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Michal R. Przybylek

Definable sets
Logic

I A first-order signature Σ consists of:
I a collection of sorts (Ai )i∈I indexed by a set I
I a collection of function symbols f : Ai1 × Ai2 × · · · × Aik → Aj
I a collection of relation symbols R ⊆ Ai1 × Ai2 × · · · × Aik

I The First-Order logic (over Σ)
I formulas are build from terms of Σ together with:
I relation symbols from Σ with equality =, and:
I logical connectives: ∃, ∀, ⊥, >, ∨, ∧

I Infinitary First-Order logic allows infinite disjunctions
∨

I A theory is a set of formulas closed under logical consequence
(in a given logic)
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Definable sets
Example: the theory of infinite objects

I The theory of infinite objects Eq:
I The empty signature with a single sort A
I For every n, the axiom saying that there are at least n

elements:

∃x1∃x2 · · · ∃xn x1 6= x2 ∧ · · · ∧ xi 6= xj · · · ∧ xn−1 6= xn

I A model of Eq is an infinite set; every function between
Eq-models is a homomorphism

I All Eq-models of cardinality ℵ0 are isomorphic (i.e. Eq is
ω-categorical)
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Definable sets
Example: the theory of algebraically closed fields

I The theory of algebraically closed fields ACF :
I A single sort C
I Constants: 0 : C , 1 : C
I Functions: +: C × C → C , ∗ : C × C → C
I Axioms expressing that 〈C , 0, 1,+, ∗〉 is a field
I Axioms saying that every non-constant polynomial over C has

a root in C .

I Example: complex numbers.
I There is an ACF of characteristic 2, i.e. 1 + 1 = 0
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Definable sets
Sets

I Fix a first-order theory T
I T -definable set is an equivalence class of formulas modulo T :

I two formulas φ and ψ are equivalent modulo T if they are
provably equivalent in T , i.e.: T ` φ⇔ ψ

I If φ(x1, x2, . . . , xn) has free variables x1, x2, . . . , xn of sorts
A1,A2, . . . ,An, then a set defined by it will be denoted by:

{〈x1, x2, . . . , xn〉 ∈ A1 × A2 × · · · × An : φ(x1, x2, . . . , xn)}

or more compactly by: {x ∈
∏

i Ai : φ(x)}
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Definable sets
Example: Eq

I Consider the theory of infinite objects Eq:
I The only definable sets in context A are:

{x ∈ A : >} = A
{x ∈ A : ⊥} = ∅

I There is one interesting set in context A× A:

{〈x , y〉 ∈ A× A : x 6= y}
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Definable sets
Example: ACL

I Consider the theory of algebraically closed fields ACF

I Here is an ACF -definable set (syntactic sugar: x2 = xx):

{〈x , y〉 ∈ C2 : x2 + y2 = 1}

I Another ACF -definable set (syntactic sugar: 2 = 1 + 1):

{〈x , y〉 ∈ C2 : x2 + y2 = 1 ∧ y = 2x}

I Here is yet another ACF -definable set:

{x ∈ C : x + x = 0 ∧ x 6= 0}

I Is the last set non-empty?

No — because it has no members
when interpreted in the complex numbers!

I Is it empty? No — because it has members when interpreted
in ACF of characteristic 2!
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Definable sets
Complete theories

I Fix a first-order theory T
I Assume that T is complete and has a model M
I T -definable sets may be thought of as genuine subsets of MK :

{〈x1, x2, . . . , xn〉 ∈ AM
1 × AM

2 × · · · × AM
n : φ(x1, x2, . . . , xn)}

I Example:
I ACF0 — the theory of algebraically closed fields of

characteristic 0 is complete and has a model C (complex
numbers)

I ACF0-definable sets are solutions to polynomial equations
(with definable coefficients), e.g.:

{〈x , y〉 ∈ C2 : x2 + y2 = 1 ∧ y = 2x} = {−
√
5
5 ,

√
5
5 }

{x ∈ C : x + x = 0 ∧ x 6= 0} = ∅
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Definable sets
Functions

I Fix a first-order theory T
I Definable function f : {x ∈

∏
Ai : φ(x)} → {y ∈

∏
Bi : ψ(y)}

is the equivalence class of a subformula f (x , y) of
{〈x , y〉 ∈

∏
Ai ×

∏
Bi : φ(x) ∧ ψ(y)} that is functional:

I φ(x) ` ∃y f (x , y)
I f (x , y1) ∧ f (x , y2) ` y1 = y2

Syntactic category
T -definable sets together with T -definable functions form a
category T — the syntactic category of T .

Moreover, for definable
A,B, f , the following sets are definable:

I A× B,A ∪ B, f [A], f −1[A]
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Definable sets
Effective quotients

I Fix a first-order theory T
I R be a T -definable equivalence relation on a set X

I Is the set X/R of R-equivalence classes T -definable?
I Is the canonical surjection e : X → X/R T -definable?

Fact:
T is a Heyting category — i.e. it has finite limits, stable unions and
quantifiers. But it may lack effective quotients!

Imaginary elements
Elements of X/R are called imaginary elements of T . A theory T
(uniformly) eliminates imaginaries if for every T -definable
equivalence relation R on X , the quotient set X/R together with
the canonical injection e : X → X/R are T -definable.



Michal R. Przybylek

Definable sets
Effective quotients

I Fix a first-order theory T
I R be a T -definable equivalence relation on a set X
I Is the set X/R of R-equivalence classes T -definable?

I Is the canonical surjection e : X → X/R T -definable?

Fact:
T is a Heyting category — i.e. it has finite limits, stable unions and
quantifiers. But it may lack effective quotients!

Imaginary elements
Elements of X/R are called imaginary elements of T . A theory T
(uniformly) eliminates imaginaries if for every T -definable
equivalence relation R on X , the quotient set X/R together with
the canonical injection e : X → X/R are T -definable.



Michal R. Przybylek

Definable sets
Effective quotients

I Fix a first-order theory T
I R be a T -definable equivalence relation on a set X
I Is the set X/R of R-equivalence classes T -definable?
I Is the canonical surjection e : X → X/R T -definable?

Fact:
T is a Heyting category — i.e. it has finite limits, stable unions and
quantifiers. But it may lack effective quotients!

Imaginary elements
Elements of X/R are called imaginary elements of T . A theory T
(uniformly) eliminates imaginaries if for every T -definable
equivalence relation R on X , the quotient set X/R together with
the canonical injection e : X → X/R are T -definable.



Michal R. Przybylek

Definable sets
Effective quotients

I Fix a first-order theory T
I R be a T -definable equivalence relation on a set X
I Is the set X/R of R-equivalence classes T -definable?
I Is the canonical surjection e : X → X/R T -definable?

Fact:
T is a Heyting category — i.e. it has finite limits, stable unions and
quantifiers. But it may lack effective quotients!

Imaginary elements
Elements of X/R are called imaginary elements of T . A theory T
(uniformly) eliminates imaginaries if for every T -definable
equivalence relation R on X , the quotient set X/R together with
the canonical injection e : X → X/R are T -definable.



Michal R. Przybylek

Definable sets
Effective quotients

I Fix a first-order theory T
I R be a T -definable equivalence relation on a set X
I Is the set X/R of R-equivalence classes T -definable?
I Is the canonical surjection e : X → X/R T -definable?

Fact:
T is a Heyting category — i.e. it has finite limits, stable unions and
quantifiers. But it may lack effective quotients!

Imaginary elements
Elements of X/R are called imaginary elements of T . A theory T
(uniformly) eliminates imaginaries if for every T -definable
equivalence relation R on X , the quotient set X/R together with
the canonical injection e : X → X/R are T -definable.



Michal R. Przybylek

Definable sets
Elimination of imaginaries

Sharon Shelah (1978)
Every first-order theory T has an extension T eq such that:

I T eq-models are essentially the same as T -models
I T eq eliminates imaginaries

M. Makkai and G.E. Reyes
Every first-order theory T has an extension T u such that:

I T u-models are essentially the same as T -models
I T u has finite disjoint coproducts
I T + = (T u)eq has finite disjoint coproducts and eliminates

imaginaries

I T+ is a pretopos



Michal R. Przybylek

Definable sets
Elimination of imaginaries

Sharon Shelah (1978)
Every first-order theory T has an extension T eq such that:

I T eq-models are essentially the same as T -models
I T eq eliminates imaginaries

M. Makkai and G.E. Reyes
Every first-order theory T has an extension T u such that:

I T u-models are essentially the same as T -models
I T u has finite disjoint coproducts
I T + = (T u)eq has finite disjoint coproducts and eliminates

imaginaries

I T+ is a pretopos



Michal R. Przybylek

Definable sets
Elimination of imaginaries

Sharon Shelah (1978)
Every first-order theory T has an extension T eq such that:

I T eq-models are essentially the same as T -models
I T eq eliminates imaginaries

M. Makkai and G.E. Reyes
Every first-order theory T has an extension T u such that:

I T u-models are essentially the same as T -models
I T u has finite disjoint coproducts
I T + = (T u)eq has finite disjoint coproducts and eliminates

imaginaries
I T+ is a pretopos



Michal R. Przybylek

Definable sets
Definable sets subsume sets with atoms

Theorem:
If A is single-sorted and countable then Th(A)+ = Th(A)eq

Theorem:
Sets with atoms A are exactly Th(A)eq-definable sets.

Proof (sketch):
I (⇒) If φ(x , y) is an equivalence formula, then
{〈x , {y : φ(x , y)}〉 : >} represents its effective quotient

I (⇐) If φ(x , y) is any formula, then one may define an
equivalence formula φ̂(x , x ′) = ∀yφ(x , y)↔ φ(x ′, y) and
represent {y : φ(x , y)} by an imaginary element of φ̂(x , x ′)
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Definable sets
Hierarchy of theories

Oligomorphic theory (over countable language)
Th(A), for A s.t. Aut(A) is oligomorphic

I i.e. for every k, the canonical action of Aut(A) on Ak has
finitely many orbits

ω-categorical theory (over countable language)
Th(A), for A s.t. Th(A) is ω-categorical

I i.e. Aut(A) is a coherent group
I i.e. for every context x there are only finitely many formulas

with variables in x modulo equivalence in Th(A)

Locally ω-categorical theory (over countable language)
T s.t. in every context there are finitely many formulas modulo T
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with variables in x modulo equivalence in Th(A)
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T s.t. in every context there are finitely many formulas modulo T
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Definable sets
Algorithms

I Fix a decidable FO theory T , such that every finite set of
formulas in a given context generates a finite Heyting algebra

I Let G = (V ,E ) be a T -definable graph, and assume that
nodes V are represented by formula ψ, whereas edges E are
represented by formula φ.

I Is the reachability problem for G decidable?

— Yes!

comment: I ′ ⊆ I store consecutive approximations to t.c. of φ
I ′ ← ∅
I ← {〈x , x〉 : ψ(x)}
while I ′ 6= I do

I ′ ← I
I ← I ∪ {〈x , y〉 : ∃z〈x , z〉 ∈ I ∧ φ(z , y)}

end while
return I
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Definable sets
Beyond definable sets?

I How about while-like programs in a general category C?
I C should have at least finite products...

I Consider a graph G = (V ,E ) in C — to define a transitive
closure of E :

I There must be a well-defined composition of relations E ◦ E ,
which requires pullbacks and existential quantifiers

I There must be a well-defined notion of union of subobjects

Pretopos
Every category with finite limits, existential quantifiers and
well-behaved unions is equivalent to the category of T -definable
sets for some theory T .

Moreover, we can inject finite disjoint
coproducts and effective quotients into such category making it
equivalent to the category of T +-definable sets.
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Classifying topos
Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)
For an oligomorphic structure A, the full subcategory of SetAut(A)

consisting of sets with finitely many orbits is equivalent to the
category of finite sets with atoms A.

Grothendieck et al. (1972)
For a coherent theory T , the full subcategory of the classifying
topos C [T ] consisting of coherent objects is equivalent to the
category of T +-definable sets.

I Sets with atoms A are just Th(A)+-definable sets
I SetAut(A) is the classifying topos C [Th(A)] of Th(A)
I Coherent objects in SetAut(A) are groups with finitely many

orbits.
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Classifying topos
Positive-existential logic

I Positive-existential logic (theory) is a fragment of inifinitary
FOL (theory), whose connectives are restricted to:

I ∃, 0, 1, ∨, ∧,
∨

I Positive-existential fragment of inifinitary FOL is called
geometric logic

Classifying topos
I For every geometric theory T there is a Grothendieck topos

C [T ] with a generic model GT of T .

I Every Grothendieck topos arises in this way
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Classifying topos
Generic model

I What is a Grothendieck topos?
I A category that behaves like the category of sets and functions

in intuitionistic logic
I A topos with small coproducts and small generating family

I What is a generic model of T?
I It is a model GT of T in the classifying topos C [T ], such that

every model MT of T in any Grothendieck topos S can be
obtained from GT in a canonical way

I In particular, MT ≈ F ∗(GT ), where F ∗ is the inverse image
part of some geometric morphism F : C [T ]→ S
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Classifying topos
Coherent logic

I Coherent logic (theory) is a fragment of FOL (theory), where
connectives are restricted to:

I ∃, 0, 1, ∨, ∧
I Alternatively, it is a finitary fragment of geometric logic

I An object is called coherent if it is compact and stable, where:

I An object A is compact if its hom functor hom(A,−) preserves
filtered colimits of monomorphisms

I An object A is stable if for every morphism f : B → A from a
compact object B, the kernel object ker(f ) of f is compact

I Examples: finite sets in Set, sets with finitely many orbits in
SetG for a coherent topological group G
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Coherent toposes
Correspondence between definable sets and coherent objects

Grothendieck:
For a coherent theory T , the full subcategory of the classifying
topos C [T ] consisting of coherent objects is equivalent to the
category of T +-definable sets.

Fact:
For every first-order theory T , one may construct a Grothendieck
topos C [T ], such that the full subcategory of C [T ] consisting of
coherent objects is equivalent to the category of T +-definable sets.
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Beyond classifying toposes

I Closure properties:
I products and cofiltered limits of coherent groups are coherent
I (finite) products of coherent toposes are coherent toposes
I products and filtered colimits of pretoposes are pretoposes

I Most of the results survive when moving to the filtered
colimits of classifying toposes

I What about infinitary logics?...

Thank you!
Additional materials: www.mimuw.edu.pl/~mrp/beyond.pdf

www.mimuw.edu.pl/~mrp/beyond.pdf
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