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Abstract

We show that for any metric probability space (M,d, µ) with a subgaussian constant
σ2(µ) and any set A ⊂M we have σ2(µA) ≤ c log (e/µ(A)) σ2(µ), where µA is a restriction
of µ to the set A and c is a universal constant. As a consequence we deduce concentration
inequalities for non-Lipschitz functions.

1 Introduction

It is known that many high-dimensional probability distributions µ on the Euclidean space
Rn (and other metric spaces, including graphs) possess strong concentration properties. In
a functional language, this may informally be stated as the assertion that any sufficiently
smooth function f on Rn, e.g., having a bounded Lipschitz semi-norm, is almost a constant on
almost all space. There are several ways to quantify such a property. One natural approach
proposed by N. Alon, R. Boppana and J. Spencer [A-B-S] associates with a given metric
probability space (M,d, µ) its spread constant,

s2(µ) = sup Varµ(f) = sup

∫
(f −m)2 dµ,

where m =
∫
f dµ, and the sup is taken over all functions f on M with ‖f‖Lip ≤ 1. More

information is contained in the so-called subgaussian constant σ2 = σ2(µ) which is defined
as the infimum over all σ2 such that∫

etf dµ ≤ eσ
2t2/2, for all t ∈ R, (1.1)

for any f on M with m = 0 and ‖f‖Lip ≤ 1 (cf. [B-G-H]). This quantity may also be
introduced via the transport-entropy inequality relating the classical Kantorovich distance
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and the relative entropy from an arbitrary probability measure on M to the measure µ (cf.
[B-G]).

While in general s2 ≤ σ2, the latter characteristic allows one to control subgaussian tails
under the probability measure µ uniformly in the entire class of Lipschitz functions on M .
More generally, when ‖f‖Lip ≤ L, (1.1) yields

µ{|f −m| ≥ t} ≤ 2e−t
2/(σ2L2), t > 0. (1.2)

Classical and well-known examples include the standard Gaussian measure on M = Rn in
which case s2 = σ2 = 1, and the normalized Lebesgue measure on the unit sphere M = Sn−1

with s2 = σ2 = 1
n−1 . The last example was a starting point in the study of the concentration

of measure phenomena, a fruitful direction initiated in the early 1970s by V. D. Milman.
Other examples come often after verification that µ satisfies certain Sobolev-type inequal-

ities such as Poincaré-type inequalities

λ1Varµ(u) ≤
∫
|∇u|2 dµ,

and logarithmic Sobolev inequalities

ρEntµ(u2) = ρ

[ ∫
u2 log u2 dµ−

∫
u2 dµ log

∫
u2 dµ

]
≤ 2

∫
|∇u|2 dµ,

where u may be any locally Lipschitz function on M , and the constants λ1 > 0 and ρ > 0 do
not depend on u. Here the modulus of the gradient may be understood in the generalized
sense as the function

|∇u(x)| = lim sup
y→x

|u(x)− u(y)|
d(x, y)

, x ∈M

(this is the so-called “continuous setting”), while in the discrete spaces, e.g., graphs, we deal
with other naturally defined gradients. In both cases, one has respectively the well-known
upper bounds

s2(µ) ≤ 1

λ1
, σ2(µ) ≤ 1

ρ
. (1.3)

For example, λ1 = ρ = n− 1 on the unit sphere (best possible values, [M-W]), which can be
used to make a corresponding statement about the spread and Gaussian constants.

One of the purposes of this note is to give new examples by involving the family of the
normalized restricted measures

µA(B) =
µ(A ∩B)

µ(A)
, B ⊂M (Borel),

where a set A ⊂ M is fixed and has a positive measure. As an example, returning to the
standard Gaussian measure µ on Rn, it is known that σ2(µA) ≤ 1 for any convex body A ⊂
Rn. This remarkable property, discovered by D. Bakry and M. Ledoux [B-L] in a sharper form
of a Gaussian-type isoperimetric inequality, has nowadays several proofs and generalizations,
cf. [B1, B2]. Of course, in general, the set A may have a rather disordered structure, for
example, to be disconnected. And then there is no hope for validity of a Poincaré-type
inequality for the measure µA. Nevertheless, it turns out that the concentration property
of µA is inherited from µ, unless the measure of A is too small. In particular, we have the
following observation about abstract metric probability spaces.

Theorem 1.1. For any measurable set A ⊂ M with µ(A) > 0, the subgaussian constant
σ2(µA) of the normalized restricted measure satisfies

σ2(µA) ≤ c log
( e

µ(A)

)
σ2(µ), (1.4)

where c is an absolute constant.
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One may further generalize this assertion by defining the subgaussian constant σ2
F (µ)

within a given fixed subclass F of functions on M , by using the same bound (1.1) on the
Laplace transform. This is motivated by a possible different level of concentration for dif-
ferent classes; indeed, in case of M = Rn, the concentration property may considerably be
strengthened for the class F of all convex Lipschitz functions. In particular, one result of
M. Talagrand [T1, T2] provides a dimension-free bound σ2

F (µ) ≤ C for an arbitrary product
probability measure µ on the n-dimensional cube [−1, 1]n. Hence, a more general version of
Theorem 1.1 yields the bound

σ2
F (µA) ≤ c log

( e

µ(A)

)
with some absolute constant c, which holds for any Borel subset A of [−1, 1]n (cf. Section 6
below).

According to the very definition, the quantities σ2(µ) and σ2(µA) might seem to be
responsible for deviations of only Lipschitz functions f on M and A, respectively. However,
the inequality (1.4) may also be used to control deviations of non-Lipschitz f – on large parts
of the space and under certain regularity hypotheses. Assume, for example,

∫
|∇f | dµ ≤ 1

(which is kind of a normalization condition) and consider

A = {x ∈M : |∇f(x)| ≤ L}. (1.5)

If L ≥ 2, this set has the measure µ(A) ≥ 1 − 1
L ≥

1
2 , and hence, σ2(µA) ≤ cσ2(µ) with

some absolute constant c. If we assume that f has a Lipschitz semi-norm ≤ L on A, then,
according to (1.2),

µA{x ∈ A : |f −m| ≥ t} ≤ 2e−t
2/(cσ2(µ)L2), t > 0, (1.6)

where m is the mean of f with respect to µA. It is in this sense one may say that f is almost
a constant on the set A.

This also yields a corresponding deviation bound on the whole space,

µ{x ∈M : |f −m| ≥ t} ≤ 2e−t
2/cσ2(µ)L2

+
1

L
.

Stronger integrability conditions posed on |∇f | can considerably sharpen the conclusion.
By a similar argument, Theorem 1.1 yields, for example, the following exponential bound,
known in the presence of a logarithmic Sobolev inequality for the space (M,d, µ), and with
σ2 replaced by 1/ρ (cf. [B-G]).

Corollary 1.2. Let f be a locally Lipschitz function on M with Lipschitz semi-norms ≤ L
on the sets (1.5). If

∫
e|∇f |

2

dµ ≤ 2, then f is µ-integrable, and moreover,

µ{x ∈M : |f −m| ≥ t} ≤ 2e−t/cσ(µ), t > 0,

where m is the µ-mean of f and c is an absolute constant.

Equivalently (up to an absolute factor), we have a Sobolev-type inequality

‖f −m‖ψ1
≤ cσ(µ) ‖∇f‖ψ2

,

connecting the ψ1-norm of f − m with the ψ2-norm of the modulus of the gradient of f .
We prove a more general version of this corollary in Section 6 (cf. Theorem 6.1). As will
be explained in the same section, similar assertions may also be made about convex f and
product measures µ on M = [−1, 1]n, thus extending Talagrand’s theorem to the class of
non-Lipschitz functions.
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In view of the right bound in (1.3) and (1.4), the spread and subgaussian constants for
restricted measures can be controled in terms of the logarithmic Sobolev constant ρ via

s2(µA) ≤ σ2(µA) ≤ c log
( e

µ(A)

) 1

ρ
.

However, it may happen that ρ = 0 and σ2(µ) = ∞, while λ1 > 0 (e.g., for the product
exponential distribution on Rn). Then one may wonder whether one can estimate the spread
constant of a restricted measure in terms of the spectral gap. In that case there is a bound
similar to (1.4).

Theorem 1.3. Assume the metric probability space (M,d, µ) satisfies a Poincaré-type in-
equality with λ1 > 0. For any A ⊂M with µ(A) > 0, with some absolute constant c

s2(µA) ≤ c log2
( e

µ(A)

) 1

λ1
. (1.7)

It should be mentioned that the logarithmic terms in (1.4) and (1.7) may not be removed
and are actually asymptotically optimal as functions of µ(A), as µ(A) is getting small, see
Section 7.

Our contribution below is organized into sections as follows:

2. Bounds on ψα-norms for restricted measures.
3. Proof of Theorem 1.1. Transport-entropy formulation.
4. Proof of Theorem 1.3. Spectral gap.
5. Examples.
6. Deviations for non-Lipschitz functions.
7. Optimality.
8. Appendix.

2 Bounds on ψα-norms for restricted measures

A measurable function f on the probability space (M,µ) is said to have a finite ψα-norm,
α ≥ 1, if for some r > 0, ∫

e(|f |/r)
α

dµ ≤ 2.

The infimum over all such r represents the ψα-norm ‖f‖ψα or ‖f‖Lψα (µ), which is just the

Orlicz norm associated with the Young function ψα(t) = e|t|
α − 1.

We are mostly interested in the particular cases α = 1 and α = 2. In this section we
recall well-known relations between the ψ1 and ψ2-norms and the usual Lp-norms ‖f‖p =
‖f‖Lp(µ) = (

∫
|f |p dµ)1/p. For the readers’ convenience, we include the proof in the appendix.

Lemma 2.1. We have

sup
p≥1

‖f‖p√
p
≤ ‖f‖Lψ2 (µ) ≤ 4 sup

p≥1

‖f‖p√
p
, (2.1)

sup
p≥1

‖f‖p
p
≤ ‖f‖Lψ1 (µ) ≤ 6 sup

p≥1

‖f‖p
p

. (2.2)

Given a measurable subset A of M with µ(A) > 0, we consider the normalized restricted
measure µA on M , i.e.,

µA(B) =
µ(A ∩B)

µ(A)
, B ⊂M.

Our basic tool leading to Theorem 1.1 will be the following assertion.



5

Proposition 2.2. For any measurable function f on M ,

‖f‖Lψ2 (µA) ≤ 4e log1/2
( e

µ(A)

)
‖f‖Lψ2 (µ). (2.3)

Proof. Assume that ‖f‖Lψ2 (µ) = 1 and fix p ≥ 1. By the left inequality in (2.1), for any
q ≥ 1,

qq/2 ≥
∫
|f |q dµ ≥ µ(A)

∫
|f |q dµA,

so
‖f‖Lq(µA)√

q
≤
(

1

µ(A)

)1/q

.

But by the right inequality in (2.1),

‖f‖ψ2
≤ 4 sup

q≥1

‖f‖q√
q
≤ 4
√
p sup
q≥p

‖f‖q√
q
.

Applying it on the space (M,µA), we then get

‖f‖Lψ2 (µA) ≤ 4
√
p sup
q≥p

‖f‖Lq(µA)√
q

≤ 4
√
p sup
q≥p

(
1

µ(A)

)1/q

= 4
√
p

(
1

µ(A)

)1/p

.

The obtained inequality,

‖f‖Lψ2 (µA) ≤ 4
√
p

(
1

µ(A)

)1/p

,

holds true for any p ≥ 1 and therefore may be optimized over p. Choosing p = log e
µ(A) , we

arrive at (2.3).

A possible weak point in the bound (2.3) is that the means of f are not involved. For
example, in applications, if f were defined only on A and had µA-mean zero, we might need
to find an extension of f to the whole space M keeping the mean zero with respect to µ. In
fact, this should not create any difficulty, since one may work with the symmetrization of f .

More precisely, we may apply Proposition 2.2 on the product space (M ×M,µ ⊗ µ) to
the product sets A×A and functions of the form f(x)− f(y). Then we get

‖f(x)− f(y)‖Lψ2 (µA⊗µA) ≤ 4e log1/2

(
e

µ(A)2

)
‖f(x)− f(y)‖Lψ2 (µ⊗µ).

Since log
(

e
µ(A)2

)
≤ 2 log

(
e

µ(A)

)
, we arrive at:

Corollary 2.3. For any measurable function f on M ,

‖f(x)− f(y)‖Lψ2 (µA⊗µA) ≤ 4e
√

2 log1/2
( e

µ(A)

)
‖f(x)− f(y)‖Lψ2 (µ⊗µ).

Let us now derive an analog of Proposition 2.2 for the ψ1-norm, using similar arguments.
Assume that ‖f‖Lψ1 (µ) = 1 and fix p ≥ 1. By the left inequality in (2.2), for any q ≥ 1,

qq ≥
∫
|f |q dµ ≥ µ(A)

∫
|f |q dµA,
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so
‖f‖Lq(µA)

q
≤
( 1

µ(A)

)1/q
.

But, by the inequality (2.2),

‖f‖Lψ1 ≤ 6 sup
q≥1

‖f‖q
q
≤ 6p sup

q≥p

‖f‖q
q

.

Applying it on the space (M,µA), we get

‖f‖Lψ1 (µA) ≤ 6p sup
q≥p

‖f‖Lq(µA)

q

≤ 6p sup
q≥p

( 1

µ(A)

)1/q
= 6p

( 1

µ(A)

)1/p
.

The obtained inequality,

‖f‖Lψ1 (µA) ≤ 6p
( 1

µ(A)

)1/p
,

holds true for any p ≥ 1 and therefore may be optimized over p. Choosing p = log e
µ(A) , we

arrive at:

Proposition 2.4. For any measurable function f on M , we have

‖f‖Lψ1 (µA) ≤ 6e log
( e

µ(A)

)
‖f‖Lψ1 (µ).

Similarly to Corollary 2.3 one may write down this relation on the product probability
space (M ×M,µ⊗ µ) with the functions of the form f̃(x, y) = f(x)− f(y) and the product
sets Ã = A×A. Then we get

‖f(x)− f(y)‖Lψ1 (µA⊗µA) ≤ 12 e log
( e

µ(A)

)
‖f(x)− f(y)‖Lψ1 (µ⊗µ). (2.4)

3 Proof of Theorem 1.1. Transport-entropy formulation

The finiteness of the subgaussian constant for a given metric probability space (M,d, µ)
means that ψ2-norms of Lipschitz functions on M with mean zero are uniformly bounded.
Equivalently, for any (for all) x0 ∈M , we have that, for some λ > 0,∫

ed(x,x0)
2/λ2

dµ(x) <∞.

The definition (1.1) of σ2(µ) inspires to consider another norm-like quantity

σ2
f = sup

t 6=0

[
1

t2/2
log

∫
etf dµ

]
.

Here is a well-known relation (with explicit numerical constants) which holds in the setting
of an abstract probability space (M,µ). Once again, we include a proof in the appendix for
completeness.

Lemma 3.1. If f has mean zero and finite ψ2-norm, then

1√
6
‖f‖2ψ2

≤ σ2
f ≤ 4 ‖f‖2ψ2

.
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One can now relate the subgaussian constant of the restricted measure to the subgaussian
constant of the original measure. Let now (M,d, µ) be a metric probability space. First,
Lemma 3.1 immediately yields an equivalent description in terms of ψ2-norms, namely

1√
6

sup
f
‖f‖2ψ2

≤ σ2(µ) ≤ 4 sup
f
‖f‖2ψ2

, (3.1)

where the supremum is running over all f : M → R with µ-mean zero and ‖f‖Lip ≤ 1. Here,
one can get rid of the mean zero assumption by considering functions of the form f(x)−f(y)
on the product space (M ×M,µ⊗ µ). If f has mean zero, then, by Jensen’s inequality,∫ ∫

e(f(x)−f(y))
2/r2 dµ(x) dµ(y) ≥

∫
ef(x)

2/r2 dµ(x),

which implies that
‖f(x)− f(y)‖Lψ2 (µ⊗µ) ≥ ‖f‖Lψ2 (µ).

On the other hand, by the triangle inequality,

‖f(x)− f(y)‖Lψ2 (µ⊗µ) ≤ 2 ‖f‖Lψ2 (µ).

Hence, we arrive at another, more flexible relation, where the mean zero assumption may be
removed.

Lemma 3.2. We have

1

4
√

6
sup
f∈F
‖f(x)− f(y)‖2Lψ2 (µ⊗µ) ≤ σ

2(µ) ≤ 4 sup
f∈F
‖f(x)− f(y)‖2Lψ2 (µ⊗µ),

where the supremum is running over all functions f on M with ‖f‖Lip ≤ 1.

Proof of Theorem 1.1. We are prepared to make last steps for the proof of the inequality
(1.4). We use the well-known Kirszbraun’s theorem: Any function f : A→ R with Lipschitz
semi-norm ‖f‖Lip ≤ 1 on A admits a Lipschitz extension to the whole space ([K], [MS]).
Namely, one may put

f̃(x) = inf
a∈A

[
f(a) + d(a, x)

]
, x ∈M.

Applying first Corollary 2.3 and then the left inequality of Lemma 3.2 to f̃ , we get

‖f(x)− f(y)‖2Lψ2 (µA⊗µA) =
∥∥f̃(x)− f̃(y)

∥∥2
Lψ2 (µA⊗µA)

≤
(
4e
√

2
)2

log
( e

µ(A)

)∥∥f̃(x)− f̃(y)
∥∥2
Lψ2 (µ⊗µ)

≤
(
4e
√

2
)2

log
( e

µ(A)

)
·
(
4
√

6
)2
σ2(µ).

Another application of Lemma 3.2 – in the space (A, d, µA) (now the right inequality) yields

σ2(µA) ≤ 4 ·
(
4e
√

2
)2

log
( e

µ(A)

)
·
(
4
√

6
)2
σ2(µ).

This is exactly (1.4) with constant c = 4 · (4e
√

2 )2 (4
√

6 )2 = 3 · 212e2 = 90796.72...

Remark 3.3. Let us also record the following natural generalization of Theorem 1.1, which
is obtained along the same arguments. Given a collection F of (integrable) functions on the
probability space (M,µ), define σ2

F (µ) as the infimum over all σ2 such that∫
et(f−m) dµ ≤ eσ

2t2/2, for all t ∈ R,
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for any f ∈ F , where m =
∫
f dµ. Then with the same constant c as in Theorem 1.1, for

any measurable A ⊂M , µ(A) > 0, we have

σ2
FA(µA) ≤ c log

( e

µ(A)

)
σ2
F (µ),

where FA denotes the collection of restrictions of functions f from F to the set A.

Let us now mention an interesting connection of the subgaussian constants with the
Kantorovich distances

W1(µ, ν) = inf

∫∫
d(x, y)π(x, y)

and the relative entropies

D(ν||µ) =

∫
log

dν

dµ
dν

(called also Kullback-Leibler’s distances or informational divergences). Here, ν is a proba-
bility measure on M , which is absolutely continuous with respect to µ (for short, ν << µ),
and the infimum in the definition of W1 is running over all probability measures π on the
product space M ×M with marginal distributions µ and ν, i.e., such that

π(B ×M) = µ(B), π(M ×B) = ν(B) (Borel B ⊂M).

As was shown in [B-G], if (M,d) is a Polish space (complete separable), the subgaussian
constant σ2 = σ2(µ) may be described as an optimal value in the transport-entropy inequality

W1(µ, ν) ≤
√

2σ2D(ν||µ). (3.2)

Hence, we obtain from the inequality (1.4) a similar relation for measures ν supported on
given subsets of M .

Corollary 3.4. Given a Borel probability measure µ on a Polish space (M,d) and a closed
set A in M such that µ(A) > 0, for any Borel probability measure ν supported on A,

W 2
1 (µA, ν) ≤ cσ2(µ) log

( e

µ(A)

)
D(ν||µA),

where c is an absolute constant.

This assertion is actually equivalent to Theorem 1.1. Note that, for ν supported on A,
there is an identity D(ν||µA) = logµ(A) + D(ν||µ). In particular, D(ν||µA) ≤ D(ν||µ), so
the relative entropies decrease when turning to restricted measures.

4 Proof of Theorem 1.3. Spectral gap

Theorem 1.1 insures, in particular, that, for any function f on the metric probability space
(M,d, µ) with Lipschitz semi-norm ‖f‖Lip ≤ 1,

VarµA(f) ≤ c log

(
e

µ(A)

)
σ2(µ)

up to some absolute constant c. In fact, in order to reach a similar concentration property
of the restricted measures, it is enough to start with a Poincaré-type inequality on M ,

λ1Varµ(f) ≤
∫
|∇f |2 dµ.
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Under this hypothesis, a well-known theorem due to Gromov-Milman and Borovkov-Utev
asserts that mean zero Lipschitz functions f have bounded ψ1-norm. One may use a variant
of this theorem proposed by Aida and Strook [A-S], who showed that∫

e
√
λ1 f dµ ≤ K0 = 1.720102... (‖f‖Lip ≤ 1).

Hence ∫
e
√
λ1 |f | dµ ≤ 2K0 and

∫
e

1
2

√
λ1 |f | dµ ≤

√
2K0 < 2,

thus implying that ‖f‖ψ1
≤ 2√

λ1
. In addition,∫

e
√
λ1 (f(x)−f(y)) dµ(x)dµ(y) ≤ K2

0 ,

∫
e
√
λ1 |f(x)−f(y)| dµ(x)dµ(y) ≤ 2K2

0 < 6.

From this, ∫
e

1
3

√
λ1 |f(x)−f(y)| dµ(x)dµ(y) < 61/3 < 2,

which means that ‖f(x)− f(y)‖ψ1
≤ 3√

λ1
with respect to the product measure µ⊗ µ on the

product space M ×M . This inequality is translation invariant, so the mean zero assumption
may be removed. Thus, we arrive at:

Lemma 4.1. Under the Poincaré-type inequality with spectral gap λ1 > 0, for any mean
zero function f on (M,d, µ) with ‖f‖Lip ≤ 1,

‖f‖ψ1 ≤
2√
λ1
.

Moreover, for any f with ‖f‖Lip ≤ 1,

‖f(x)− f(y)‖Lψ1 (µ⊗µ) ≤
3√
λ1
. (4.1)

This is a version of the concentration of measure phenomenon (with exponential integra-
bility) in presence of a Poincaré-type inequality. Our goal is therefore to extend this property
to the normalized restricted measures µA. This can be achieved by virtue of the inequality
(2.4) which when combined with (4.1) yields an upper bound

‖f(x)− f(y)‖Lψ1 (µA⊗µA) ≤ 36 e log

(
e

µ(A)

)
1√
λ1
.

Moreover, if f has µA-mean zero, the left norm dominates ‖f‖Lψ1 (µA) (by Jensen’s inequal-
ity). We can summarize, taking into account once again Kirszbraun’s theorem, as we did in
the proof of Theorem 1.1.

Proposition 4.2. Assume the metric probability space (M,d, µ) satisfies a Poincaré-type
inequality with constant λ1 > 0. Given a measurable set A ⊂ M with µ(A) > 0, for any
function f : A→ R with µA-mean zero and such that ‖f‖Lip ≤ 1 on A,

‖f‖Lψ1 (µA) ≤ 36 e log
( e

µ(A)

) 1√
λ1
.

Theorem 1.3 is now easily obtained with constant c = 2 (36e)2 by noting that L2-norms
are dominated by Lψ1-norms. More precisely, since e|t| − 1 ≥ 1

2 t
2, one has ‖f‖2ψ1

≥ 1
2 ‖f‖

2
2.



10

5 Examples

Theorems 1.1 and 1.3 involve a lot of interesting examples. Here are a few obvious cases.

1) The standard Gaussian measure µ = γ on Rn satisfies a logarithmic Sobolev inequality
on M = Rn with a dimension-free constant ρ = 1. Hence, from Theorem 1.1 we get:

Corollary 5.1. For any measurable set A ⊂ Rn with γ(A) > 0, the subgaussian constant
σ2(γA) of the normalized restricted measure γA satisfies

σ2(γA) ≤ c log
( e

γ(A)

)
,

where c is an absolute constant.

As it was already mentioned, if A is convex, there is a sharper bound σ2(γA) ≤ 1.
However, it may not hold without convexity assumption. Neverteless, if γ(A) is bounded
away from zero, we obtain a more universal principle.

Clearly, Corollary 5.1 extends to all product measures µ = νn on Rn such that ν satisfies
a logarithmic Sobolev inequality on the real line, and with constants c depending on ρ, only.
A characterization of the property ρ > 0 in terms of the distribution function of the measure
ν and the density of its absolutely continuous component may be found in [B-G].

2) Consider a uniform distribution ν on the shell

Aε =
{
x ∈ Rn : 1− ε ≤ |x| ≤ 1

}
, 0 ≤ ε ≤ 1 (n ≥ 2).

Corollary 5.2. The subgaussian constant of ν satisfies σ2(ν) ≤ c
n , up to some absolute

constant c.

In other words, mean zero Lipschitz functions f on Aε are such that
√
n f are subgaussian.

This property is well-known in the extreme cases – on the unit Euclidean ball A = Bn (ε = 1)
and on the unit sphere A = Sn−1 (ε = 0).

Let µ denote the normalized Lebesgue measure on Bn. In the case ε ≥ 1
n , the shell Aε

represents the part of Bn of measure

µ(Aε) = 1−
(

1− 1

n

)n
≥ 1− 1

e
.

Since the logarithmic Sobolev constant of the unit ball is of order 1
n , and therefore σ2(µ) ≤ c

n ,
the assertion of Corollary 5.2 immediately follows from Theorem 1.1. If ε ≤ 1

n , the assertion
follows from a similar concentration property of the uniform distribution on the unit sphere.
Indeed, with every Lipschitz function f on Aε one may associate its restriction to Sn−1,
which is also Lipschitz (with respect to the Euclidean distance). On the other hand, for any
r ∈ [1− ε, 1] and θ ∈ Sn−1, we have |f(rθ)− f(θ)| ≤ |r− 1| ≤ ε ≤ 1

n , thus proving the claim.

3) The two-sided product exponential measure µ on Rn with density 2−n e−(|x1|+···+|xn|)

satisfies a Poincaré-type inequality on M = Rn with a dimension-free constant λ1 = 1/4.
Hence, from Proposition 4.2 we get:

Corollary 5.3. For any measurable set A ⊂ Rn with µ(A) > 0, and for any function
f : A→ R with µA-mean zero and ‖f‖Lip ≤ 1, we have

‖f‖Lψ1 (µA) ≤ c log
( e

µ(A)

)
,

where c is an absolute constant. In particular,

s2(µA) ≤ c log2
( e

µ(A)

)
.
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Clearly, Corollary 6.3 extends to all product measures µ = νn on Rn such that ν satisfies
a Poincaré-type inequality on the real line, and with constants c depending on λ1, only.
A characterization of the property λ1 > 0 may also be given in terms of the distribution
function of ν and the density of its absolutely continuous component (cf. [B-G]).

4a) Let us take the metric probability space ({0, 1}n, dn, µ), where dn is the Hamming
distance, that is, dn(x, y) = ]{i : xi 6= yi}, equipped with the uniform measure µ. For this
particular space, Marton established the transport-entropy inequality (3.2) with an optimal
constant σ2 = n

4 , cf. [Mar]. Using the relation (3.2) as an equivalent definition of the
subgaussian constant, we obtain from Theorem 1.1:

Corollary 5.4. For any non-empty set A ⊂ {0, 1}n, the subgaussian constant σ2(µA) of the
normalized restricted measure µA satisfies, up to an absolute constant c,

σ2(µA) ≤ cn log
( e

µ(A)

)
. (5.1)

4b) Let us now assume that A is monotone, i.e., A satisfies the condition

(x1, . . . , xn) ∈ A =⇒ (y1, . . . , yn) ∈ A, whenever yi ≥ xi, i = 1, . . . , n.

Recall that the discrete cube can be equipped with a natural graph structure: there is an
edge between x and y whenever they are of Hamming distance dn(x, y) = 1. For monotone
sets A, the graph metric dA on the subgraph on A is equal to the restriction of dn to A×A.
Indeed, we have:

dn(x, y) ≤ dA(x, y) ≤ dA(x, x ∧ y) + dA(y, x ∧ y) = dn(x, x ∧ y) + dn(y, x ∧ y) = dn(x, y),

where x ∧ y = (x1 ∧ y1, . . . , xn ∧ yn). Thus,

s2(µA, dA) ≤ σ2(µA, dA) ≤ cn log

(
e

µ(A)

)
.

This can be compared with what follows from a recent result of Ding and Mossel (see [D-M]).
The authors proved that the conductance (Cheeger constant) of (A,µA) satisfies φ(A) ≥
µ(A)
16n . However, this type of isoperimetric results may not imply sharp concentration bounds.

Indeed, by using Cheeger inequality, the above inequality leads to λ1 ≥ cµ(A)2/n2 and
s2(µA, dA) ≤ 1/λ1 ≤ cn2/µ(A)2, which is even worse than the trivial estimate s2(µA, dA) ≤
1
2diam(A)2 ≤ n2/2.

5) Let (M,d, µ) be a (separable) metric probability space with finite subgaussian constant
σ2(µ). The previous example can be naturally generalized to the product space (Mn, µn),
when it is equipped with the `1-type metric

dn(x, y) =

n∑
i=1

d(xi, yi), x = (x1, . . . , xn), y = (y1, . . . , yn) ∈Mn.

This can be done with the help of the following elementary observation.

Proposition 5.5. The subgaussian constant of the space (Mn, dn, µ
n) is related to the sub-

gaussian constant of (M,d, µ) by the equality σ2(µn) = nσ2(µ).

Indeed, one may argue by induction on n. Let f be a function on Mn. The Lipschitz
property ‖f‖Lip ≤ 1 with respect to dn is equivalent to the assertion that f is coordinatewise
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Lipschitz, that is, any function of the form xi → f(x) has a Lipschitz semi-norm ≤ 1 on M
for all fixed coordinates xj ∈M (j 6= i). Hence, in this case, for all t ∈ R,∫

M

etf(x) dµ(xn) ≤ exp
{
t

∫
M

f(x) dµ(xn) +
σ2t2

2

}
,

where σ2 = σ2(µ). Here the function (x1, . . . , xn−1)→
∫
M
f(x) dµ(xn) is also coordinatewise

Lipschitz. Integrating the above inequality with respect to dµn−1(x1, . . . , xn−1) and applying
the induction hypothesis, we thus get∫

Mn

etf(x) dµn(x) ≤ exp
{
t

∫
Mn

f(x) dµn(x) + n
σ2t2

2

}
.

But this means that σ2(µn) ≤ nσ2(µ).
For an opposite bound, it is sufficient to test (1.1) for (Mn, dn, µ

n) in the class of all
coordinatewise Lipschitz functions of the form f(x) = u(x1) + · · ·+ u(xn) with µ-mean zero
functions u on M such that ‖u‖Lip ≤ 1.

Corollary 5.6. For any Borel set A ⊂ Mn such that µn(A) > 0, the subgaussian constant
of the normalized restricted measure µnA with respect to the `1-type metric dn satisfies

σ2(µnA) ≤ cnσ2(µ) log
( e

µn(A)

)
,

where c is an absolute constant.

For example, if µ is a probability measure on M = R such that
∫∞
−∞ ex

2/λ2

dµ(x) ≤ 2
(λ > 0), then for the restricted product measures we have

σ2(µnA) ≤ cnλ2 log
( e

µn(A)

)
(5.2)

with respect to the `1-norm ‖x‖1 = |x1|+ · · ·+ |xn| on Rn.
Indeed, by the integral hypothesis on µ, for any f on R with ‖f‖Lip ≤ 1,∫ ∞
−∞

∫ ∞
−∞

e(f(x)−f(y))
2/2λ2

dµ(x)dµ(y) ≤
∫ ∞
−∞

∫ ∞
−∞

e(x−y)
2/2λ2

dµ(x)dµ(y)

≤
∫ ∞
−∞

∫ ∞
−∞

e(x
2+y2)/λ2

dµ(x)dµ(y) ≤ 4.

Hence, if f has µ-mean zero, by Jensen’s inequality,∫ ∞
−∞

∫ ∞
−∞

ef(x)
2/4λ2

dµ(x) ≤
∫ ∞
−∞

∫ ∞
−∞

e(f(x)−f(y))
2/4λ2

dµ(x)dµ(y) ≤ 2,

meaning that ‖f‖Lψ2 (µ) ≤ 2λ. By Lemma 3.1, cf. (3.1), it follows that σ2(µ) ≤ 16λ2, so,
(5.2) holds true by an application of Corollary 5.6.

6 Deviations for non-Lipschitz functions

Let us now turn to the interesting question on the relationship between the distribution of a
locally Lipschitz function and the distribution of its modulus of the gradient. We still keep
the setting of a metric probability space (M,d, µ) and assume it has a finite subgaussian
constant σ2 = σ2(µ) (σ ≥ 0).

Let us say that a continuous function f on M is locally Lipschitz, if |∇f(x)| is finite for
all x ∈M . Recall that we consider the sets

A = {x ∈M : |∇f(x)| ≤ L}, L > 0. (6.1)

First we state a more general version of Corollary 1.2.
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Theorem 6.1. Assume that a locally Lipschitz function f on M has Lipschitz semi-norms
≤ L on the sets of the form (6.1). If µ{|∇f | ≥ L0} ≤ 1

2 , then for all t > 0,

(µ⊗ µ)
{
|f(x)− f(y)| ≥ t

}
≤ 2 inf

L≥L0

[
e−t

2/cσ2L2

+ µ
{
|∇f | > L

}]
, (6.2)

where c is an absolute constant.

Proof. Although the argument is already mentioned in Section 1, let us replace (1.6) with a
slightly different bound. Applying Theorem 1.1, the definition (1.1) yields∫∫

et(f(x)−f(y)) dµA(x)dµA(y) ≤ ecσ
2L2t2/2, for all t ∈ R,

where A is defined in (6.1) with L ≥ L0, and where c is universal constant. From this, for
any t > 0,

(µA ⊗ µA) {(x, y) ∈ A×A : |f(x)− f(y)| ≥ t} ≤ 2e−t
2/(2cσ2L2),

and therefore

(µ⊗ µ) {(x, y) ∈ A×A : |f(x)− f(y)| ≥ t} ≤ 2e−t
2/(2cσ2L2).

The product measure of the complement of A × A does not exceed 2µ{|∇f(x)| > L}, and
we obtain (6.2).

If
∫
e|∇f |

2

dµ ≤ 2, we have, by Chebyshev’s inequality, µ{|∇f | ≥ L} ≤ 2e−L
2

, so one
may take L0 =

√
log 4. Theorem 6.1 then gives that, for any L2 ≥ log 4,

(µ⊗ µ)
{
|f(x)− f(y)| ≥ t

}
≤ 2 e−t

2/cσ2L2

+ 4e−L
2

.

For t ≥ 2σ one may choose here L2 = t
σ , leading to

(µ⊗ µ)
{
|f(x)− f(y)| ≥ t

}
≤ 6 e−t/cσ ,

for some absolute constant c > 1. In case 0 ≤ t ≤ 2σ, this inequality is fulfilled automatically,
so it holds for all t ≥ 0. As a result, with some absolute constant C,

‖f(x)− f(y)‖ψ1 ≤ Cσ,

which is an equivalent way to state the inequality of Corollary 1.2.
As we have already mentioned, with the same arguments inequalities like (6.2) can be

derived on the basis of subgaussian constants defined for different classes of functions. For
example, one may consider the subgaussian constant σ2

F (µ) for the class F of all convex
Lipschitz functions f on the Euclidean space M = Rn (which we equip with the Euclidean
distance). Note that |∇f(x)| is everywhere finite in the n-space, when f is convex. Keeping
in mind Remark 3.3, what we need is the following analog of Kirszbraun’s theorem:

Lemma 6.2. Let f be a convex function on Rn. For any L > 0, there exists a convex
function g on Rn such that f = g on the set A = {x : |∇f(x)| ≤ L} and |∇g| ≤ L on Rn.

Accepting for a moment this lemma without proof, we get:

Theorem 6.3. Assume that a convex function f on Rn satisfies µ{|∇f | ≥ L0} ≤ 1
2 . Then

for all t > 0,

(µ⊗ µ)
{
|f(x)− f(y)| ≥ t

}
≤ 2 inf

L≥L0

[
e−t

2/cσ2L2

+ µ
{
|∇f | > L

}]
,

where σ2 = σ2
F (µ) and c is an absolute constant.
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For illustration, let µ = µ1⊗· · ·⊗µn be an arbitrary product probability measure on the
cube [−1, 1]n. If f is convex and Lipschitz on Rn, thus with |∇f | ≤ 1, then

(µ⊗ µ)
{
|f(x)− f(y)| ≥ t

}
≤ 2e−t

2/c. (6.3)

This is one of the forms of Talagrand’s concentration phenomenon for the family of convex
sets/functions (cf. [T1, T2], [M], [L]). That is, the subgaussian constants σ2

F (µ) are bounded
for the class F of convex Lipschitz f and product measures µ on the cube. Hence, using
Theorem 6.3, Talagrand’s deviation inequality (6.3) admits a natural extension to the class
of non-Lipschitz convex functions:

Corollary 6.4. Let µ be a product probability measure on the cube, and let f be a convex
function on Rn. If µ{|∇f | ≥ L0} ≤ 1

2 , then for all t > 0,

(µ⊗ µ)
{
|f(x)− f(y)| ≥ t

}
≤ 2 inf

L≥L0

[
e−t

2/cL2

+ µ
{
|∇f | > L

}]
,

where c is an absolute constant.

In particular, we have a statement similar to Corollary 1.2 – for this family of functions,
namely

‖f −m‖Lψ1 (µ) ≤ c ‖∇f‖Lψ2 (µ),

where m is the µ-mean of f .

Proof of Lemma 6.2. An affine function la,v(x) = a + 〈x, v〉 (v ∈ Rn, a ∈ R) may be called
to be a tangent function to f , if f ≥ l on Rn and f(x) = la,v(x) for at least one point x. It
is well-known that

f(x) = sup{la,v(x) : la,v ∈ L},

where L denotes the collection of all tangent functions la,v. Put,

g(x) = sup{la,v(x) : la,v ∈ L, |v| ≤ L}.

By the construction, g ≤ f on Rn and, moreover,

‖g‖Lip ≤ sup{‖la,v‖Lip : la,v ∈ L, |v| ≤ L}
= sup{|v| : la,v ∈ L, |v| ≤ L} ≤ L.

It remains to show that g = f on the set A = {|∇f | ≤ L}. Let x ∈ A and let la,v be tangent
to f and such that la,v(x) = f(x). This implies that f(y)− f(x) ≥ 〈y − x, v〉 for all y ∈ Rn
and hence

|∇f(x)| = lim sup
y→x

|f(y)− f(x)|
|y − x|

≥ lim sup
y→x

〈y − x, v〉
|y − x|

= v.

Thus, |v| ≤ L, so that g(x) ≥ la,v(x) = f(x).

7 Optimality

Here we show that the logarithmic dependence in µ(A) in Theorems 1.1 and 1.3 is optimal,
up to the universal constant c. We provide several examples.

Example 1. Let us return to Example 4), Section 5, of the hypercube M = {0, 1}n, which we
equip with the Hamming distance dn and the uniform measure µ. Let us test the inequality
(5.1) of Corollary 5.4 on the set A ⊂ {−1, 1}n consisting of n+ 1 points

(0, 0, 0, . . . , 0), (1, 0, 0, . . . , 0), (1, 1, 0, . . . , 0), . . . , (1, 1, 1, . . . , 1).
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We have µ(A) = (n+ 1)/2n ≥ 1/2n. The function f : A→ R, defined by

f(x) = ]{i : xi = 1} − n

2
,

has a Lipschitz semi-norm ‖f‖Lip ≤ 1 with respect to d and the µA-mean zero. Moreover,∫
f2 dµA = n(n+2)

12 . Expanding the inequality
∫
etf dµA ≤ eσ

2(µA) t2/2 at the origin yields∫
f2 dµA ≤ σ2(µA). Hence, recalling that σ2(µ) ≤ n

4 , we get

σ2(µA) ≥
∫
f2 dµA ≥

n2

12

≥ n

3
σ2(µ) ≥ 1

3 log 2
σ2(µ) log

( 1

µ(A)

)
.

This example shows the optimality of (5.1) in the regime µ(A)→ 0.

Example 2. Let γn be the standard Gaussian measure on Rn of dimension n ≥ 2. We have
σ2(γn) = 1. Consider the normalized measure γAR on the set

AR =
{

(x1, x2, . . . , xn) ∈ Rn : x21 + x22 ≥ R2
}
, R ≥ 0.

Using the property that the function 1
2 (x21 + x22) has a standard exponential distribution

under the measure γn, we find that γn(AR) = e−R
2/2. Moreover,

s2(γAR) ≥ VarγAR (x1) =

∫
x21 dγAR(x) =

1

2

∫
(x21 + x22) dγAR(x)

=
1

e−R2/2

∫ ∞
R2/2

re−r dr =
R2

2
+ 1 = log

( e

γn(AR)

)
.

Therefore,

σ2(γAR) ≥ s2(γAR) ≥ log
( e

γn(AR)

)
,

showing that the inequality (1.4) of Theorem 1.1 is optimal, up to the universal constant,
for any value of γn(A) ∈ [0, 1].

Example 3. A similar conclusion can be made about the uniform probability measure µ on
the Euclidean ball B(0,

√
n) of radius

√
n, centred at the origin (asymptotically for growing

dimension n). To see this, it is sufficient to consider the cylinders

Aε =
{

(x1, y) ∈ R× Rn−1 : |x1| ≤
√
n− ε2 and |y| ≤ ε

}
, 0 < ε ≤

√
n,

and the function f(x) = x1. We leave to the readers corresponding computations.

Example 4. Let µ be the two-sided exponential measure on R with density 1
2 e
−|x|. In this

case σ2(µ) =∞, but, as easy to see, 2 ≤ s2(µ) ≤ 4 (recall that λ1(µ) = 1
4 ). We are going to

test optimality of the inequality (1.7) on the sets AR = {x ∈ R : |x| ≥ R} (R ≥ 0). Clearly,
µ(AR) = e−R, and we find that

s2(µAR) ≥ VarµAR (x) =

∫ ∞
−∞

x2 dµAR(x) =
1

e−R

∫ ∞
R

r2e−r dr

= R2 + 2R+ 2 ≥ (R+ 1)2 = log2
( e

µ(AR)

)
.

Therefore,

s2(µAR) ≥ log2
( e

µ(AR)

)
,

showing that the inequality (1.7) is optimal, up to the universal constant, for any value of
µ(A) ∈ (0, 1].
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[K] Kirszbraun, M. D. Über die zusammenziehende und Lipschitzsche Transformationen.
Fund. Math. 22 (1934) 77–108.

[L] Ledoux, M. The Concentration of Measure Phenomenon. Mathematical Surveys and
Monographs 89 (2001), Amer. Math. Soc., Providence, RI.

[Mar] Marton, K. Bounding d̄-distance by informational divergence: a method to prove
measure concentration, Ann. Probab. 24 (1996), no. 2, 857–866.

[M] Maurey, B. Some deviation inequalities. Geom. Funct. Anal. 1 (1991), 188–197.

[MS] McShane, E. J. Extension of range of functions. Bull. Amer. Math. Soc. 40 (1934), no.
12, 837–842.

[M-W] Mueller, C. E.; Weissler, F. B. Hypercontractivity for the heat semigroup for ultras-
pherical polynomials and on the n-sphere. J. Funct. Anal. 48 (1992), 252–283.

[T1] Talagrand, M. An isoperimetric theorem on the cube and the Khinchine–Kahane in-
equalities. Proc. Amer. Math. Soc. 104 (1988), 905–909.

[T2] Talagrand, M. Concentration of measure and isoperimetric inequalities in product
spaces. Publ. Math. I.H.E.S. 81 (1995), 73–205.

Appendix

Proof of Lemma 2.1. Using the homogeneity, in order to derive the right-hand side inequality

in (2.1), we may assume that supp≥1
‖f‖p√
p ≤ 1. Then

∫
|f |p dµ ≤ pp/2 for all p ≥ 1, and by
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Chebyshev’s inequality,

1− F (t) ≡ µ{|f | ≥ t} ≤
(√p
t

)p
, for all t > 0.

If t ≥ 2, choose here p = 1
4 t

2, in which case 1−F (t) ≤ 2−
1
4 t

2

. Integrating by parts, we have,

for any 0 < ε < log 2
4 ,∫

eεf
2

dµ = −
∫ ∞
0

eεt
2

d(1− F (t))

= 1 + 2ε

∫ 2

0

teεt
2

(1− F (t)) dt+ 2ε

∫ ∞
2

teεt
2

(1− F (t)) dt

≤ 1 + 2ε

∫ 2

0

teεt
2

dt+ 2ε

∫ ∞
2

teεt
2

e−
log 2

4 t2 dt

= e4ε +
ε

log 2
4 − ε

e−(log 2−4ε) = e4ε
(

1 +
ε

2( log 2
4 − ε)

)
.

If ε ≤ log 2
8 , the latter expression does not exceed 3

2 e
4ε which does not exceed 2 for ε ≤

log(4/3)
4 . Both inequalities are fulfilled for ε = log 2

10 , and with this value
∫
eεf

2

dµ ≤ 2. Hence

‖f‖Lψ2 (µ) ≤
1√
ε

=

√
10

log 2
< 4,

which yields the right inequality in (2.1). Conversely, if ‖f‖Lψ2 (µ) = 1, then
∫
ef

2

dµ = 2.

Since u(t) = tp e−t
2

is maximized in t > 0 at t0 =
√

p
2 , we get

‖f‖pp =

∫
u(f)ef

2

dµ ≤ u(t0) · 2 = 2

( √
p

√
2e

)p
.

Hence,
‖f‖p√
p ≤

21/p√
2e
< 1, which yields the left inequality.

Now, let us turn to (2.2) and assume that supp≥1
‖f‖p
p = 1. Then

∫
|f |p dµ ≤ pp for all

p ≥ 1, and by Chebyshev’s inequality, for all t > 0,

1− F (t) ≡ µ{|f | ≥ t} ≤
(p
t

)p
.

If t ≥ 2, we may choose here p = 1
2 t in which case 1− F (t) ≤ 2−

1
2 t, while for 1 ≤ t < 2 we

choose p = 1, so that 1− F (t) ≤ 1
t . Arguing as before, we have, for any 0 < ε < log 2

2 ,∫
eε|f | dµ = 1 + ε

∫ 1

0

eεt (1− F (t)) dt+ ε

∫ 2

1

eεt (1− F (t)) dt+ ε

∫ ∞
2

eεt (1− F (t)) dt

≤ 1 + ε

∫ 1

0

eεt dt+ ε

∫ 2

1

eεt

t
dt+ ε

∫ ∞
2

eεt e−
log 2

2 t dt.

The pre-last integral can be bounded by
∫ 2

1
e2ε

t dt = e2ε log 2, so∫
eε|f | dµ ≤ eε + εe2ε log 2 +

ε
log 2
2 − ε

e−2(
log 2

2 −ε).

For ε = 1
6 , the latter expression is equal to 1.98903902..., and thus

∫
eε|f | dµ < 2. Hence

‖f‖Lψ1 (µ) ≤
1

ε
= 6.
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Conversely, if ‖f‖Lψ1 (µ) = 1, then
∫
e|f | dµ = 2. Since u(t) = tp e−t is maximized at t0 = p,

we get

‖f‖pp =

∫
u(f)e|f | dµ ≤ u(t0) · 2 = 2

(
p

e

)p
.

Hence,
‖f‖p
p ≤ 21/p

e < 1, which yields the left inequality.

Proof of Lemma 3.1. First assume that ‖f‖ψ2 = 1, i.e.,
∫
ef

2

dµ = 2. The function

u(t) = log

∫
etf dµ

is smooth, convex, with u(0) = 0 and

u′(t) =

∫
fetf dµ∫
etf dµ

.

In particular, u′(0) = 0. Note that, by Jensen’s inequality,
∫
etf dµ ≥ 1, so u(t) ≥ 0. Further

differentiation gives

u′′(t) =

∫
f2etf dµ−

( ∫
fetf dµ

)2( ∫
etf dµ

)2 ≤
∫
f2etf dµ.

Using tf ≤ t2+f2

2 and the elementary inequality x e−x/2 ≤ 2e−1, we get, for |t| ≤ 1,∫
f2 etf dµ ≤

∫
f2 e

t2+f2

2 dµ

= et
2/2

∫
f2 ef

2/2 dµ ≤ et
2/2 2e−1

∫
ef

2

dµ ≤ 4.

Thus, u′′(t) ≤ 4, and by Taylor’s formula, u(t) ≤ 2t2.
On the hand, for |t| ≥ 1, by Cauchy’s inequality,∫

etf dµ ≤
∫
e
t2+f2

2 dµ = et
2/2

∫
ef

2/2 dµ

≤ et
2/2

(∫
ef

2

dµ

)1/2

=
√

2 et
2/2 ≤ e(1+log 2) t2/2.

Hence, in this case u(t) ≤ 1+log 2
2 t2 < t2. Thus,

σ2
f = sup

t 6=0

u(t)

t2/2
≤ 4,

proving the right inequality of Lemma 3.1.
For the left inequality, let σ2

f = 1. Then
∫
etf dµ ≤ et2/2 for all t ∈ R, which implies

1− F (t) ≡ µ{|f | ≥ t} ≤ 2e−t
2/2, t ≥ 0.

Form this, integrating by parts, we have, for any 0 < ε < 1
2 ,∫

eεf
2

dµ =

∫ ∞
0

eεt
2

dF (t) = −
∫ ∞
0

eεt
2

d(1− F (t))

= 1 + 2ε

∫ ∞
0

teεt
2

(1− F (t)) dt

≤ 1 + 4ε

∫ ∞
0

teεt
2

e−t
2/2 dt = 1 +

2ε
1
2 − ε

.

The last expression is equal to 2 for ε = 1
6 , which means that ‖f‖ψ2

≤
√

6.


