The first big assignment:
 Labyrinth

Michal R. Przybylek

1 The problem

A labyrinth of dimension $n \times m$ consists of n rows of m fields. Each field is either:

- a road, denoted by space ',
- a wall, denoted by hash '\#'
- an exit, denoted by dollar '\$'
- a monkey, denoted by apud '@'

For example, here is a labyrinth of dimension 6×7 :

There is always exactly one monkey in any labyrinth and at least one exit. In one step a monkey can move in the labyrinth one field up/down/right/left, provided the field is a road. We say that the monkey escaped the labyrinth if it is neighbour to an exit field.

2 The task

Your task it to help the monkey to escape from a labyrinth. Write a program that takes two parameters:

- problem - the name of a file that describes a labyrinth
- solution - the name of a file to store a solution
reads the labyrinth from file problem, finds the shortest path for the monkey to exit the labyrinth and writes the solution to file solution. The input consists of a single line containing two positive natural numbers (the dimensions of a labyrinth) followed by the description of the labyrinth. The output should consist of a single line with sequence of capital letters U (up), D (down), L (left), R (right) that describes the actions of the monkey. If the monkey cannot escape from the labyrinth, the output should consist of a single letter E.

Please, send your programs to:

```
mrp@pjwstk.edu.pl
```

before 15.05.2016!

3 Examples

```
Input: sample_problem1.txt, sample_solution1.txt.
sample_problem1.txt:
6.7 
sample_solution1.txt:
DDDDRRRRUULLUURR
Input: sample_problem2.txt, sample_solution2.txt.
sample_problem2.txt:
```

```
67
\#\#\#\#\$\#
@ \# \# \#\# \#\#\#
\#\#\#\#\#\#
```

sample_solution2.txt:

RRRR
Input: sample_problem3.txt, sample_solution3.txt.
sample_problem3.txt:
67
\#\#\#\#\$\#
@\# \#
\#\#\# \#
\#\#\#\#\#\#
sample_solution3.txt:

E

