Beyond sets with atoms definability in first-order logic

Michal R. Przybylek www.mimuw.edu.com/~mrp

Polish-Japanese Academy of Information Technology

2017 Category Theory in Physics, Mathematics and Philosophy

Definable sets Logic

- A first-order signature Σ consists of:
 - ▶ a collection of sorts $(A_i)_{i \in I}$ indexed by a set I
 - ▶ a collection of function symbols $f: A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k} \rightarrow A_j$
 - ▶ a collection of relation symbols $R \subseteq A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k}$

Definable sets Logic

- A first-order signature Σ consists of:
 - a collection of sorts $(A_i)_{i \in I}$ indexed by a set I
 - ▶ a collection of function symbols $f: A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k} \to A_j$
 - ▶ a collection of relation symbols $R \subseteq A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k}$
- The First-Order logic (over Σ)
 - formulas are build from terms of Σ together with:
 - relation symbols from Σ with equality =, and:
 - ▶ logical connectives: \exists , \forall , \bot , \top , \lor , \land

Definable sets Logic

- A first-order signature Σ consists of:
 - a collection of sorts $(A_i)_{i \in I}$ indexed by a set I
 - ▶ a collection of function symbols $f: A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k} \to A_j$
 - ▶ a collection of relation symbols $R \subseteq A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k}$
- The First-Order logic (over Σ)
 - formulas are build from terms of Σ together with:
 - relation symbols from Σ with equality =, and:
 - ▶ logical connectives: \exists , \forall , \bot , \top , \lor , \land
- ► Infinitary First-Order logic allows infinite disjunctions ∨

Definable sets _{Logic}

- A first-order signature Σ consists of:
 - a collection of sorts $(A_i)_{i \in I}$ indexed by a set I
 - ▶ a collection of function symbols $f: A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k} \to A_j$
 - ▶ a collection of relation symbols $R \subseteq A_{i_1} \times A_{i_2} \times \cdots \times A_{i_k}$
- The First-Order logic (over Σ)
 - formulas are build from terms of Σ together with:
 - relation symbols from Σ with equality =, and:
 - ▶ logical connectives: \exists , \forall , \bot , \top , \lor , \land
- \blacktriangleright Infinitary First-Order logic allows infinite disjunctions \bigvee
- A theory is a set of formulas closed under logical consequence (in a given logic)

Definable sets Example: the theory of infinite objects

- The theory of infinite objects *Eq*:
 - The empty signature with a single sort A
 - ► For every *n*, the axiom saying that there are at least *n* elements:

$$\exists_{x_1}\exists_{x_2}\cdots\exists_{x_n}x_1\neq x_2\wedge\cdots\wedge x_i\neq x_j\cdots\wedge x_{n-1}\neq x_n$$

Definable sets Example: the theory of infinite objects

- The theory of infinite objects *Eq*:
 - The empty signature with a single sort A
 - ► For every *n*, the axiom saying that there are at least *n* elements:

$$\exists_{x_1}\exists_{x_2}\cdots\exists_{x_n}x_1\neq x_2\wedge\cdots\wedge x_i\neq x_j\cdots\wedge x_{n-1}\neq x_n$$

► A model of Eq is an infinite set; every function between Eq-models is a homomorphism

Definable sets Example: the theory of infinite objects

- The theory of infinite objects *Eq*:
 - The empty signature with a single sort A
 - ► For every *n*, the axiom saying that there are at least *n* elements:

$$\exists_{x_1}\exists_{x_2}\cdots\exists_{x_n}x_1\neq x_2\wedge\cdots\wedge x_i\neq x_j\cdots\wedge x_{n-1}\neq x_n$$

- ► A model of Eq is an infinite set; every function between Eq-models is a homomorphism
- ► All Eq-models of cardinality ℵ₀ are isomorphic (i.e. Eq is ω-categorical)

Definable sets Example: the theory of algebraically closed fields

- ► The theory of algebraically closed fields ACF:
 - A single sort C
 - ▶ Constants: 0: *C*, 1: *C*
 - Functions: $+: C \times C \rightarrow C, *: C \times C \rightarrow C$
 - \blacktriangleright Axioms expressing that $\langle {\it C}, 0, 1, +, * \rangle$ is a field
 - ► Axioms saying that every non-constant polynomial over *C* has a root in *C*.

Definable sets Example: the theory of algebraically closed fields

- ► The theory of algebraically closed fields ACF:
 - A single sort C
 - ▶ Constants: 0: *C*, 1: *C*
 - Functions: $+: C \times C \rightarrow C, *: C \times C \rightarrow C$
 - Axioms expressing that $\langle C, 0, 1, +, * \rangle$ is a field
 - ► Axioms saying that every non-constant polynomial over *C* has a root in *C*.
- Example: complex numbers.

Definable sets Example: the theory of algebraically closed fields

- ► The theory of algebraically closed fields ACF:
 - A single sort C
 - ▶ Constants: 0: *C*, 1: *C*
 - Functions: $+: C \times C \rightarrow C, *: C \times C \rightarrow C$
 - Axioms expressing that $\langle C, 0, 1, +, * \rangle$ is a field
 - ► Axioms saying that every non-constant polynomial over *C* has a root in *C*.
- Example: complex numbers.
- There is an ACF of characteristic 2, i.e. 1 + 1 = 0

Definable sets Sets

- ► Fix a first-order theory *T*
- ► *T*-definable set is an equivalence class of formulas modulo *T*:
 - ► two formulas ϕ and ψ are equivalent modulo T if they are provably equivalent in T, i.e.: $T \vdash \phi \Leftrightarrow \psi$

Definable sets Sets

- ► Fix a first-order theory *T*
- ► *T*-definable set is an equivalence class of formulas modulo *T*:
 - ► two formulas ϕ and ψ are equivalent modulo T if they are provably equivalent in T, i.e.: $T \vdash \phi \Leftrightarrow \psi$
- If φ(x₁, x₂,..., x_n) has free variables x₁, x₂,..., x_n of sorts A₁, A₂,..., A_n, then a set defined by it will be denoted by:

$$\{\langle x_1, x_2, \ldots, x_n \rangle \in A_1 \times A_2 \times \cdots \times A_n \colon \phi(x_1, x_2, \ldots, x_n)\}$$

or more compactly by: $\{\overline{x} \in \prod_i A_i : \phi(\overline{x})\}$

Definable sets Example: *Eq*

- Consider the theory of infinite objects *Eq*:
- The only definable sets in context A are:

$$\{ x \in A \colon \top \} = A \{ x \in A \colon \bot \} = \emptyset$$

Definable sets Example: *Eq*

- Consider the theory of infinite objects *Eq*:
- The only definable sets in context A are:

$$\{ x \in A \colon \top \} = A \{ x \in A \colon \bot \} = \emptyset$$

• There is one interesting set in context $A \times A$:

$$\{\langle x,y\rangle\in A\times A\colon x\neq y\}$$

Definable sets Example: ACL

► Consider the theory of algebraically closed fields ACF

Definable sets Example: ACL

- ► Consider the theory of algebraically closed fields ACF
- Here is an ACF-definable set (syntactic sugar: $x^2 = xx$):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\}$$

Definable sets Example: ACL

- Consider the theory of algebraically closed fields ACF
- Here is an ACF-definable set (syntactic sugar: $x^2 = xx$):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\}$$

• Another ACF-definable set (syntactic sugar: 2 = 1 + 1):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\wedge y=2x\}$$

Definable sets Example: ACL

- Consider the theory of algebraically closed fields ACF
- Here is an ACF-definable set (syntactic sugar: $x^2 = xx$):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\}$$

• Another ACF-definable set (syntactic sugar: 2 = 1 + 1):

$$\{\langle x, y \rangle \in C^2 \colon x^2 + y^2 = 1 \land y = 2x\}$$

► Here is yet another ACF-definable set:

$$\{x \in C \colon x + x = 0 \land x \neq 0\}$$

Definable sets Example: ACL

- Consider the theory of algebraically closed fields ACF
- Here is an ACF-definable set (syntactic sugar: $x^2 = xx$):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\}$$

► Another ACF-definable set (syntactic sugar: 2 = 1 + 1):

$$\{\langle x, y \rangle \in C^2 \colon x^2 + y^2 = 1 \land y = 2x\}$$

► Here is yet another *ACF*-definable set:

$$\{x \in C \colon x + x = 0 \land x \neq 0\}$$

Is the last set non-empty?

Definable sets Example: ACL

- Consider the theory of algebraically closed fields ACF
- Here is an ACF-definable set (syntactic sugar: $x^2 = xx$):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\}$$

• Another ACF-definable set (syntactic sugar: 2 = 1 + 1):

$$\{\langle x, y \rangle \in C^2 \colon x^2 + y^2 = 1 \land y = 2x\}$$

► Here is yet another *ACF*-definable set:

$$\{x \in C \colon x + x = 0 \land x \neq 0\}$$

- Is the last set non-empty? No because it has no members when interpreted in the complex numbers!
- ► Is it empty?

Definable sets Example: ACL

- Consider the theory of algebraically closed fields ACF
- Here is an ACF-definable set (syntactic sugar: $x^2 = xx$):

$$\{\langle x,y\rangle\in C^2\colon x^2+y^2=1\}$$

• Another ACF-definable set (syntactic sugar: 2 = 1 + 1):

$$\{\langle x, y \rangle \in C^2 \colon x^2 + y^2 = 1 \land y = 2x\}$$

► Here is yet another *ACF*-definable set:

$$\{x \in C \colon x + x = 0 \land x \neq 0\}$$

- Is the last set non-empty? No because it has no members when interpreted in the complex numbers!
- Is it empty? No because it has members when interpreted in ACF of characteristic 2!

Definable sets Complete theories

- Fix a first-order theory T
- ► Assume that *T* is complete and has a model *M*
- *T*-definable sets may be thought of as genuine subsets of M^K :

$$\{\langle x_1, x_2, \ldots, x_n \rangle \in A_1^M \times A_2^M \times \cdots \times A_n^M \colon \phi(x_1, x_2, \ldots, x_n)\}$$

Definable sets Complete theories

- ► Fix a first-order theory *T*
- ► Assume that *T* is complete and has a model *M*
- *T*-definable sets may be thought of as genuine subsets of M^K :

$$\{\langle x_1, x_2, \ldots, x_n \rangle \in A_1^M \times A_2^M \times \cdots \times A_n^M \colon \phi(x_1, x_2, \ldots, x_n)\}$$

- Example:
 - ACF0 the theory of algebraically closed fields of characteristic 0 is complete and has a model ℂ (complex numbers)
 - ACF0-definable sets are solutions to polynomial equations (with definable coefficients), e.g.:

$$\begin{aligned} \{\langle x, y \rangle \in \mathbb{C}^2 \colon x^2 + y^2 &= 1 \land y = 2x\} &= \{-\frac{\sqrt{5}}{5}, \frac{\sqrt{5}}{5}\}\\ \{x \in \mathbb{C} \colon x + x = 0 \land x \neq 0\} &= \emptyset \end{aligned}$$

Definable sets Functions

- Fix a first-order theory T
- ▶ Definable function $f: \{\overline{x} \in \prod A_i : \phi(\overline{x})\} \rightarrow \{\overline{y} \in \prod B_i : \psi(\overline{y})\}$ is the equivalence class of a subformula $f(\overline{x}, \overline{y})$ of $\{\langle \overline{x}, \overline{y} \rangle \in \prod A_i \times \prod B_i : \phi(\overline{x}) \land \psi(\overline{y})\}$ that is functional:

•
$$\phi(\overline{x}) \vdash \exists_{\overline{y}} f(\overline{x}, \overline{y})$$

•
$$f(\overline{x},\overline{y_1}) \wedge f(\overline{x},\overline{y_2}) \vdash \overline{y_1} = \overline{y_2}$$

Definable sets Functions

- Fix a first-order theory T
- ▶ Definable function $f : \{\overline{x} \in \prod A_i : \phi(\overline{x})\} \rightarrow \{\overline{y} \in \prod B_i : \psi(\overline{y})\}$ is the equivalence class of a subformula $f(\overline{x}, \overline{y})$ of $\{\langle \overline{x}, \overline{y} \rangle \in \prod A_i \times \prod B_i : \phi(\overline{x}) \land \psi(\overline{y})\}$ that is functional:

•
$$\phi(\overline{x}) \vdash \exists_{\overline{y}} f(\overline{x}, \overline{y})$$

•
$$f(\overline{x}, \overline{y_1}) \wedge f(\overline{x}, \overline{y_2}) \vdash \overline{y_1} = \overline{y_2}$$

Syntactic category

T-definable sets together with T-definable functions form a category \mathbb{T} — the syntactic category of T.

Definable sets Functions

- Fix a first-order theory T
- ▶ Definable function $f : \{\overline{x} \in \prod A_i : \phi(\overline{x})\} \rightarrow \{\overline{y} \in \prod B_i : \psi(\overline{y})\}$ is the equivalence class of a subformula $f(\overline{x}, \overline{y})$ of $\{\langle \overline{x}, \overline{y} \rangle \in \prod A_i \times \prod B_i : \phi(\overline{x}) \land \psi(\overline{y})\}$ that is functional:

$$\bullet \ \phi(\overline{x}) \vdash \exists_{\overline{y}} f(\overline{x}, \overline{y})$$

• $f(\overline{x},\overline{y_1}) \wedge f(\overline{x},\overline{y_2}) \vdash \overline{y_1} = \overline{y_2}$

Syntactic category

T-definable sets together with *T*-definable functions form a category \mathbb{T} — the syntactic category of *T*. Moreover, for definable *A*, *B*, *f*, the following sets are definable:

 $\blacktriangleright A \times B, A \cup B, f[A], f^{-1}[A]$

Definable sets Effective quotients

- Fix a first-order theory T
- ► *R* be a *T*-definable equivalence relation on a set *X*

Definable sets Effective quotients

- Fix a first-order theory T
- ► R be a T-definable equivalence relation on a set X
- ▶ Is the set X/R of *R*-equivalence classes *T*-definable?

Definable sets Effective quotients

- Fix a first-order theory T
- R be a T-definable equivalence relation on a set X
- ▶ Is the set X/R of *R*-equivalence classes *T*-definable?
- ▶ Is the canonical surjection $e: X \to X/R$ *T*-definable?

Definable sets Effective quotients

- ► Fix a first-order theory *T*
- R be a T-definable equivalence relation on a set X
- ▶ Is the set X/R of *R*-equivalence classes *T*-definable?
- ▶ Is the canonical surjection $e: X \to X/R$ *T*-definable?

Fact:

 $\mathbb T$ is a Heyting category — i.e. it has finite limits, stable unions and quantifiers. But it may lack effective quotients!

Definable sets Effective quotients

- Fix a first-order theory T
- R be a T-definable equivalence relation on a set X
- ▶ Is the set X/R of *R*-equivalence classes *T*-definable?
- ▶ Is the canonical surjection $e: X \to X/R$ *T*-definable?

Fact:

 $\mathbb T$ is a Heyting category — i.e. it has finite limits, stable unions and quantifiers. But it may lack effective quotients!

Imaginary elements

Elements of X/R are called imaginary elements of T. A theory T (uniformly) eliminates imaginaries if for every T-definable equivalence relation R on X, the quotient set X/R together with the canonical injection $e: X \to X/R$ are T-definable.

Definable sets Elimination of imaginaries

Sharon Shelah (1978)

Every first-order theory T has an extension T^{eq} such that:

- ► *T^{eq}*-models are essentially the same as *T*-models
- T^{eq} eliminates imaginaries

Definable sets Elimination of imaginaries

Sharon Shelah (1978)

Every first-order theory T has an extension T^{eq} such that:

- ► *T^{eq}*-models are essentially the same as *T*-models
- T^{eq} eliminates imaginaries

M. Makkai and G.E. Reyes

Every first-order theory T has an extension T^u such that:

- ► *T^u*-models are essentially the same as *T*-models
- ► *T^u* has finite disjoint coproducts
- ► T⁺ = (T^u)^{eq} has finite disjoint coproducts and eliminates imaginaries

Definable sets Elimination of imaginaries

Sharon Shelah (1978)

Every first-order theory T has an extension T^{eq} such that:

- ► *T^{eq}*-models are essentially the same as *T*-models
- T^{eq} eliminates imaginaries

M. Makkai and G.E. Reyes

Every first-order theory T has an extension T^u such that:

- ► *T^u*-models are essentially the same as *T*-models
- ► *T^u* has finite disjoint coproducts
- ► T⁺ = (T^u)^{eq} has finite disjoint coproducts and eliminates imaginaries
- \mathbb{T}^+ is a pretopos

Definable sets Definable sets subsume sets with atoms

Theorem:

If A is single-sorted and countable then $Th(A)^+ = Th(A)^{eq}$

Definable sets Definable sets subsume sets with atoms

Theorem:

If A is single-sorted and countable then $Th(A)^+ = Th(A)^{eq}$

Theorem:

Sets with atoms A are exactly $Th(A)^{eq}$ -definable sets.

Proof (sketch):

- ► (⇒) If $\phi(\overline{x}, \overline{y})$ is an equivalence formula, then { $\langle \overline{x}, \{\overline{y}: \phi(\overline{x}, \overline{y})\} \rangle$: \top } represents its effective quotient
- ► (⇐) If $\phi(\overline{x}, \overline{y})$ is any formula, then one may define an equivalence formula $\widehat{\phi}(\overline{x}, \overline{x}') = \forall_{\overline{y}} \phi(\overline{x}, \overline{y}) \leftrightarrow \phi(\overline{x}', \overline{y})$ and represent $\{\overline{y} : \phi(\overline{x}, \overline{y})\}$ by an imaginary element of $\widehat{\phi}(\overline{x}, \overline{x}')$

Definable sets Hierarchy of theories

Oligomorphic theory (over countable language)

Th(A), for A s.t. Aut(A) is oligomorphic

► i.e. for every k, the canonical action of Aut(A) on A^k has finitely many orbits

Definable sets Hierarchy of theories

Oligomorphic theory (over countable language)

Th(A), for A s.t. Aut(A) is oligomorphic

► i.e. for every k, the canonical action of Aut(A) on A^k has finitely many orbits

ω -categorical theory (over countable language)

Th(A), for A s.t. Th(A) is ω -categorical

- ► i.e. Aut(A) is a coherent group
- ► i.e. for every context x̄ there are only finitely many formulas with variables in x̄ modulo equivalence in Th(A)

Definable sets Hierarchy of theories

Oligomorphic theory (over countable language)

Th(A), for A s.t. Aut(A) is oligomorphic

► i.e. for every k, the canonical action of Aut(A) on A^k has finitely many orbits

ω -categorical theory (over countable language)

Th(A), for A s.t. Th(A) is ω -categorical

- ► i.e. Aut(A) is a coherent group
- ► i.e. for every context x̄ there are only finitely many formulas with variables in x̄ modulo equivalence in Th(A)

Locally ω -categorical theory (over countable language)

 ${\cal T}$ s.t. in every context there are finitely many formulas modulo ${\cal T}$

Definable sets Hierarchy of theories

Oligomorphic theory (over countable language)

Th(A), for A s.t. Aut(A) is oligomorphic

Ultimate theory

T such that every finite set of formulas in a given context generates a finite Heyting algebra

TH(A), IN A S.L. TH(A) IS w-categorical

▶ i.e. Aut(A) is a coherent group

► i.e. for every context x̄ there are only finitely many formulas with variables in x̄ modulo equivalence in Th(A)

Locally ω -categorical theory (over countable language)

 ${\cal T}$ s.t. in every context there are finitely many formulas modulo ${\cal T}$

Definable sets Algorithms

► Fix a decidable FO theory *T*, such that every finite set of formulas in a given context generates a finite Heyting algebra

Definable sets Algorithms

- Fix a decidable FO theory T, such that every finite set of formulas in a given context generates a finite Heyting algebra
- Let G = (V, E) be a T-definable graph, and assume that nodes V are represented by formula ψ, whereas edges E are represented by formula φ.
- Is the reachability problem for \mathcal{G} decidable?

Definable sets Algorithms

- Fix a decidable FO theory T, such that every finite set of formulas in a given context generates a finite Heyting algebra
- Let G = (V, E) be a T-definable graph, and assume that nodes V are represented by formula ψ, whereas edges E are represented by formula φ.
- ► Is the reachability problem for *G* decidable? Yes!

comment: $l' \subseteq I$ store consecutive approximations to t.c. of ϕ $l' \leftarrow \emptyset$ $l \leftarrow \{\langle \overline{x}, \overline{x} \rangle : \psi(\overline{x})\}$ while $l' \neq I$ do $l' \leftarrow I$ $l \leftarrow I \cup \{\langle \overline{x}, \overline{y} \rangle : \exists_{\overline{z}} \langle \overline{x}, \overline{z} \rangle \in I \land \phi(\overline{z}, \overline{y})\}$ end while return I

Definable sets Beyond definable sets?

- ► How about while-like programs in a general category C?
- \blacktriangleright $\mathbb C$ should have at least finite products...

Definable sets Beyond definable sets?

- ▶ How about while-like programs in a general category \mathbb{C} ?
- \blacktriangleright $\mathbb C$ should have at least finite products...
- Consider a graph G = (V, E) in C to define a transitive closure of E:
 - ► There must be a well-defined composition of relations *E* ∘ *E*, which requires pullbacks and existential quantifiers

Definable sets Beyond definable sets?

- ► How about while-like programs in a general category C?
- \mathbb{C} should have at least finite products...
- Consider a graph G = (V, E) in C to define a transitive closure of E:
 - ► There must be a well-defined composition of relations E ∘ E, which requires pullbacks and existential quantifiers
 - There must be a well-defined notion of union of subobjects

Definable sets Beyond definable sets?

- ► How about while-like programs in a general category C?
- \mathbb{C} should have at least finite products...
- Consider a graph G = (V, E) in C to define a transitive closure of E:
 - ► There must be a well-defined composition of relations E ∘ E, which requires pullbacks and existential quantifiers
 - ► There must be a well-defined notion of union of subobjects

Pretopos

Every category with finite limits, existential quantifiers and well-behaved unions is equivalent to the category of T-definable sets for some theory T.

Definable sets Beyond definable sets?

- ► How about while-like programs in a general category C?
- \blacktriangleright $\mathbb C$ should have at least finite products...
- Consider a graph G = (V, E) in C to define a transitive closure of E:
 - ► There must be a well-defined composition of relations *E* ∘ *E*, which requires pullbacks and existential quantifiers
 - ► There must be a well-defined notion of union of subobjects

Pretopos

Every category with finite limits, existential quantifiers and well-behaved unions is equivalent to the category of T-definable sets for some theory T. Moreover, we can inject finite disjoint coproducts and effective quotients into such category making it equivalent to the category of T^+ -definable sets.

Classifying topos Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)

For an oligomorphic structure A, the full subcategory of $\mathbf{Set}^{Aut(A)}$ consisting of sets with finitely many orbits is equivalent to the category of finite sets with atoms A.

Classifying topos Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)

For an oligomorphic structure A, the full subcategory of $\mathbf{Set}^{Aut(A)}$ consisting of sets with finitely many orbits is equivalent to the category of finite sets with atoms A.

Grothendieck et al. (1972)

Classifying topos Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)

For an oligomorphic structure A, the full subcategory of $\mathbf{Set}^{Aut(A)}$ consisting of sets with finitely many orbits is equivalent to the category of finite sets with atoms A.

Grothendieck et al. (1972)

For a coherent theory T, the full subcategory of the classifying topos C[T] consisting of coherent objects is equivalent to the category of T^+ -definable sets.

• Sets with atoms A are just $Th(A)^+$ -definable sets

Classifying topos Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)

For an oligomorphic structure A, the full subcategory of $\mathbf{Set}^{Aut(A)}$ consisting of sets with finitely many orbits is equivalent to the category of finite sets with atoms A.

Grothendieck et al. (1972)

- Sets with atoms A are just $Th(A)^+$ -definable sets
- **Set**^{Aut(A)} is the classifying topos C[Th(A)] of Th(A)

Classifying topos Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)

For an oligomorphic structure A, the full subcategory of $\mathbf{Set}^{Aut(A)}$ consisting of sets with finitely many orbits is equivalent to the category of finite sets with atoms A.

Grothendieck et al. (1972)

- Sets with atoms A are just $Th(A)^+$ -definable sets
- **Set**^{Aut(A)} is the classifying topos C[Th(A)] of Th(A)
- Coherent objects in Set^{Aut(A)} are groups with finitely many orbits.

Classifying topos Grothendieck et al. subsumes Bojanczyk et al.

Bojanczyk et al. (2011)

For the theory Th(A) of an oligomorphic structure A, the full subcategory of the classifying topos C[Th(A)] consisting of coherent objects is equivalent to the category of $Th(A)^+$ -def. sets.

Grothendieck et al. (1972)

- Sets with atoms A are just $Th(A)^+$ -definable sets
- **Set**^{Aut(A)} is the classifying topos C[Th(A)] of Th(A)
- Coherent objects in Set^{Aut(A)} are groups with finitely many orbits.

Classifying topos Positive-existential logic

 Positive-existential logic (theory) is a fragment of inifinitary FOL (theory), whose connectives are restricted to:

Classifying topos Positive-existential logic

- Positive-existential logic (theory) is a fragment of inifinitary FOL (theory), whose connectives are restricted to:
 - ▶ ∃, 0, 1, \lor , \land , \bigvee
- Positive-existential fragment of inifinitary FOL is called geometric logic

Classifying topos Positive-existential logic

- Positive-existential logic (theory) is a fragment of inifinitary FOL (theory), whose connectives are restricted to:
 - ► ∃, 0, 1, ∨, ∧, V
- Positive-existential fragment of inifinitary FOL is called geometric logic

Classifying topos

► For every geometric theory T there is a Grothendieck topos C[T] with a generic model G_T of T.

Classifying topos Positive-existential logic

- Positive-existential logic (theory) is a fragment of inifinitary FOL (theory), whose connectives are restricted to:
 - ► ∃, 0, 1, ∨, ∧, V
- Positive-existential fragment of inifinitary FOL is called geometric logic

Classifying topos

- ► For every geometric theory T there is a Grothendieck topos C[T] with a generic model G_T of T.
- Every Grothendieck topos arises in this way

- What is a Grothendieck topos?
 - A category that behaves like the category of sets and functions in intuitionistic logic
 - ► A topos with small coproducts and small generating family

- What is a Grothendieck topos?
 - A category that behaves like the category of sets and functions in intuitionistic logic
 - ► A topos with small coproducts and small generating family
- ▶ What is a generic model of *T*?
 - It is a model G_T of T in the classifying topos C[T], such that every model M_T of T in any Grothendieck topos S can be obtained from G_T in a canonical way
 - In particular, M_T ≈ F^{*}(G_T), where F^{*} is the inverse image part of some geometric morphism F: C[T] → S

Classifying topos Coherent logic

- Coherent logic (theory) is a fragment of FOL (theory), where connectives are restricted to:
 - ▶ ∃, 0, 1, \lor , \land
- Alternatively, it is a finitary fragment of geometric logic

Classifying topos Coherent logic

- Coherent logic (theory) is a fragment of FOL (theory), where connectives are restricted to:
 - ► ∃, 0, 1, ∨, ∧
- Alternatively, it is a finitary fragment of geometric logic
- ► An object is called *coherent* if it is compact and stable, where:
 - ► An object A is compact if its hom functor hom(A, -) preserves filtered colimits of monomorphisms
 - An object A is stable if for every morphism f: B → A from a compact object B, the kernel object ker(f) of f is compact

Classifying topos Coherent logic

- Coherent logic (theory) is a fragment of FOL (theory), where connectives are restricted to:
 - ► ∃, 0, 1, ∨, ∧
- Alternatively, it is a finitary fragment of geometric logic
- ► An object is called *coherent* if it is compact and stable, where:
 - ► An object A is compact if its hom functor hom(A, -) preserves filtered colimits of monomorphisms
 - An object A is stable if for every morphism f: B → A from a compact object B, the kernel object ker(f) of f is compact
- Examples: finite sets in Set, sets with finitely many orbits in Set^G for a coherent topological group G

Coherent toposes Correspondence between definable sets and coherent objects

Grothendieck:

Coherent toposes Correspondence between definable sets and coherent objects

Grothendieck:

For a coherent theory T, the full subcategory of the classifying topos C[T] consisting of coherent objects is equivalent to the category of T^+ -definable sets.

Fact:

For every first-order theory T, one may construct a Grothendieck topos C[T], such that the full subcategory of C[T] consisting of coherent objects is equivalent to the category of T^+ -definable sets.

Beyond classifying toposes

- Closure properties:
 - ▶ products and cofiltered limits of coherent groups are coherent
 - ▶ (finite) products of coherent toposes are coherent toposes
 - products and filtered colimits of pretoposes are pretoposes

Beyond classifying toposes

- Closure properties:
 - products and cofiltered limits of coherent groups are coherent
 - ► (finite) products of coherent toposes are coherent toposes
 - products and filtered colimits of pretoposes are pretoposes
- Most of the results survive when moving to the filtered colimits of classifying toposes

Beyond classifying toposes

- Closure properties:
 - products and cofiltered limits of coherent groups are coherent
 - ▶ (finite) products of coherent toposes are coherent toposes
 - products and filtered colimits of pretoposes are pretoposes
- Most of the results survive when moving to the filtered colimits of classifying toposes
- What about infinitary logics?...

Beyond classifying toposes

- Closure properties:
 - products and cofiltered limits of coherent groups are coherent
 - ► (finite) products of coherent toposes are coherent toposes
 - products and filtered colimits of pretoposes are pretoposes
- Most of the results survive when moving to the filtered colimits of classifying toposes
- What about infinitary logics?...

Thank you!

Additional materials: www.mimuw.edu.pl/~mrp/beyond.pdf