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Abstract

We show that for any product measure µ = µ1⊗. . .⊗µn on Rn, where µi have symmetric
unimodal densities, the inequality

µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n

holds true for any non-empty ideals A,B ⊆ Rn. Moreover, using log-Brunn-Minkowski
type inequalities due to C. Saroglou, [S2], and to D. Cordero-Erausquin, M. Fradelizi and
B. Maurey, [CFM], we prove the above inequality for any ideals A,B and unconditional
log-concave measures, as well as for general convex symmetric sets and even log-concave
measures on the plane.

In addition, we deduce 1
n -concavity of the parallel volumes t 7→ µ(A+ tB), Brunn's type

theorem and certain analogues of Minkowski �rst inequality. We also provide examples
showing optimality of our assumptions.

As a consequence of the above result, the Gaussian Brunn-Minkowski inequality holds
true in the case of unconditional convex set, as well as in the case of general symmetric sets
on the plane. This partially solves the conjecture proposed by R. Gardner and the fourth
named author in [GZ].
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1 Introduction

The classical Brunn-Minkowski inequality states that for any two non-empty compact sets A,B
in Rn and any λ ∈ [0, 1] we have

voln(λA+ (1− λ)B)1/n ≥ λ voln(A)1/n + (1− λ) voln(B)1/n, (1)

with equality if and only if B = aA + b, where a > 0 and b ∈ Rn. Here voln stands for the
Lebesgue measure on Rn and

A+B = {a+ b : a ∈ A, b ∈ B}
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is the Minkowski sum of A and B. Due to homogeneity of the volume, this inequality is equivalent
to voln(A+ B)1/n ≥ voln(A)1/n + voln(B)1/n. The Brunn-Minkowski inequality turns out to be
a powerful tool. In particular, it easily implies the classical isoperimetric inequality: for any
compact set A ⊂ Rn we have voln(At) ≥ voln(Bt), where B is an Euclidean ball satisfying
voln(A) = voln(B) and At stands for the t-enlargement of A, i.e., At = A + tBn

2 , where B
n
2 is

the unit Euclidean ball, Bn
2 = {x : |x| = 1}. To see this it is enough to observe that

voln(A+ tBn
2 )1/n ≥ voln(A)1/n + voln(tBn

2 )1/n = voln(B)1/n + voln(tBn
2 )1/n = voln(B + tBn

2 )1/n.

Taking t→ 0+ one gets a more familiar form of isoperimetry: among all sets with �xed volume
the surface area

vol+n (∂A) = lim inf
t→0+

voln(A+ tBn
2 )− voln(A)

t

is minimized in the case of the Euclidean ball. We refer to [G] for more information on Brunn-
Minkowski-type inequalities.

Using the inequality between means one gets an a priori weaker dimension free form of (1),
namely

voln(λA+ (1− λ)B) ≥ voln(A)λ voln(B)1−λ. (2)

In fact (2) and (1) are equivalent. To see this one has to take Ã = A/ voln(A)1/n, B̃ =
B/ voln(B)1/n and λ̃ = λ voln(A)1/n/(λ voln(A)1/n+(1−λ) voln(B)1/n) in (2). This phenomenon
is a consequence of homogeneity of the Lebesgue measure.

The above notions can be generalized to the case of the so-called s-concave measures. Here
we assume that s ∈ (0, 1], whereas in general the notion of s-concave measures makes sense for
any s ∈ [−∞,∞]. We say that a measure µ on Rn is s-concave if for any non-empty compact
sets A,B ⊂ Rn we have

µ(λA+ (1− λ)B)s ≥ λµ(A)s + (1− λ)µ(B)s. (3)

Similarly, a measure µ is called log-concave (or 0-concave) if for any compact A,B ⊂ Rn we have

µ(λA+ (1− λ)B) ≥ µ(A)λµ(B)1−λ. (4)

Let us assume that the support of our measure is non degenerate, i.e., is not contained is any
a�ne subspace of Rn of dimension less than n. It turns out that, in this case, there is a very
useful description of log-concave and s-concave measures due to Borell, see [B]: a measure µ
is log-concave if and only if it has a density of the form ϕ = e−V , where V is convex (and
may attain value +∞). Such functions are called log-concave. Moreover, µ is s-concave with
s ∈ (0, 1/n) if and only if it has a density ϕ such that ϕ

s
1−sn is concave. In the case s = 1/n the

density has to satisfy the strongest condition ϕ(λx+ (1− λ)y) ≥ max(ϕ(x), ϕ(y)). An example
of such measure is the uniform measure on a convex body K ⊂ Rn. Let us also notice that a
measure with non-degenerate support cannot be s-concave with s > 1

n
. It can be seen by taking

Ã = εA, B̃ = εB, sending ε→ 0+ and comparing the limit with the Lebesgue measure.
Inequality (2) says that Lebesgue measure is log-concave, whereas (1) means that it is also

1/n-concave. In general log-concavity does not imply s-concavity for s > 0. Indeed, consider
the standard Gaussian measure γn on Rn, i.e., a measure with density (2π)−n/2 exp(−|x|2/2).
This density is clearly log-concave and therefore γn satis�es (4). To see that γn does not satisfy
(3) for s > 0 it su�ces to take B = {x} and send x → ∞. Then the left hand side converges
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to 0 while the right hand side stays equal to λµ(A)s, which is strictly positive for λ > 0 and
µ(A) > 0.

One might therefore ask whether (3) holds true for γn if we restrict ourselves to some special
class of subsets of Rn. In [GZ] R. Gardner and the fourth named author conjectured (Question
7.1) that

γn(λA+ (1− λ)B)1/n ≥ λγn(A)1/n + (1− λ)γn(B)1/n (5)

holds true for any closed convex sets with 0 ∈ A ∩ B and λ ∈ [0, 1] and veri�ed this conjecture
in the following cases:

(a) when A and B are products of intervals containing the origin,

(b) when A = [−a1, a2]× Rn−1, where a1, a2 > 0 and B is arbitrary,

(c) when A = aK and B = bK where a, b > 0 and K is a convex set, symmetric with respect
to the origin.

It is interesting to note that the case (c) is related to the so-called Banaszczyk's theorem (B-
theorem), [CFM]. It states that for any convex symmetric set K the function t 7→ γn(etK)
is log-concave. Moreover, the same is true for any unconditional log-concave measures and
unconditional sets. It is an open question (called B-conjecture) whether this property is satis�ed
for any centrally symmetric log-concave measures and centrally symmetric convex sets. This
question has an a�rmative answer for n = 2 due to the works of Livne Bar-on [Li] and of
Saroglou [S2]. In [S2] the proof is done by linking the problem to the new logarithmic-Brunn-
Minkowski inequality of Böröczky, Lutwak, Yang and Zhang, see [BLYZ1], [BLYZ2], [S1] and
[S2].

It turns out that the assertion of the B-conjecture for a measure µ and a symmetric convex
body K formally implies the inequality

µ(λaK + (1− λ)bK)1/n ≥ λµ(aK)1/n + (1− λ)µ(bK)1/n,

i.e., the Brunn-Minkowski inequality is satis�ed for dilations of K, see [M2, Proposition 3.1].
In [NT] T. Tkocz and the third named author showed that in general (5) is false under the

assumption 0 ∈ A ∩ B. For su�ciently small ε > 0 and α < π/2 su�ciently close to π/2 the
pair of sets

A = {(x, y) ∈ R2 : y ≥ |x| tanα}, B = {(x, y) ∈ R2 : y ≥ |x| tanα− ε}

serves as a counterexample. The authors however conjectured that (5) should be true for (cen-
trally) symmetric convex bodies A,B.

Through this note K is some family of sets closed under dilations, i.e., A ∈ K implies tA ∈ K
for any t > 0. In particular, we assume that for any K ∈ K we have 0 ∈ K. A general form of
the Brunn-Minkowski inequality can be stated as follows.

De�nition 1. We say that a Borel measure µ on Rn satis�es the Brunn-Minkowski inequality
in the class of sets K if for any A,B ∈ K and for any λ ∈ [0, 1] we have

µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n. (6)

Before we state our results, we introduce some basic notation and de�nitions.
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De�nition 2.

1. We say that a function f : Rn → [0,∞) is unconditional if it satis�es the following two
properties.

(i) For any choice of signs ε1, . . . , εn ∈ {−1, 1} and any x = (x1, . . . , xn) ∈ Rn we have
f(ε1x1, . . . , εnxn) = f(x).

(ii) For any 1 ≤ i ≤ n and any x1, . . . , xi−1, xi+1, . . . , xn ∈ R the function

t 7→ f(x1, . . . , xi−1, t, xi+1, . . . , xn)

is non-increasing on [0,∞).

2. A set A ⊆ Rn (which is not necessarily a product set) is called an ideal if 1A is uncon-
ditional. In other words, s set A ⊂ Rn is called unconditional if (x1, . . . , xn) ∈ A implies
(ε1x1, . . . , εnxn) ∈ A for any choice of signs ε1, . . . , εn ∈ {−1, 1}. The class of all ideal (in
Rn) will be denoted by KI .

3. A set A ⊆ Rn is called symmetric if A = −A. The class of all symmetric convex sets in
Rn will be denoted by KS.

4. A measure µ on Rn is called unconditional if it has an unconditional density. Note that if
an unconditional measure µ is a product measure, i.e. µ = µ1⊗ . . .⊗µn, then the measures
µi are unconditional on R.

Our �rst theorem reads as follows.

Theorem 1. Let µ be an unconditional product measure on Rn. Then µ satis�es the Brunn-
Minkowski inequality in the class KI of all ideal in Rn.

As we already mentioned, in such inequality for the measure with non-degenerate support,
the power 1/n is the best possible. In addition, it will be shown in Examples 1 and 2, in the end
of the paper, that neither the assumption that µ is a product measure, nor the unconditionality
of our sets A and B can be dropped.

Our strategy is to prove a certain functional version of (6). A functional version of the
classical Brunn-Minkowski inequality is called the Prekopa-Leindler inequality, see [G] for the
proof.

Theorem 2 (Prekopa-Leindler inequality, [P], [Le]). Let f, g,m be non-negative measurable
functions on Rn and let λ ∈ [0, 1]. If for all x, y ∈ Rn we have m(λx+ (1− λ)y) ≥ f(x)λg(y)1−λ

then ∫
m dx ≥

(∫
f dx

)λ(∫
g dx

)1−λ

.

Here we prove an analogue of the above inequality for unconditional product measures and
unconditional functions f, g,m.
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Proposition 1. Fix λ, p ∈ (0, 1). Suppose that m, f, g are unconditional. Let µ be an uncondi-
tional product measure on Rn. Assume that for any x, y ∈ Rn we have

m(λx+ (1− λ)y) ≥ f(x)pg(y)1−p.

Then ∫
m dµ ≥

[(
λ

p

)p(
1− λ
1− p

)1−p
]n(∫

f dµ

)p(∫
g dµ

)1−p

.

The above proposition allows us to prove the following lemma, which is in fact a reformulation
of Theorem 1.

Lemma 1. Let A,B be ideals in Rn and let µ be an unconditional product measure on Rn.
Then for any λ ∈ [0, 1] and p ∈ (0, 1) we have

µ(λA+ (1− λ)B) ≥

[(
λ

p

)p(
1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p.

It is worth noticing that the factor on the right hand side of this inequality replaces is some
sense the lack of homogeneity of our measure µ. The main idea of the proof is to introduce an
additional parameter p 6= λ and do the optimization with respect to p.

In the second part of this article we provide a link between the Brunn-Minkowski inequal-
ity and the logarithmic-Brunn-Minkowski inequality. To state our observation we need two
de�nitions.

De�nition 3. Let K be a class of subsets closed under dilations. We say that a family � =
(�λ)λ∈[0,1] of functions acting on K×K (and having values in the class of measurable subsets of
Rn) is a geometric mean if for any A,B ∈ K the set A�λ B is measurable, satis�es an inclusion
A�λ B ⊆ λA+ (1− λ)B, and for any s, t > 0 there is (sA)�λ (tB) = sλt1−λ(A�λ B).

De�nition 4. We say that a Borel measure µ on Rn satis�es the logarithmic-Brunn-Minkowski
inequality in the class of sets K with a geometric mean �, if for any sets A,B ∈ K and for any
λ ∈ [0, 1] we have

µ(A�λ B) ≥ µ(A)λµ(B)1−λ,

Remark 1. In what follows we use two di�erent geometric means. First one is a geometric
mean �S : Ks ×Ks → Ks, de�ned by the formula

A�Sλ B = {x ∈ Rn : 〈x, u〉 ≤ hλA(u)h1−λB (u), ∀u ∈ Sn−1}.

Here hA is a support function of A, i.e., hA(u) = supx∈A 〈x, u〉.
The second mean �I : KI ×KI → KI is de�ned by

A�Iλ B =
⋃

x∈A,y∈B

[−|x1|λ|y1|1−λ, |x1|λ|y1|1−λ]× . . .× [−|xn|λ|yn|1−λ, |xn|λ|yn|1−λ].

It is straightforward to check, with the help of the inequality aλb1−λ ≤ λa+(1−λ)b, a, b ≥ 0,
that both means are indeed geometric.
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In the Section 3 we prove the following fact.

Proposition 2. Suppose that a Borel measure µ with a radially decreasing density f , i.e.
density satisfying f(tx) ≥ f(x) for any x ∈ Rn and t ∈ [0, 1], satis�es the logarithmic-Brunn-
Minkowski inequality, with a geometric mean �, in a certain class of sets K. Then µ satis�es
the Brunn-Minkowski inequality in the class K.

In [S2] C. Saroglou proved the logarithmic-Brunn-Minkowski inequality with geometric mean
�S for measures with even log-concave densities (that is, densities of the form e−V , where V is
even, i.e. V (x) = V (−x), and convex) in the plane R2, in the class of symmetric convex sets
(see Corollary 3.3 therein). Thus, as a consequence of Proposition 2 and Remark 1, we get the
following corollary.

Corollary 1. Let µ be a measure on R2 with an even log-concave density. Then µ satis�es the
Brunn-Minkowski inequality in the class Ks of all symmetric convex sets in R2.

Moreover, in [CFM] (Proposition 8) the authors proved the following theorem (see also Propo-
sition 4.2 in [S1]).

Theorem 3. The logarithmic-Brunn-Minkowski inequality holds true with the geometric mean
�I for any measure with unconditional log-concave density in the class KI of ideal in Rn

We recall the argument in Section 3. As a consequence, applying our Proposition 2 together
with Remark 1, we deduce the following fact.

Corollary 2. Let µ be an unconditional log-concave measure on Rn. Then µ satis�es the
Brunn-Minkowski inequality in the class KI of all ideals in Rn.

Let us now brie�y describe some corollaries of the Brunn-Minkowski type inequality we
established, which are analogues to well-known o�springs of Brunn-Minkowski inequality for the
volume. In what follows a pair (K, µ) is called nice if one of the following three cases holds.

(a) K = KI and µ is an unconditional product measure on Rn

(b) K = KI and µ is an unconditional log-concave measure on Rn

(c) K = Ks and µ is an even log-concave measure on R2

Corollary 3. Suppose that a pair (K, µ) is nice. Let A,B ⊂ K be convex. Then the function
t 7→ µ(A+ tB)1/n is concave on [0,∞).

Indeed, for any λ ∈ [0, 1] and t1, t2 ≥ 0 we have

µ(A+ (λt1 + (1− λ)t2)B)1/n = µ((λ(A+ t1B) + (1− λ)(A+ t2B)1/n

≥ λµ(A+ t1B)1/n + (1− λ)µ(A+ t2B)1/n.

Note that in the �rst line we have used the convexity of A and B. If B = Bn
2 is the Euclidean

ball, the expression µ(A+ tB) is called the parallel volume and has been studied in the case of
Lebesgue measure by Costa and Cover in [C] as an analogue of concavity of entropy power in
information theory. The authors conjectured that for any measurable set A the parallel volume
in 1

n
-concave. In [FM] it has been shown that in general this conjecture is falls. The authors
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proved the conjecture on the real line. They also showed that it holds true on the plane in the
case of connected sets. In a recent paper [M] the second named author investigated the parallel
volumes µ(A+ tBn

2 ) in the context of s-concave measures. He proved that t 7→ µ(A+ t[−1, 1])1/s

is concave for s-concave measures on the real line. However, as we already mentioned, even for
the Lebesgue measure this result cannot be generalized to the higher dimensions. Our Corollary
3 gives the Costa-Cover conjecture for any convex set A ∈ K, where (K, µ) is a nice pair.
Moreover, the Euclidean ball Bn

2 can be replaced with any convex set B ∈ K.
Second, we may state the following analogue of the Brunn's theorem on volumes of sections

of convex bodies.

Corollary 4. Suppose that a pair (K, µ) is nice. Let K ∈ K be a convex set. Then the function
t 7→ µ(A ∩ {x1 = t}) is 1

n−1 -concave on its support.

To prove this let us take Kt = K ∩ {x1 = t}. By convexity of K we get λKt1 + (1 − λ)Kt2 ⊆
Kλt1+(1−λ)t2 . Thus, using (6), for any λ ∈ [0, 1] and t1, t2 ∈ R such that Kt1 and Kt2 are both
non-empty, we get

µ(Kλt1+(1−λ)t2)
1

n−1 ≥ µ(λKt1 + (1− λ)Kt2)
1

n−1 ≥ λµ(Kt1)
1

n−1 + (1− λ)µ(Kt2)
1

n−1 .

Third, let us mention the relation of our result to the Gaussian isoperimetric inequality,
Ehrhard's inequality and the so-called S-inequality. Let us begin with the Gaussian isoperimetry.
It turns out that for any measurable set A ⊂ Rn and any t > 0, the quantity γn(At) is minimized,
among all sets with prescribed measure, for the half spaces Ha,θ = {x ∈ Rn : 〈x, θ〉 ≤ a}, with
a ∈ R and θ ∈ Sn−1. This is a famous result established by Sudakov and Tsirelson, [ST], as well
as independently by Borell, [B2], and can be seen as one of the cornerstones of the concentration
of measure theory. In�nitesimally, it says that among all sets with prescribed measure the half
spaces are those with the smallest Gaussian measure of the boundary, i.e., the quantity

γ+n (A) = lim inf
t→0+

γn(A+ tBn
2 )− γn(A)

t
.

A more general statement is the so-called Ehrhard's inequality. It says that for any non-empty
measurable sets A,B we have

Φ−1(γn(λA+ (1− λ)B)) ≥ λΦ−1(γn(A)) + (1− λ)Φ−1(γn(B)), λ ∈ [0, 1], (7)

where Φ(t) = γ1((−∞, a]). This inequality has been considered for the �rst time by Ehrhard
in [E], where the author proved it assuming that both A and B are convex. Then Lataªa in
[L] generalized Erhard's result to the case of arbitrary A and convex B. In it's full generality,
the inequality (7) has been established by Borell, [B3]. Note that our inequality (5), valid for
unconditional ideals, is an inequality of the same type, with Φ(t) replaced with tn. None of them
is a direct consequence of the other. However, unlike the Gaussian Brunn-Minkowski inequality,
the Ehrhard's inequality (in fact a more general form of it where λ and 1− λ are replaced with
α and β, under the conditions α+ β ≥ 1 and |α− β| ≤ 1) gives the Gaussian isoperimetry as a
simple consequence.

Let us also describe the S-inequality of Lataªa and Oleszkiewicz, see [LO]. It states that
for any t > 1 and any symmetric convex body K the quantity γn(tK) is minimized, among all
subsets with prescribed measure, for the strips of the form SL = {x ∈ Rn : |x1| ≤ L}. This
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result admits an equivalent in�nitesimal version, namely, among all symmetric convex bodies K
with prescribed Gaussian measure the strips SL minimize the quantity d

dt
γn(tK)

∣∣
t=1

, which is
equivalent to maximizing

M(K) =

∫
K

|x|2 dγn(x),

see [KS] or [NT3]. For a general measure µ with a density e−ψ, one can show that the in�nitesimal
version of S-inequality is an issue of maximizing the quantity

Mµ(K) = −
∫
K

〈x,∇ψ〉 dµ(x), (8)

see equation (11) below. Not much is known about this general problem. In the unconditional
case it has been solved for some particular product measures like products of Gamma andWeibull
distributions, see [NT2]. It turns our that inequality (5) implies a certain mixture of Gaussian
isoperimetry and reverse S-inequality. Namely, we have the following Corollary.

Corollary 5. Let A,B be two ideals in Rn (or general symmetric convex sets in R2) and let
r > 0. Then we have

rγ+n (A) +M(A) ≥ nγn(rBn
2 )

1
nγn(A)1−

1
n

with equality for A = rBn
2 .

Let us state and prove a more general version of Corollary 5. Let µ+(A) be the µ boundary
measure of A, i.e.,

µ+(A) = lim inf
t→0+

µ(A+ tBn
2 )− µ(A)

t
.

Moreover, let us introduce the so-called �rst mixed volume of arbitrary sets A and B, with
respect to measure µ. Namely

V µ
1 (A,B) =

1

n
lim inf
t→0+

µ(A+ tB)− µ(A)

t
.

Clearly, µ+(A) = nV µ
1 (A,Bn

2 ).

Corollary 6. Let A,B ∈ K and suppose that (K, µ) is a nice pair. Then we have

V µ
1 (A,B) +

1

n
Mµ(A,B) ≥ µ(B)1/nµ(A)1−1/n. (9)

In particular,
rµ+(∂A) +Mµ(A) ≥ nµ(rBn

2 )1/nµ(A)1−1/n. (10)

To prove this we note that for any sets A,B ∈ K and any ε ∈ [0, 1) we have

µ(A+ εB)1/n ≥ (1− ε)µ
(

A

1− ε

)1/n

+ εµ(B)1/n.

Indeed, it su�ces to use Theorem 1 with λ = 1 − ε and Ã = A/(1 − ε), B̃ = B. Note that for
ε = 0 we have equality. Thus, di�erentiating at ε = 0 we get

1

n
µ(A)

1
n
−1 · nV µ

1 (A,B) ≥ µ(B)
1
n − µ(A)

1
n +

1

n
µ(A)

1
n
−1 d

dt
µ(tA)

∣∣∣
t=1
.
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By changing variables we obtain

d

dt
µ(tA)

∣∣∣
t=1

=
d

dt

∫
A

e−ψ(tx)tn dx
∣∣∣
t=1

= nµ(A)−
∫
A

〈x,∇ψ(x)〉 dµ(x) = nµ(A)−Mµ(A). (11)

Thus,

µ(A)
1
n
−1V µ

1 (A,B) ≥ µ(B)
1
n − 1

n
µ(A)

1
n
−1Mµ(A).

This is exactly (9). To get (10) one has to take B = rBn
2 in (9).

The above inequalities can be seen as an analogues of the so-called Minkowski �rst inequality
for the Lebesgue measure, see [G] and [Sn], which says that for any two convex bodies A,B in
Rn we have

V voln
1 (A,B) ≥ voln(A)1−

1
n voln(B)

1
n .

The rest of this article is organized as follows. In the next section we �rst show how Lemma 1
implies Theorem 1. Then Lemma 1 is deduced from Proposition 1. Finally, we prove Proposition
1. In Section 3 we prove Proposition 2 and recall the proof of Theorem 3. In the last section we
give examples showing optimality of some of our results and state open questions.

2 Proof of Theorem 1

We �rst show how Lemma 1 implies Theorem 1.

Proof of Theorem 1. Without loss of generality we can assume that λ ∈ (0, 1). Let us assume
for a moment that µ(A)µ(B) > 0. Then we can use Lemma 1 with

p =
λµ(A)1/n

λµ(A)1/n + (1− λ)µ(B)1/n
∈ (0, 1). (12)

Note that

λ

p
=
λµ(A)1/n + (1− λ)µ(B)1/n

µ(A)1/n
,

1− λ
1− p

=
λµ(A)1/n + (1− λ)µ(B)1/n

µ(B)1/n
.

Then [(
λ

p

)p(
1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p =

(
λµ(A)1/n + (1− λ)µ(B)1/n

)n
.

Thus the inequality in Lemma 1 becomes

µ(λA+ (1− λ)B) ≥
(
λµ(A)1/n + (1− λ)µ(B)1/n

)n
.

Now suppose that, say, µ(B) = 0. Since B is a non-empty ideal, we have 0 ∈ B. Therefore,
λA ⊆ λA+ (1− λ)B. Let ϕµ be the unconditional density of µ. Hence,

µ(λA+ (1− λ)B) ≥ µ(λA) =

∫
λA

ϕ(x) dx = λn
∫
A

ϕ(λy) dy

= λn
∫
A

ϕ(λy1, . . . , λyn) dy = λn
∫
A

ϕ(λ|y1|, . . . , λ|yn|) dy

≥ λn
∫
A

ϕ(|y1|, . . . , |yn|) dy = λnµ(A).

9



Therefore,
µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n = λµ(A)1/n + (1− λ)µ(B)1/n.

Next we show that Proposition 1 implies Lemma 1.

Proof of Lemma 1. We can assume that λ ∈ (0, 1). Let us take m(x) = 1λA+(1−λ)B(x), f(x) =
1A(x), g(x) = 1B(x). Clearly, f, g and m are unconditional. It is easy to verify that for any
p ∈ (0, 1) we have m(λx+ (1− λ)y) ≥ f(x)pg(y)1−p. Our assertion follows from Proposition 1.

For the proof of Proposition 1 we need a one dimensional Brunn-Minkowski inequality for un-
conditional measures.

Lemma 2. Let A,B be two symmetric intervals and let µ be unconditional on R. Then for any
λ ∈ [0, 1] we have

µ(λA+ (1− λ)B) ≥ λµ(A) + (1− λ)µ(B).

Proof. We can assume that A = [−a, a] and B = [−b, b] for some a, b > 0. Let ϕµ be the density
of µ. Then our assertion is equivalent to∫ λa+(1−λ)b

0

ϕµ(x) dx ≥ λ

∫ a

0

ϕµ(x) dx+ (1− λ)

∫ b

0

ϕµ(x) dx.

In other words, the function t 7→
∫ t
0
ϕµ(x) dx should be concave on [0,∞). This is equivalent to

t 7→ ϕµ(t) being non-increasing on [0,∞).

Proof of Proposition 1. We proceed by induction on n. Let us begin with the case n = 1. We can
assume that ‖f‖∞, ‖g‖∞ > 0. Indeed, if we multiply the functions m, f, g by numbers cm, cf , cg
satisfying cm = cpfc

1−p
g , the hypothesis and the assertion do not change. Therefore, taking cf =

‖f‖−1∞ , cg = ‖g‖−1∞ , cm = ‖f‖−p∞ ‖g‖
−(1−p)
∞ we can assume that ‖f‖∞ = ‖g‖∞ = 1. Then the sets

{f > t} and {g > t} are non-empty for t ∈ (0, 1). Moreover, λ{f > t}+ (1− λ){g > t} ⊆ {m >
t}. Indeed, if x ∈ {f > t} and y ∈ {g > t} then m(λx+ (1− λ)y) ≥ f(x)pg(y)1−p > tpt1−p = t.
Thus, λx+ (1− λ)y ∈ {m > t}. Therefore, using Lemma 2, we get∫

m dµ =

∫ ∞
0

µ({m > t}) dt ≥
∫ 1

0

µ({m > t}) dt

≥
∫ 1

0

µ(λ{f > t}+ (1− λ){g > t}) dt

≥ λ

∫ 1

0

µ({f > t}) dt+ (1− λ)

∫ 1

0

µ({g > t}) dt

= λ

∫ ∞
0

µ({f > t}) dt+ (1− λ)

∫ ∞
0

µ({g > t}) dt

= λ

∫
f dµ+ (1− λ)

∫
g dµ.

10



Now, using the inequality pa+ (1− p)b ≥ apb1−p we get

λ

∫
f dµ+ (1− λ)

∫
g dµ = p

λ

p

∫
f dµ+ (1− p)1− λ

1− p

∫
g dµ (13)

≥
(
λ

p

)p(
1− λ
1− p

)1−p(∫
f dµ

)p(∫
g dµ

)1−p

. (14)

Next, we do the induction step. Let us assume that the assertion is true in dimension n− 1.
Let m, f, g : Rn → [0,∞) be unconditional. For x0, y0, z0 ∈ R we de�ne functions mz0 , fx0 , gy0
by

mz0(x) = m(z0, x), fx0(x) = f(x0, x), gy0(x) = g(y0, x).

Clearly, these functions are also unconditional. Moreover, due to our assumptions on m, f, g we
have

mλx0+(1−λ)y0(λx+ (1− λ)y) = m(λx0 + (1− λ)y0, λx+ (1− λ)y)

≥ f(x0, x)pg(y0, y)1−p = fx0(x)pgy0(y)1−p.

Let us decompose µ in the form µ = µ1 × µ̄, where µ1 is a measure on R. Note that µ1 and µ̄
are unconditional and µ̄ is a product measure. Thus, by our induction assumption we have∫

mλx0+(1−λ)y0 dµ̄ ≥

[(
λ

p

)p(
1− λ
1− p

)1−p
]n−1(∫

fx0 dµ̄

)p(∫
gy0 dµ̄

)1−p

. (15)

Now we de�ne the functions

M(z0) =

[(
λ

p

)p(
1− λ
1− p

)1−p
]−(n−1) ∫

mz0(ξ) dµ̄(ξ), (16)

F (x0) =

∫
fx0(ξ) dµ̄(ξ), G(y0) =

∫
gy0(ξ) dµ̄(ξ). (17)

Using nequality (15) we immediately get that

M(λx0 + (1− λy0)) ≥ F (x0)
pG(y0)

1−p.

Moreover, it is easy to see that M,F,G are unconditional on R. Thus, using Lemma 2 (the
one-dimensional case), we get∫

M(z) dµ1(z) ≥
(
λ

p

)p(
1− λ
1− p

)1−p(∫
F (x) dµ1(x)

)p(∫
G(y) dµ1(y)

)1−p

. (18)

Observe that∫
M(z) dµ1(z) =

[(
λ

p

)p(
1− λ
1− p

)1−p
]−(n−1) ∫ ∫

mz0(ξ) dµn−1(ξ) dµ1(z0)

=

[(
λ

p

)p(
1− λ
1− p

)1−p
]−(n−1) ∫

m dµ.

Similarly, ∫
F (x0) dµ1(x0) =

∫
f dµ,

∫
G(y0) dµ1(y0) =

∫
g dµ.

Our assertion follows.
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3 Proof of Proposition 2

In this section we �rst prove Proposition 2. The argument has a �avour of our previous proof.

Proof of Proposition 2. Let us �rst assume that µ(A)µ(B) > 0. From the de�nition of geometric
mean we have A�p B ⊆ pA+ (1− p)B, for any p ∈ (0, 1). Thus,

µ(λA+ (1− λ)B) = µ

(
p · λ

p
A+ (1− p) · 1− λ

1− p
B

)
≥ µ

((
λ

p
A

)
�p
(

1− λ
1− p

B

))
= µ

((
λ

p

)p(
1− λ
1− p

)1−p

A�p B

)
.

Let t =
(
λ
p

)p (
1−λ
1−p

)1−p
and C = A �p B. From the concavity of the logarithm it follows that

0 ≤ t ≤ 1. We have

µ(tC) =

∫
tC

f(x) dx = tn
∫
C

f(tx) dx ≥ tn
∫
C

f(x) dx = tnµ(C). (19)

Therefore,

µ(λA+ (1− λ)B) ≥ tnµ(A�p B) ≥ tnµ(A)pµ(B)1−p =

[(
λ

p

)p(
1− λ
1− p

)1−p
]n
µ(A)pµ(B)1−p.

Taking

p =
λµ(A)1/n

λµ(A)1/n + (1− λ)µ(B)1/n

gives
µ(λA+ (1− λ)B)1/n ≥ λµ(A)1/n + (1− λ)µ(B)1/n.

If, say, µ(B) = 0 then by (19) and the fact that 0 ∈ B we get

µ(λA+ (1− λ)B)1/n ≥ µ(λA)1/n ≥ λµ(A)1/n = λµ(A)1/n + (1− λ)µ(B)1/n.

We now sketch the proof of Theorem 3.

Proof. Let A,B ∈ KI and let us take f, g,m : Rn
+ → R+ given by f = 1A∩Rn+ , g = 1B∩Rn+ and

m = 1(A�IλB)∩Rn+ . Let ϕµ be an unconditional log-concave density of µ. We de�ne

F (x) = f(ex1 , . . . exn)ϕµ(ex1 , . . . exn)ex1+...+xn , G(x) = g(ex1 , . . . exn)ϕµ(ex1 , . . . exn)ex1+...+xn ,

M(x) = m(ex1 , . . . exn)ϕµ(ex1 , . . . exn)ex1+...+xn .

One can easily check, using the de�nition of KI and the de�nition of the geometric mean �Iλ, as
well as the inequality

ϕµ(eλx1+(1−λ)y1 , . . . , eλxn+(1−λ)yn) = ϕµ((ex1)λ(ey1)1−λ, . . . , (exn)λ(eyn)1−λ)

ϕµ(λex1 + (1− λ)ey1 , . . . , λexn + (1− λ)eyn) ≥ ϕµ(ex1 , . . . , exn)λϕµ(ey1 , . . . , eyn)1−λ,

that the functions F,G,M satisfy assumptions of Theorem 2. The �rst inequality above follows
from the fact that ϕµ is unconditional. As a consequence, we get µ((A �Iλ B) ∩ Rn

+) ≥ µ(A ∩
Rn

+)λµ(B ∩ Rn
+)1−λ. The assertion follows from unconditionality of our measure µ and the fact

that A,B and A�Iλ B are ideals.
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4 Examples and open problems

Example 1. The assumption, that our measure µ in Theorem 1 is product, is important.
Indeed, let us take the square C = {|x|, |y| ≤ 1} ⊂ R2 and take the measure with density
ϕ(x) = 1

2
12C(x) + 1

2
1C(x). This density is unconditional, however non product. Let us de�ne

ψ(a) =
√
µ(aC). The assertion of Theorem 1 implies that ψ is concave. However, we have

ψ(a) =
√

2a2 + 2 for a ∈ [1, 2], which is strictly convex. Thus, µ does not satisfy (6).

Example 2. In general, under the assumption that our measure µ is unconditional and product,
one cannot prove that Theorem 1 holds true for arbitrary symmetric convex sets. To see this,
let us take the product measure µ = µ0 ⊗ µ0 on R2, where µ0 has an unconditional density
ϕ(x) = p+(1−p)1[−1/

√
2,1/
√
2](x) for some p ∈ [0, 1]. This measure is not �nite, however one can

always restrict it to a cube [−C,C]2 to get a �nite product measure. If C is su�ciently large
the example given below also produces and example for the restricted measure.

To simplify the computation let us rotate the whole picture by angle π/4. Then consider
the rectangle R = [−1, 1] × [−λ, λ] for λ ≤ 1/2. As in the previous example, it is enough to
show that the function ψ(a) =

√
µ(aR) is not concave. Let us consider this function only on

the interval [1/λ,∞). The condition λ ≤ 1/2 ensures that the point (a, λa) lies in the region
with density p2. Let us introduce lengths l1, l2, l3 (see the picture below). Note that l1 =

√
2λa,

l2 =
√

2(λa− 1) and l3 = a− (1 + λa). Let ω(a) = µ(aR). We have

ω(a) = 2 + 4
√

2p · l1 + l2
2

+ p2l21 + p2l22 + 4p2l3λa

= 2 + 4p(2λa− 1) + 2p2λ2a2 + 2p2(λa− 1)2 + 4p2λa(a− 1− λa)

= 2(1− p)2 + 4pλa(pa+ 2− 2p) = d0 + d1a+ d2a
2,

where d0 = 2(1−p)2, d1 = 8p(1−p)λ, d2 = 4p2λ. We show that ψ is strictly convex for p ∈ (0, 1)
and 0 < λ < 1/2. Then ψ′′ > 0 is equivalent to 2ωω′′ > (ω′)2. But

2ω(a)ω′′(a)− (ω′(a))2 = 4d2(d0 + d1a+ d2a
2)− (2d2a+ d1)

2 = 4d2d0 − d21
= 32λp2(1− p)2 − 64λ2p2(1− p)2 = 32λp2(1− p)2(1− 2λ) > 0.

(a, λa)

(1, 0)
l1

l2l3

Let us state some open questions that arose during our study.

Question. Let us assume that the measure µ has an even log-concave density (not-necessarily
product). Does the assertion of Theorem 1 holds true for arbitrary symmetric sets A and B? If
not, is it true under additional assumption that the sets are unconditional or that the measure
is product? In particular, can one remove the assumption of unconditionality in the Gaussian
Brunn-Minkowski inequality?
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