|2)3(1−ε) = e−
1
4
yy1−ε ≤ C(ε),
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where C(ε) is a constant that may vary during the proof. Therefore,

‖
∫ t

t0

e∆3(t−s)v(s, ·) ds‖Hp ≤ etC(ε)
∫ t

t0

‖ 1
(t− s)1−ε (1 + |ξ|2)

p
2
−3(1−ε)v̂(s, ξ)‖L2 ds

≤ et
C(ε)
ε

(t− t0)ε sup
s∈[0,t]

‖v(s, ·)‖Hp−6(1−ε) .

Thus, we have derived (10).
Subsequently, we take p = 3 and we consider (10) with t0 = 0. In order to prove

that F maps XT into XT one has to verify that for any h ∈ XM
T , the following

bound holds
sup
t∈[0,T ]

‖f(h(t, ·))‖H3−6(1−ε) ≤ C(M) <∞, (11)

where C(M) is independent of h.
We select 0 < ε < 1/3. Obviously, by the de�nition of the norm and our choice

of ε, we see that

‖∆2h‖H3−6(1−ε) ≤ C‖h‖H7−6(1−ε) ≤ C‖h‖H3 .

Since the embedding
H2(T2) ↪→ C(T2) ∩ L∞(T2) (12)

is valid (see [1]), then for any element h ∈ XM
T we have

‖h2
x‖2H3−6(1−ε) ≤ ‖h2

x‖2L2
=
∫

T2

h4
x dV ≤ ‖hx‖2∞

∫
T2

h2
x dV ≤ C‖h‖2H3‖hx‖2L2

≤ C‖h‖4H3 ≤ CM4.

We conclude that

sup
t∈[0,T ]

‖|∇h(t)|2‖C([0,t];H3−6(1−ε)) ≤ CM
2.

Finally, if we restrict ε even further by requiring that ε < 1/6, then we have the
following estimate for the nonlinearity,

‖∆(hxhyhxy)‖H3−6(1−ε) ≤ C‖hxhyhxy‖H5−6(1−ε) ≤ C‖hxhyhxy‖L2

≤ C‖hx‖∞‖hy‖∞‖hxy‖L2 ≤ C‖h‖3H3 .

After combining these observation, we conclude that

sup
t∈[0,T ]

‖∆Ψ(h)‖C([0,t];H3−6(1−ε)) ≤ C(M2 +M3).

This implies that F : XM
T → XM

T , where T is so chosen, that for given M we have
C(ε)eTT ε(M +M2 +M3) < M/2.

Our next goal is to prove that F : XM
T → XM

T is a contraction for su�ciently
small T > 0. For this purpose, because of (10) it is enough to show that f is
Lipschitz continuous in XM

T ,

‖f(v)− f(u)‖C([0,t];H3−6(1−ε)) ≤ C(M)‖u− v‖C([0,t];H3) (13)
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for a positive ε ∈ (0, 1/3). Once we establish (13), taking eTT ε < 1
2C(M)C(ε) will

�nish the proof.
Now we show (13). Here the linear term ∆2v does not cause any problems, while

some more work has to be invested for the nonlinearities. In order to deal with the
term |∇v|2, we observe that for ε < 1/2 the number s = 3 − 6(1 − ε) is negative.
Therefore,

‖u2
x − v2

x‖Hs ≤ ‖u2
x − v2

x‖L2 ≤ C‖ux − vx‖L∞‖ux + vx‖L∞ ≤ CM‖u− v‖H3 .

In the above estimates we used the embedding (12). In order to �nish the proof we
consider the nonlinear term ∆(vxvyvxy). We have

‖∆uxuyuxy −∆vxvyvxy‖Hs ≤ ‖uxuyuxy − vxvyvxy‖Hs+2

≤ ‖(ux − vx)uyuxy‖Hs+2 + ‖vxuxy(uy − vy)‖Hs+2 + ‖vxvy(uxy − vxy)‖Hs+2 .

Note that for ε ∈ (0, 1/6) we have s+ 2 < 0, hence ‖ · ‖Hs+2 ≤ C‖ · ‖L2 . Therefore

‖(ux − vx)uyuxy‖Hs+2 ≤ C‖(ux − vx)uyuxy‖L2 ≤ C‖ux − vx‖∞‖uy‖∞‖uxy‖L2

≤ CM2‖u− v‖H3

and similarly
‖vxuxy(uy − vy)‖Hs+2 ≤ CM2‖u− v‖H3 .

Finally, we have

‖vxvy(uxy − vxy)‖Hs+2 ≤ C‖vxvy(uxy − vxy)‖L2 ≤ C‖vx‖∞‖vy‖∞‖uxy − vxy‖L2

≤ CM2‖u− v‖H3 .

The same technique may be used to estimate the other two terms. We have derived
(13). �

Once we have established existence of a unique �xed point of F , we will prove that
the solution of the equation F(h) = h enjoys some additional regularity. Namely,
any �xed point is locally Hölder continuous in the norm ‖ · ‖H3(T2) with respect to
time.

Lemma 1 Let us take any p ∈ R. For every 0 < a ≤ 1 there exists a constant

Ca > 0 such that for δ > 0

‖(e∆3δ − Id)g‖Hp ≤ Ca
a
δa‖g‖H6a+p .

Proof. We begin with an observation about the exponential function. Namely,
there exists a constant Ca such that for x ≥ 0 we have

1− e−x ≤ Ca
a
xa.

Indeed, for x = 0 both sides are equal, hence it is enough to show the inequality for
the derivatives e−x ≤ Cax

a−1 for some Ca > 0. But this is obvious, since for a = 1
we have e−x ≤ 1 and for a ∈ (0, 1) the function (0,∞) 3 x 7→ exxa−1 has in�nite
limits when x→ 0+ and x→∞.
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We use this observation in the following estimate,

‖(e∆3δ − I)g‖Hp = ‖(e−|ξ|6δ − 1)ĝ(1 + |ξ|2)p/2‖L2 ≤
Ca
a
δa‖ĝ|ξ|6a(1 + |ξ|2)p/2‖L2

≤ Ca
a
δa‖g‖H6a+p . �

Now we can show better regularity of the �xed point constructed in the previous
theorem. Here is the �rst step in this direction.

Lemma 2 The unique solution of the equation F(h) = h, where F is given by

formula (9), is locally Hölder continuous in the norm ‖ ·‖H3(T2) with respect to time.

More precisely, there exist constants a, ε1 > 0 such that

‖h(t+ δ)− h(t)‖H3 ≤ C(δt−1 + δatε1 + δε1)

for a constant C = C(ε1,M, a).

Proof. We have the following estimate

‖h(t+ δ, ·)− h(t, ·)‖H3 ≤ ‖(e∆3δ − I)e∆3th0‖H3

+ ‖
∫ t

0
(e∆3δ − I)e∆3(t−s)f(h(s, ·)) ds‖H3

+ ‖
∫ t+δ

t
e∆3(t+δ−s)f(h(s, ·)) ds‖H3 .

We observe that the �rst term on the RHS can be bounded as follows,

‖(e∆3t+δ − e∆3t)h0‖H3 = ‖(1 + |ξ|2)3/2e−|ξ|
6t(1− e−|ξ|6δ)ĥ0‖L2

≤ C‖(1 + |ξ|2)3/2e−|ξ|
6t|ξ|6tδ1

t
ĥ0‖L2

≤ C
δ

t
‖(1 + |ξ|2)3/2ĥ0‖L2 = C

δ

t
‖h0‖H3 ≤ CM

δ

t
.

This means that the �rst term is even locally Lipschitz continuous. From (10) and
(11) we deduce

‖
∫ t+δ

t
e∆3(t+δ−s)f(h(s, ·)) ds‖H3 ≤ C(ε)Mδε.

Finally, using Lemma 1 for any positive a and formula (10) with t0 = 0 and any
ε1 > 0, we obtain

‖
∫ t

0
(e∆3δ − I)e∆3(t−s)f(h(s, ·)) ds‖H3 ≤

∫ t

0
Ca
δa

a
‖e∆3(t−s)f(h(s, ·))‖H3+6a ds

≤ Ca
δa

a
tε1‖f(h)‖C([0,t];H3+6a−6(1−ε1)).

Once we apply (11) with a + ε1 < ε < 1/6 to the above term, we will come to the
desired conclusion, i.e.

‖
∫ t

0
(e∆3δ − I)e∆3(t−s)f(h(s, ·)) ds‖H3 ≤ Ca

δa

a
tε1C(M). �

Next is our regularity theorem, which explains that h, the mild solution to (1),
is in fact a weak solution to (1), in the sense that h ∈ C([0, T ];H3) and ht ∈
C((0, T );H−3) and the equation is satis�ed in the distributional sense.
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Theorem 3 The solution h ∈ XM
T of the integral equation F(h) = h is di�erentiable

with respect to time in the H−3 norm and

ht(t, ·) = ∆3h(t, ·) + f(h(t, ·))

in the distributional sense, with initial condition h(0, ·) = h0(·). As a result, it is a

weak solution of (1).

Proof. We shall show that h is a limit (in the C1([a, T − a];H3) norm) of functions
with the desired property. This approach was used in the proof of [3, Lemma 3.2.1].

For t > δ > 0 we de�ne

hδ(t, ·) = e∆3th0(·) +
∫ t−δ

0
e∆3(t−s)f(h(s, ·)) ds.

Then,

dhδ

dt
(t, ·) = ∆3e∆3th0(·) + e∆3δf(h(t− δ, ·)) +

∫ t−δ

0
∆3e∆3(t−s)f(h(s, ·)) ds,

where we treat the above functions like elements of H−3(T2). Indeed, using our
standard arguments we notice

‖∆3e∆3th0(·)‖H−3 < CM, ‖e∆3δf(h(t− δ, ·))‖H−3 < CM.

Moreover, for any s ∈ R

‖∆3e∆3tg(·)‖Hs ≤ ‖|ξ|6e−|ξ|6t(1 + |ξ|2)s/2ĝ(·)‖L2 ≤
C

t
‖(1 + |ξ|2)

s
2 ĝ(·)‖L2 =

C

t
‖g‖Hs .

Hence the norm of ∆3e∆3t in L(Hs, Hs) may be bounded by C/t. As a result we
arrive at

‖
∫ t−δ

0
∆3e∆3(t−s)f(h(s, ·)) ds‖H−3 ≤ sup

s∈[0,t−δ]
‖f(h(s, ·))‖H−3

∫ t−δ

0

1
t− s

ds

≤ sup
s∈[0,t−δ]

‖f(h(s, ·))‖H3−6(1−ε) ln |δ/t|

≤ C(M) ln |δ/t| <∞.

We have
dhδ

dt
(t, ·) = e∆3δf(h(t− δ, ·)) + ∆3hδ(s, ·).

In order to �nish the proof we have to show that

‖hδ(t, ·)− h(t, ·)‖H−3 −−−→
δ→0

0,

e∆3δf(h(t− δ, ·))
‖·‖H−3−−−−→
δ→0

f(h(t, ·)), ∆3hδ(s, ·)
‖·‖H−3−−−−→
δ→0

∆3h(s, ·)

and use the limit di�erentiation theorem.
Our �rst observation is

‖h(t, ·)− hδ(t, ·)‖H3 = ‖
∫ t

t−δ
e∆3(t−s)f(h(s, ·)) ds‖H3

≤ C(T, ε)δε sup
s∈[0,t]

‖f(h(s, ·))‖H3−6(1−ε) ≤ C(T,M)δε −−−→
δ→0

0.
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Secondly, we note

‖e∆3δf(h(t− δ, ·))− f(h(t, ·))‖H−3 ≤ ‖(e∆3δ − Id)f(h(t− δ, ·))‖H−3

+ ‖f(h(t− δ, ·))− f(h(t, ·))‖H−3 .

Due to (13), we arrive at

‖f(h(t− δ, ·))− f(h(t, ·))‖H−3 ≤ C(M)‖h(t− δ, ·)− h(t, ·)‖H3 −−−→
δ→0

0,

because h ∈ C([0, T ];H3). Moreover, using Lemma 1 we have

‖(e∆3δ − I)f(h(t− δ, ·))‖H−3 ≤
Cb
b
δb‖f(h(t− δ, ·))‖H6b−3 ≤ C

Cb
b
δb −−−→

δ→0
0,

because 6b− 3 ≤ 3− 6(1− ε) for su�ciently small b > 0. Finally, Theorem 2 implies
that,

‖∆3hδ(t, ·) − ∆3h(t, ·)‖H−3 = ‖
∫ t

t−δ
∆3e∆3(t−s)f(h(s, ·)) ds‖H−3

= ‖
∫ t

t−δ
∆3e∆3(t−s)(f(h(s, ·))− f(h(t, ·))) ds+

∫ t

t−δ
∆3e∆3(t−s)f(h(t, ·))) ds‖H−3

≤
∫ t

t−δ
‖∆3e∆3(t−s)‖(H−3→H−3)‖f(h(s, ·))− f(h(t, ·))‖H−3 ds

+‖
∫ t

t−δ
− d

ds

(
e∆3(t−s)f(h(t, ·)))

)
ds‖H−3

≤
∫ t

t−δ

C

t− s
‖h(t, ·)− h(s, ·)‖H3 ds+ ‖(e∆3δ − I)f(h(t, ·))‖H−3

≤
∫ t

t−δ

C(T )
t− s

(
(t− s)θ +

t− s
t− δ

)
ds+ C

Ca
a
δa

=
C

θ
C(T )

(
δε1

ε1
+

δ

t− δ
Ca
a
δa
)
−−−→
δ→0

0.

Moreover, the convergence is uniform for t in compact subsets of (0, T ). �

3 A priori estimates, global existence

In this Section we derive an a priori estimate in the space L2([0, T ];H3(T2)). Before
we present this main result, let us prove a useful bound

Lemma 3 For ρ, τ ≥ 0 we have

sup
y≥0

(1 + y)τe−ρy
3 ≤ C(τ) max{1, ρ−τ/3}. (14)

Proof. If y ≤ 1 then
(1 + y)τe−ρy

3 ≤ 2τ

and if y ≥ 1 then

(1 + y)τe−ρy
3 ≤ (2y)τe−ρy

3
= 2τρ−τ/3(ρy3)τ/3e−ρy

3 ≤ C(τ)ρ−τ/3. �
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Theorem 4 Let us assume that h is a weak solution to (1) and (2), which was

constructed in Theorem 2. In addition, we assume that h0 ∈ H3. Then, h ∈
L∞(0, T ;H3) and

‖h‖L∞(0,T ;H3) ≤ C3(h0, T ),

where the constant C(h0, T ) depends only of T and the initial data h0.

Proof. Step 1. Di�erentiating L with respect to time (see (5)) and integrating by
parts we obtain

dL
dt

=
∫

T2

(
∆h∆ht − (hxhxt + hyhyt) +

α

3
(
h3
xhxt + h3

yhyt
)

+ β
(
h2
yhxhxt + h2

xhyhyt
))

dV

=
∫

T2

(
∆2h+ (hxx + hyy)− α

(
h2
xhxx + h2

yhyy
)
− β

(
4hxhyhxy + h2

yhxx + h2
xhyy

))
ht dV

=
∫

T2

Hht dV.

Thus, since h is a weak solution of (1), then

dL
dt

=
∫

T2

H
(
D

2
|∇h|2 + ∆H

)
dV = −

∫
T2

|∇H|2 dV +
D

2

∫
T2

H|∇h|2 dV.

Since
∫

T2 H dV = 0, we have the Sobolev inequality∫
T2

H2 dV ≤ 2π
∫

T2

|∇H|2 dV.

Moreover,
D

2
H|∇h|2 ≤ 1

2π
H2 +

πD2

8
|∇h|4.

As a result,
dL
dt
≤ πD2

8

∫
T2

|∇h|4 dV ≤ C1 + C2L, (15)

where Ci = Ci(D,α, β) > 0, i = 1, 2, because we can �nd Di = Di(α, β) > 0, i = 1, 2
such that

|∇h|4 ≤ D1 +D2

(
−1

2
(h2
x + h2

y) +
α

12
(
h4
x + h4

y

)
+
β

2
h2
xh

2
y

)
≤ D1 +D2Φ.

Due to the Gronwall inequality we deduce from (15) that

L(t) ≤
(
C1

C2
+ L(0)

)
eC2t − C1

C2
,

so h is bounded in L∞([0, T ];H2(T2)) for a �xed T < ∞. Let us notice that this
bound is not uniform with respect to T > 0.

We keep the following observation in mind,

K−1‖u‖H2α ≤ ‖(Id−∆)αu‖L2 ≤ K‖u‖H2α . (16)

It will be used below.

11



Step 2. If α < 3
2 , then

‖h‖L∞(0,T ;H2α) ≤ C2α(h0, T ).

In order to show this bound we apply (Id − ∆u)α to both sides of the constant
variation formula

h(t) = e∆3th0(·) +
∫ t

0
e∆3(t−s)f(h(s, ·))s, (17)

where f is given by (7). Taking the L2 norms yields,

‖h‖H2α ≤ ‖h0‖H2α +
DK

2

∫ t

0
‖(Id−∆)αe∆3(t−s)|∇h(s, ·)|2‖ ds

+K

∫ t

0
‖(Id−∆)α+1e∆3(t−s)∆h‖ ds+K

∫ t

0
‖(Id−∆)αe∆3(t−s)∆h‖ ds

+K

∫ t

0
‖(Id−∆)α+1e∆3(t−s)div F‖ ds+K

∫ t

0
‖(Id−∆)αe∆3(t−s)div F‖ ds

= ‖h0‖H2α + I1 + I2 + I3 + I4 + I5,

where Ik, k = 1, . . . , 5 are ordered abbreviations for the �ve time integral terms. We
have I3 ≤ I2 and I5 ≤ I4. We will estimate separately the terms I1, I2 and I4.

With (14) it is easy to estimate I2,

|I2| = K

∫ t

0
‖(1 + | · |2)1+αe−|·|

6(t−s)(∆h)∧(s, ·)‖ ds

≤ C(α) essupt∈[0,T ]‖h‖H2(t)
∫ t

0
max{1, (t− s)−(1+α)/3} ds ≤ C2(h0, T ) <∞.

Here we use (1 + α)/3 < 1.
We shall deal with a representative term h3

x in I4, estimates for other three terms
h3
y, h

2
yhx, h

2
xhy in F are similar,

K

3

∫ t

0
(t− s)−

α+3/2
3 ‖h3

x‖ ds ≤
K

3

∫ t

0
(t− s)−

α+3/2
3 ‖hx‖3L6

ds

≤ CK
(
essupt∈[0,T ]‖h‖H2(t)

)3
∫ t

0
(t− s)−

α+3/2
3 ds ≤ C4(h0, T ) <∞.

We used here the assumption that α < 3/2 and the two-dimensional Sobolev em-
bedding

‖∇h‖Lp(T2) ≤ C‖∇2h‖L2(T2), p <∞.

We estimate I1 as follows,

I1 ≤ C(essupt∈[0,T ]‖|∇h|2‖(t))
∫ t

0
(t− s)−

α
3 ds ≤ C(α)(essupt∈[0,T ]‖∇h‖L4(t))2

≤ C(α)(essupt∈[0,T ]‖h‖H2(t))2 ≤ C1(h0, T ) <∞.

If we combine above results, then we come to the following conclusion,

‖h‖L∞(0,T ;H2α) ≤ C2α(h0, T ),

12



as desired.
Step 3. For α < 2 we show

‖h‖L∞(0,T ;H2α) ≤ C2α(h0, T ) + Ct
3−2α

6 ‖h0‖H3 ,

with the same method. We continue our calculations

‖h‖H2α ≤ ‖e∆3th0‖H2α +
DK

2

∫ t

0
‖(Id−∆)αe∆3(t−s)|∇h(s, ·)|2‖ ds

+K

∫ t

0
‖(Id−∆)α+2e∆3(t−s)h‖ ds+K

∫ t

0
‖(Id−∆)α+1e∆3(t−s)div F‖ ds

= ‖e∆3th0‖H2α + I1 + I2 + I4.

Observe that

‖e∆3th0‖H2α ≤ ‖(1 + | · |2)α−
3
2 e−|·|

6t(1 + | · |2)
3
2 ĥ0(·)‖ ≤ C(α)t−α/3+1/2.

Moreover,

|I2| ≤ K
∫ t

0
‖(1 + | · |2)α+1e−|·|

6(t−s)(1 + | · |2)ĥ(s, ·)‖ ds

≤ C(α)essupt∈[0,T ]‖h‖H2(t)
∫ t

0
(t− s)−

α+1
3 ds ≤ C2α(h0, T ),

since α < 2. Fix δ such that α < 2− δ. We then have

|I3| ≤
K

3

∫ t

0
‖(1 + | · |2)α+1+δe−|·|

6(t−s)(1 + | · |2)1/2−δĥ3
x(s, ·)‖ ds

≤ Cessupt∈[0,T ]‖h3
x‖H1−2δ(t)

∫ t

0
(t− s)−

α+1+δ
3 ds ≤ C(α, δ)essupt∈[0,T ]‖h‖H3−2δ(t).

We estimate I1 as before.
In particular, if α = 3

2 we obtain the desired result. �

Summing up, we can give a proof of Theorem 1. Namely, Theorem 3 yields local
in time existence of weak solutions while the estimates provided by Theorem 4 imply
global existence of solutions. Hence, it only remains to show uniqueness.

4 Uniqueness of the solutions

In this section we show that the weak solutions we constructed are indeed unique.

Theorem 5 Let us assume that h is a weak solution to (1) with the initial condition

(2), where h0 ∈ H3. Then, this is a unique solution.

Proof. By Theorem 4, any weak solution will be in L∞(0, T ;H3) provided that the
initial condition is in H3. Consider the equation for the di�erence, h = h1 − h2,
where h1 and h2 are two weak solutions with the same initial condition. Testing this
equation with h we arrive at the following identity,

1
2
d

dt
‖h‖2 + ‖∇∆h‖2 = ‖∆h‖2 +

∫
T2

[
D

2
(|∇h2|2 − |∇h1|2)h+ (F (h1)− F (h2))∇∆h].

(18)
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It is su�cient to estimate the nonlinear generic terms on the RHS. Let us look
at

I =
∫

T2

((h3
2,x − h3

1,x)∆hx = −
∫

T2

hx(h2
2,x + h2,xh1,x + h2

1,x)∆hx.

The term in the parenthesis may be bounded by 3K2, where

K = ‖h‖L∞(0,T ;H3).

Thus,

|I| ≤ 9
4ε
K4‖hx‖2 + ε‖∆hx‖2

where ε shall be chosen later.
We may bound the remaining cubic and the quadratic terms in the same way.

This yields the estimates,∣∣∣∣∫
T2

(F (h2)− F (h1))∇∆h
∣∣∣∣ ≤ C3(K)

ε
‖∇h‖2 + ε(

α

3
+ β)‖∇∆h‖2,∣∣∣∣D2

∫
T2

[(|∇h2|2 − |∇h1|2)h
∣∣∣∣ ≤ C2(K)

D

2
‖∇h‖2 +

D

4
‖h‖2.

As a result we obtain:

1
2
d

dt
‖h‖2+‖∇∆h‖2 ≤ ‖∆h‖2+

D

4
‖h‖2+C2(K)

D

2
‖∇h‖2+

C3(K)
ε
‖∇h‖2+ε(

α

3
+β)‖∇∆h‖2.

(19)
We now choose ε so that (α3 + β)ε = 1/2.

In order to continue, we need the interpolation lemma below.

Lemma 4 Let us suppose that u ∈ H3, then for any ε > 0 there is a constant Cε > 0
so that

‖∆u‖ ≤ Cε‖u‖+ ε‖∇∆u‖.

Proof. Let Cε = supx∈[0,∞) x
2 − εx3 <∞. Then,

‖∆u‖ = ‖| · |2û(·)‖ ≤ ‖Cεû(·) + ε| · |3û(·)‖ ≤ Cε‖u‖ + ε‖∇∆u‖. �

Combining this Lemma with ‖∇h‖ ≤ C(T2)‖∆u‖ we conclude

1
2
d

dt
‖h‖2 +

1
2
‖∇∆h‖2 ≤ Kε‖h‖2 +Mε‖∇∆h‖2.

We choose again ε, so that Mε = 1
2 . We apply Gronwall inequality to the resulting

estimate,
1
2
d

dt
‖h‖2 ≤ Kε‖h‖2.

Since h(0) = 0, we conclude that h(t) = 0 for all t ∈ [0, T ]. Uniqueness follows. �
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