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Abstract

This thesis is concerned with secant varieties and their equations. We put
everything in the framework of toric varieties, since they can be described by
combinatorics. We discuss different choices for the ideal of a subscheme of a
toric variety with no torus factors. Three actors appearing throughout the
thesis are homogenization, dehomogenization, and derivation. We analyze
their interplay.

We describe classical methods of obtaining equations of secant varieties,
and explain how they are subject to “barriers”, which are connected to irre-
ducibility of Hilbert schemes of points. We elaborate on the applications of
Hilbert schemes to the subject of secant varieties.

As an example of how this theory works in practice, we give upper and
lower bounds for the rank of monomials on the product of two projective
lines, and provide some calculations of the ranks of monomials on other toric
surfaces. Some interesting pathologies occur here which do not happen on
the projective space.

The final part of this thesis is about breaking the barriers described before
in the simplest cases possible. We do this for the fourteenth secant variety of
the Segre-Veronese embedding, and for the eight Grassmann secant variety
of three-dimensional spaces of the Veronese embedding.

Keywords: Waring rank, border rank, cactus rank, Hilbert scheme, se-
cant variety, cactus variety, apolarity, dehomogenization, homogenization,
equations of secant varieties.

AMS MSC 2020 classification: 14C05, 14M12, 14M25, 14N07.



Streszczenie

Tematem tej pracy są rozmaitości siecznych i ich równania. Całą teorię
rozwijamy dla rozmaitości torycznych, ponieważ mają opis kombinatoryczny.
Omawiamy różne alternatywy dla ideału podschematu rozmaitości torycznej
bez czynników torusa. Trzy pojęcia, które pojawiają się w całej pracy to
ujednorodnienie, odjednorodnienie i różniczkowanie. Analizujemy ich wza-
jemne relacje.

Opisujemy klasyczne metody uzyskiwania równań rozmaitości siecznych i
wyjaśniamy fakt, że te metody są poddane pewnym ograniczeniom, związanym
z nieprzywiedlnością schematu Hilberta punktów. Omawiamy zastosowania
schematów Hilberta do rozmaitości siecznych.

Jako przykład, do czego można stosować tę teorię, podajemy górne i
dolne ograniczenia na rangę jednomianów na iloczynie dwóch prostych rzu-
towych i przeprowadzamy obliczenia rang jednomianów na innych torycznych
powierzchniach. Pojawiają się tu pewne ciekawe patologie, których nie ob-
serwujemy w przypadku przestrzeni rzutowej.

Ostatnia część pracy opisuje, jak przekroczyć ograniczenia opisane wcześniej
w najprostszych możliwych przypadkach. Robimy to dla czternastej roz-
maitości siecznych do włożenia Segre-Veronese oraz dla ósmej grassmanni-
anowej rozmaitości siecznych przestrzeni trójwymiarowych do włożenia Veronese.

Słowa kluczowe: ranga Waringa, ranga brzegowa, ranga kaktusowa,
schemat Hilberta, rozmaitość siecznych, rozmaitość kaktusowa, abiegunowość,
odjednorodnienie, ujednorodnienie, równania rozmaitości siecznych.
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Chapter 1

Introduction

It is difficult to trace the origins of secant varieties and ranks in mathematics,
but the connected idea of decomposing a complicated object into simple
ones has been present therein since ancient times (cf. Pythagorean triples).
More recent research includes the observations of Lagrange and Waring. The
former considered reducing quadratic forms to a diagonal form, which is the
rank decomposition for quadrics. The latter believed that “for all integers
d ≥ 2 there exists a positive integer g(d) such that each n ∈ Z+ can be
written as n = ad1 + · · · + adg(d) with ai ≥ 0”, see [78]. This was proven by
Hilbert in 1909.

Moreover, this way of thinking is omnipresent in the natural sciences.
Consider for instance the Blind Source Separation problem, which is applied
to sonars, radars ([33]), electrocardiography ([40]), speech ([65]).

Let us examine what the situation looks like in the world of multilinear
algebra and algebraic geometry. We consider two fundamental problems.

Problem 1.1. Let F be a complex homogenous polynomial in n+1 variables
x0, . . . , xn. The Waring rank of F is the smallest number r such that F can
be written as a sum of r d-th powers of linear forms. We can ask the following
questions:

(a) Given F , what is the Waring rank of F?

(b) What is the Waring rank of a generic polynomial of degree d in n + 1
variables?

(c) Given a positive integer r, what are the equations of the closure of the
set of polynomials of rank at most r?
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Problem 1.2. Let T ∈ Cn1+1 ⊗ · · · ⊗Cnk+1 be a tensor. The tensor rank of
T is the smallest number r such that T can be written as a sum of r simple
tensors (i.e. tensors of the form v1 ⊗ · · · ⊗ vk for some v1 ∈ Cn1+1, . . . , vk ∈
Cnk+1). We can ask the following questions:

(a) Given T , what is the tensor rank of T?

(b) What is the tensor rank of a generic tensor in Cn1+1 ⊗ · · · ⊗ Cnk+1?

(c) Given a positive integer r, what are the equations of the closure of the
set of tensors of rank at most r?

Remark 1.3. What about fields of characteristic greater than 0? It turns out
that the theory can be made to work in such a case. However, in this thesis
we always assume that we work over C, since we cite some results from [39],
where the authors work over C.

Remark 1.4. Problems 1.1(a) and 1.2(a) can be also stated for the real field
and this is the case more relevant for the applications. See Remarks 1.8 and
1.10. However, the situation is a little different for Problems 1.1(b,c) and
1.2(b,c). The Euclidean closure of the set of polynomials of rank at most r,
or tensors of rank at most r is naturally a semialgebraic set, not an algebraic
set. Instead of the notion of a general rank, there are (possibly many) “typical
ranks”, see [11]. When one uses the real field, one needs the notions coming
from the world of semialgebraic geometry, which falls outside the scope of
the methods used in this thesis.

Problems 1.1 and 1.2 look similarly, and one can wonder whether they
can be put into the same setting. This is indeed the case. But before we do
this, we have to make a convention about notations.

Remark 1.5. By an algebraic set over a field k we mean a reduced separated
k-scheme of finite type. By a variety over k we mean an irreducible algebraic
set over k. Intuitively, one may think of varieties as something glued from
affine varieties, and affine varieties are just irreducible subsets of kn defined
by polynomial equations. In order to remain consistent with existing litera-
ture, the notions “cactus variety” and “Grassmann cactus variety” are widely
accepted exceptions to the above definition of “variety”, as typically they are
reducible algebraic sets. We introduce cactus varieties in Section 1.3.

Let us consider the following definition.
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Definition 1.6. Let W be a finite-dimensional vector space over C. Let
X ⊆ PW be a projective variety not contained in a hyperplane. For a non-
zero F ∈ W , define the X-rank of F as

rX(F ) = min{r ∈ Z≥0 |there exist x1, . . . , xr ∈ X

such that [F ] ∈ ⟨x1, . . . , xr⟩}.

Here [·] denotes the class in the projective space, and ⟨·⟩ denotes the projec-
tive linear span. When X is fixed and there is no danger of confusion, we
write r(F ) instead of rX(F ) and “rank” instead of “X-rank”.

Let V be a finite-dimensional vector space over C. If we consider the
Veronese embedding vd : PV → P Symd V , given by [l] 7→ [ld], then the
X-rank becomes the Waring rank. This is also called the symmetric rank.

Let V1, . . . , Vk be finite-dimensional vector spaces over C. If we consider
the Segre embedding Seg : PV1 × · · · × PVk → P(V1 ⊗ · · · ⊗ Vk), given by
([v1], . . . , [vk]) 7→ [v1 ⊗ · · · ⊗ vk], then the X-rank becomes the tensor rank.

In the remaining part of this section, we give an overview of the partial
answers to the Problems 1.1 and 1.2.

Problem 1.1(a) This is a very hard problem, but at least the Waring
rank is know for monomials [26], forms of degree 2 (this is equivalent to
diagonalization of a quadratic form), and forms in 2 variables (Sylvester’s
theorem [73], which is described using modern notation in [57, Theorem
1.44]).

Problem 1.1(b) This is solved by the Alexander-Hirschowitz Theorem
[3], see another proof in [14].

Problems 1.1(c) and 1.2(c) This is the topic of Sections 3.4–3.5 and
Chapter 6. We review it in Section 1.2 in more detail.

Problem 1.2(a) This also is a very hard problem. For tensors of order
2, the rank of a tensor is just the rank of a matrix, which can be easily
computed using Gaussian elimination or SVD. In [51], [58],[74], the authors
compute the ranks of tensors in C2 ⊗ Ck ⊗ Cl, using the Kronecker normal
form.

Problem 1.2(b) The problem has not been solved completely yet. There
are some partial results, like [32], where the authors consider the case C2 ⊗
· · · ⊗ C2, or [2], where the authors use induction and describe some cases.
In the latter paper, Abo, Ottaviani, and Peterson conjecture that a general
tensor in Cn1+1 ⊗ Cn2+1 ⊗ · · · ⊗ Cnk+1, with n1 ≤ n2 ≤ . . . ≤ nk, has rank
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equal to ⌈
(n1 + 1) · · · (nk + 1)

n1 + . . .+ nk + 1

⌉
,

except possibly for the following cases:

• nk − 1 ≥
∏k−1

i=1 (ni + 1)−
∑k−1

i=1 ni,

• k = 3, and (n1, n2, n3) = (2, n, n) for some even n,

• k = 3, and (n1, n2, n3) = (2, 3, 3),

• k = 4, and (n1, n2, n3, n4) = (1, 1, 1, 1).

This conjecture is still open.

1.1 Calculation of rank for other varieties
It is an important problem to calculate the rank of specific tensors or poly-
nomials. A crucial result in this area is the Carlini, Catalisano, Geramita
Theorem on the rank of monomials. Let V be an (n + 1)-dimensional vec-
tor space with basis x0, . . . , xn. Let a0 ≤ · · · ≤ an be positive integers
with sum d. We calculate the rank with respect to the Veronese embedding
vd : PV → P Symd V (as in Problem 1.1).

Theorem 1.7 ([26]). The following equality holds

rvd(PV )(x
a0
0 x

a1
1 · · ·xann ) = (a1 + 1)(a2 + 1) · · · (an + 1).

Remark 1.8. It should be noted that the rank of monomials over the reals is
usually different than the rank over the complex numbers, see [27].

However, the problem of calculating the rank of monomials for the Segre-
Veronese embedding remains open (the rank in this case is called the partially
symmetric rank). If V1, . . . , Vk are finite-dimensional complex vector spaces,
and d1, . . . , dk are positive integers, the Segre-Veronese embedding is defined
by

vd1,...,dk : PV1 × · · · × PVk → P(Symd1 V1 ⊗ · · · ⊗ Symdk Vk),

([v1], . . . , [vk]) 7→ [vd11 ⊗ · · · ⊗ vdkk ].
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The simplest example is P1 × P1. For positive integers d, e, we obtain the
map

vd,e : P1 × P1 → P(SymdC2 ⊗ SymeC2),
([v1], [v2]) 7→ [vd1 ⊗ ve2].

Elements of SymdC2 ⊗ SymeC2 are bihomogeneous polynomials of bidegree
(d, e) in variables x, y, z, w, where x, y are of degree (1, 0), while z, w are of
degree (0, 1). The vd,e(P1 × P1)-rank of such a polynomial F is

rvd,e(P1×P1)(F ) = min{r ∈ Z>0 |∃l1, . . . , lr linear forms in x, y
and m1, . . . ,mr linear forms in z, w
such that F = ld1m

e
1 + · · ·+ ldrm

e
r}.

We investigate the case of monomials more closely, let F = xkylzmwn, where
k ≥ l,m ≥ n. Since rvk+l(P1)(x

kyl) = k + 1, and rvm+n(P1)(z
mwn) = m+ 1, we

get
rvd,e(P1×P1)(x

kylzmwn) ≤ (k + 1)(m+ 1). (1.1)

But the equality in the above equation does not always hold, as pointed out
in [34, Remark 16]. We have rv3,3(P1×P1)(x

2yu2v) ≤ 8 < 9.
In Section 5.1 we prove the following theorem:

Theorem 1.9. The following inequalities hold:

(i) rvk+l,m+n(P1×P1)(x
kylzmwn) ≤ (k+1)(n+1)+(l+1)(m+1)−(l+1)(n+1),

(ii) rvk+l,m+n(P1×P1)(x
kylzmwn) ≥ (k + 1)(n+ 1) for k > l,

rvk+l,m+n(P1×P1)(x
kylumvn) ≥ (l + 1)(m+ 1) for m > n,

(iii) rvk+l,m+n(P1×P1)(x
kylzmwn) ≥ (l + 2)(n+ 2)− 1 for k > l, and m > n,

Let us look the cases where the rank is determined by these inequalities.
When we setm = n in the first inequality of Point (ii), from Equation (1.1) we
get rvk+l,m+n(P1×P1)(x

kylzmwn) = (k+1)(m+1). Also when we set k = l+1 and
m = n+ 1, we get (by Points (i) and (iii)) that rvk+l,m+n(P1×P1)(x

kylzmwn) =
(l + 2)(n+ 2)− 1.
Remark 1.10. The author expects to be able to prove that the bihomogeneous
rank of xkyzmw over the reals is 2(k+m). The case of other bihomogeneous
monomials in R[x, y, z, w] seems to be more difficult.
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It is interesting to see what happens when we take X to be some other
surface. We provide rank calculations for a few classical surfaces in alge-
braic geometry. These are the Hirzebruch surface F1 (a P1-bundle over P1),
weighted projective space P(1, 1, 4) (same as the projective space P2, but the
variables have degrees 1, 1, 4), and an example of a fake weighted projective
plane. We analyze them in Sections 5.2, 5.3, and 5.4, respectively. Some
interesting pathologies occur there which do not show up in the case of the
projective plane. We discuss them in Remarks 5.5 and 5.6.

1.2 Determinantal methods
We consider the problem of finding equations of closures of sets of points of
X-rank at most r. Hence, let us make the following definition:

Definition 1.11. Let W be a complex finite dimensional vector space, and
let X ⊆ PW be an variety not contained in a hyperplane. For a positive
integer r, let

σr(X) =
⋃

x1,...,xr∈X

⟨x1, . . . , xr⟩

= {[F ] ∈ PW | r(F ) ≤ r}.

be the r-th secant variety of X.

For years, one of the main tools of getting equations of secant varieties
have been what is called “determinantal methods” in algebraic geometry and
“rank methods” in computational complexity. They can be summarized in
the following proposition, which is given for instance in [62, beginning of
Chapter 7]:

Proposition 1.12. Suppose we have a linear map j : W → A ⊗ B, where
A,B are finite-dimensional vector spaces. Let k be a positive integer such
that for every p ∈ X̂ (the affine cone of X) we have

rank(j(p)) ≤ k.

Then the following are true:

(i) for any F ∈ W we have

r(F ) ≥ rank j(F )

k
.
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(ii) for any positive integer r we have

j(σr(X)) ⊆ σkr(Seg(PA× PB)).

Here Seg(PA×PB) ⊆ P(A⊗B) is the image of the Segre embedding. Hence
the (kr + 1)-th minors of j ∈ A ⊗ B ⊗ W ∗, interpreted as a matrix with
entries in W ∗, give equations of σr(X).

See [45, Proposition 1] for a proof.
The problem is to find linear maps j : W → A ⊗ B which deliver useful

equations. In [64] two methods are presented. First we follow the construc-
tion in [64, Point 1.3 and Section 5].

Construction 1.13. Suppose the embedding X ⊆ PW is given by the com-
plete linear system H0(X,L) of a very ample line bundle L. This provides
an isomorphism W ∼= H0(X,L)∗. Let E be a coherent sheaf on X. Consider
the canonical morphism E ⊗ L ⊗ E∨ → L, where E∨ denotes the dual sheaf.
This yields

H0(X, E)⊗H0(X,L ⊗ E∨) → H0(X,L),

which, after rearranging the factors, gives the map

j = jE : H0(X,L)∗ → H0(X, E)∗ ⊗H0(X,L ⊗ E∨)∗. (1.2)

In the case when E is a locally free sheaf of rank k, we have rank jE(x̂) ≤ k
for every [x̂] ∈ X, see [75, Proposition 2.20] or [64, Proposition 5.1.1]. Hence
Proposition 1.12 provides a lower bound for the rank in this case.

Construction 1.14. Let G be a complex semisimple group, let V be an
irreducible G-module, and X ⊆ PV the unique closed orbit (so that X is a
G-homogeneous variety). Suppose we have an inclusion of G-modules V j−→
W1⊗W2, where W1 and W2 are two irreducible G-modules. The number j(F )
is constant for any [F ] ∈ X since X is G-homogeneous. Hence Proposition
1.12 gives equations for the secant varieties of X.

For some examples of the power of determinantal methods for small cases,
see Section 3.5.
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1.3 Limits to determinantal methods
As J.M. Landsberg writes in [63, End of Section 2], he and Giorgio Otta-
viani, while looking for equations of secant varieties, first thought they were
not clever enough, but then began to realize that there were some limits to
determinantal methods. Indeed, the limits (or barriers) were proven to exists
independently in the community of algebraic complexity theory ([41], [49])
and in the community of algebraic geometry ([19], [45]). These show that
the best lower bound that can be obtained from a determinantal method for
a tensor in Cn+1 ⊗ Cn+1 ⊗ Cn+1 is 6n + 2 ([46, Example 6.2]), [49, Corol-
lary 8.5]), and the best lower bound for a polynomial in SymdCn+1 is 2

(
n+k
k

)
when d = 2k + 1, and

(
n+k
k

)
+
(
n+k+1
k+1

)
for d = 2k + 2 (see [9, Theorem 3],

[49, Corollary 8.5]).
In order to understand the barriers from the point of view of algebraic

geometry, define the notion of cactus X-rank. Recall that X ⊆ PW is a
projective variety not contained in a hyperplane, and F ∈ W is a non-zero
vector. The cactus X-rank crX(F ) of F is

crX(F ) = min{lengthR |[F ] ∈ ⟨R⟩, R ↪→ X zero-dimensional subscheme}.

We denote by lengthR the length of a zero-dimensional scheme R, i.e. the
dimension of H0(R,OR) as a vector space. Here ⟨·⟩ denotes the (projective)
linear span of a scheme. When X is fixed and there is no danger of confusion,
we write cr(F ) instead of crX(F ) and “cactus rank” instead of “cactus X-
rank”.

The cactus rank was first introduced in [57, Definition 5.1] under the
name of “scheme length”.

Definition 1.15. The r-th cactus variety is

κr(X) = {[F ] ∈ PW | cr(F ) ≤ r}

=
⋃

R↪→X, lengthR≤r

⟨R⟩.

For reasons to study the cactus variety and the cactus rank, see [46,
Subsection 1.3], or [19, Subsections 1.2 and 1.3]. In [19], using the idea of
cactus varieties, equations for many secant varieties were found. Another
motivation is Corollary 3.19. It is an interesting question when Proposition
1.12 works for the cactus rank and cactus variety, in other words, when the

14



determinantal methods give equations of the cactus variety. Before giving
some answers, we note that the two conditions (giving equations of the cactus
varieties and lower bounds for the cactus rank) are equivalent.

Proposition 1.16. Suppose X ⊆ PW is a non-degenerate projective variety,
and j : W → A ⊗ B is a linear map. Fix a positive integer k. Then the
following conditions are equivalent:

(1) for any F ∈ W we have

cr(F ) ≥ rank j(F )

k
,

(2) for any positive integer r we have

j(κr(X)) ⊆ σkr(Seg(PA× PB)).

See [45, Proposition 3] for a proof.
The question is: for which k ≥ 1 the conditions in Proposition 1.16 are

true. The most interesting case is when k satisfies

rank(j(p)) ≤ k

for every p ∈ X, compare Proposition 1.12 and Theorem 1.17. Example 3.20
and Remark 5.6 show that the conditions in Proposition 1.16 are not true for
such k in general. However, there are two crucial cases when the conditions
are true. When we choose jE as in Construction 1.13 (where E is a locally
free sheaf on X), then the conditions in Proposition 1.16 are true for k equal
to the rank of E .

Theorem 1.17. Let X be a projective variety embedded by the complete
linear system of a very ample line bundle L. Then for any F ∈ H0(X,L)∗,
and any locally free sheaf E on X of rank k

cr(F ) ≥ rank jE(F )

k
.

In other words, if we fix bases of H0(X, E) and H0(X,L ⊗ E∨)∗, then for
any r ≥ 0 the (kr + 1)-th minors of j (which is a matrix with entries in
H0(X,L)) give equations for κr(X).
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This theorem was proven by the author in [45, Theorem 5]
The next case when the conditions in Proposition 1.16 are true is when

rank j(p̂) is the same for any p̂ ∈ X̂ \ {0}.
Theorem 1.18. Let X ⊆ PW be a non-degenerate projective variety, and
j : W → V1 ⊗ V2 be a linear map. Suppose the matrix j(p̂) has constant rank
equal to k for p̂ ∈ X̂ \ 0. Then for any F ∈ W

cr(F ) ≥ rank j(F )

k
.

In other words, if we fix bases of V1 and V2, then for any r ≥ 0 the (kr + 1)-th
minors of j (which is a matrix with entries in W ∗) give equations for κr(X).

This theorem was proven by Jarosław Buczyński (unpublished). We prove
Theorems 1.17 and 1.18 in Section 3.4.

Now that we know that we can describe the barriers to determinantal
methods by cactus varieties and cactus rank, we calculate the explicit bounds
on the cactus rank that we mentioned implicitly at the beginning of this
section. These are best lower bounds on the rank of tensors or polynomials
that can be obtained by those methods.

We use the language of the Segre-Veronese embedding, which covers both
the case of polynomials and the case of tensors.

Let h1, . . . , hk be the basis dual to the standard basis of Rk. Let l = c1h1+
· · ·+ ckhk be a non-zero linear form on Rk, where c1, . . . , ck are nonnegative
real numbers. Let b be a positive real number. Consider the morphism

Pn1 × · · · × Pnk
vd−→ P(Symd1 Cn1+1 ⊗ · · · ⊗ Symdk Cnk+1)

given on points by

([l1], . . . , [lk]) 7→ [ld11 ⊗ · · · ⊗ ldkk ].

Proposition 1.19. Let F ∈ Symd1 Cn1+1 ⊗ · · · ⊗ Symdk Cnk+1 be a non-zero
form. Then

cr(F ) ≤
∑

(e1,...,ek)|
l(e1,...,ek)≤b
0≤ei≤di

(
n1 − 1 + e1

e1

)
· · ·
(
nk − 1 + ek

ek

)

+
∑

(e1,...,ek)|
l(e1,...,ek)>b
0≤ei≤di

(
n1 − 1 + d1 − e1

d1 − e1

)
· · ·
(
nk − 1 + dk − ek

dk − ek

)
.
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In [7] the authors prove a weaker version of the bound in Proposition
1.19. We prove Proposition 1.19 in Section 3.7.

1.4 Ways to overcome the limits
One of the ways to overcome the limits to determinantal methods is to un-
derstand the structure of the Hilbert scheme, which is hard. The Hilbert
scheme Hilb(Pn) was defined by Grothendieck. It parametrizes all closed
subschemes of Pn. We know that

Hilb(Pn) =
⊔
q∈Q[t]

Hilbq(Pn). (1.3)

The variable q ranges over all polynomials that are Hilbert polynomials of
some closed subscheme of Pn. The scheme Hilbq(Pn) parametrizes all closed
subschemes of Pn with Hilbert polynomial q. Equation (1.3) is a decomposi-
tion into connected componenents ([54]). In this thesis, we only consider the
case when the polynomial q is constant. We write q = p ∈ N. The scheme
Hilbp(Pn) is called the Hilbert scheme of p points on Pn, in spite of the fact
that it usually contains also classes of nonreduced schemes. If W ↪→ Pn is a
locally closed subscheme, the set of all closed subschemes Z ↪→ Pn which are
contained in W is parametrized by a locally closed subscheme

Hilbp(W ) ↪→ Hilbp(Pn).

The reason why we need to study Hilbert schemes is the fact that in the
definition of the X-cactus rank we go over all subschemes of X, both smooth-
able ones (i.e. contained in the same irreducible component of Hilbp(X) as
reduced schemes), and non-smoothable ones (contained in some other irre-
ducible components of Hilbp(X)).

There are two ways to apply Hilbert schemes to investigating secant or
cactus varieties. One is by considering the multiplication tensors of smooth-
able or nonsmoothable algebras. This approach is taken in [10], in [60, Section
9], and in the survey article [63, Section 7]. The other one is by explicitly
describing the components of the cactus variety in simple cases, when this is
still possible. In this thesis, we focus on the latter technique. We sketch it
in the remainder of this introduction. We refer the reader to Chapter 6 for
more details.
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In [19] Weronika and Jarosław Buczyńscy made an important break-
through. They realized that the cactus variety depends only on Gorenstein
schemes.

Definition 1.20. A local finite dimensional algebra (A,m) is Gorenstein if
the socle

{a ∈ A|am = 0}
is a one-dimensional vector space. Any finite dimensional algebra A is Goren-
stein if it is a product of local finite dimensional Gorenstein algebras. A
zerodimensional scheme R is Gorenstein if it is the spectrum of a finite di-
mensional Gorenstein algebra. Let HilbGorr (X) denote the open subset of the
Hilbert scheme of r points on X consisting of Gorenstein subschemes.

Let X ⊆ PW be a projective variety not contained in a hyperplane, and
let F ∈ W be a nonzero vector. By [19, Proposition 2.2] the cactus rank is
given by

cr(F ) = min{r ∈ Z>0 | there exists [R] ∈ HilbGorr (X) such that [F ] ∈ ⟨R⟩}.

From this, we get several consequences. If the Gorenstein locus HilbGorr (X)
is irreducible, then κr(X) = σr(X). In general, the number of irreducible
components of the cactus variety κr(X) is bounded from above by the number
of irreducible components of HilbGorr (X). See Section 4.2 for an explanation.
Therefore it becomes crucial to distinguish between different components of
HilbGorr (X). This is too hard to do in general, but the first non-trivial case
was investigated by Casnati, Jelisiejew, Notari in [30]. Their article describes
HilbGorr (An) for r ≤ 14 and all n ∈ N. We elaborate on it in Section 4.1.

Using the description given by Casnati, Jelisiejew and Notari, we show
the following characterization.

Theorem 1.21. For d ≥ 5, the cactus variety κ14(vd(P6)) has two irreducible
components: the secant variety σ14(vd(P6)), and the variety η14(vd(P6)) con-
sisting of degree d forms divisible by the (d− 3)-rd power of a linear form.

This theorem was proven by the author, Tomasz Mańdziuk and Filip
Rupniewski ([47, Corollary 1.4]). In Theorem 6.1, we generalize this result
for Pn instead of P6. Moreover, we provide an algorithm which, given a
polynomial in the cactus variety, checks if it belongs to the corresponding
secant variety. See Theorem 6.6. Both Theorem 6.1 and Theorem 6.6 come
from [47].
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We do a similar calculation for the Segre-Veronese embedding, when the
embedding vector (d1, . . . , dk) satisfies di ≥ 7 for all 1 ≤ i ≤ k (Section 6.3).
Somehow, the cases with small di seem to behave differently. See [60, Section
9] for an analysis of the case (d1, . . . , dk) = (1, 1, 1).

This gives rise to the following question: does investigating the irreducible
components of the standard Hilbert scheme Hilbp(An) help us to describe the
secant varieties at all? It turns out that it can be useful to understand the
Grassmann secant varieties.

The notion of Grassmann secant variety and the connected problem of
decomposing many forms simultaneously as sums of powers of the same set of
linear forms originates from the work of Terracini [76] and was later studied
by Bronowski [15]. The paper [25] investigates the relation between the
ranks of tensors in the Segre embedding of 3 copies of projective space and
the ranks of subspaces in the Segre embedding of 2 copies of projective space.
The problem of defectivity of Grassmann secant varieties is addressed in [6],
[35], [43]. Simultaneous decomposition of forms of different degrees is studied
among others in [4] and [28].

We define the Grassmann secant and cactus varieties in Section 3.2, and
analyze them in Section 6.4. Using the work of Cartwright, Erman, Velasco,
Viray [29], who classified the irreducible components of Hilb8(An), we give
a description of the Grassmann cactus variety κ8,3(vd(Pn)). We provide an
algorithm similar to the one for the standard cactus variety, see Theorem 6.7.
See Theorem 4.3 for the characterization of Hilb8(An) given by Cartwright,
Erman, Velasco, Viray, and Remark 6.19 for the reason why we consider the
specific Grassmann cactus variety κ8,3(vd(Pn)).
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Chapter 2

Toric varieties

A lot of the theory developed in this thesis works in the setting of toric
varieties. See [39] for a reference on this subject. One of the main actors here
is the Cox ring T of a toric variety X. Section 2.1 is devoted to discussing
different choises for the ideal I ⊆ T of a subscheme R ↪→ X. After a
few general properties of toric varieties at which we look in Section 2.2,
we start analyzing properties of dehomogenization and homogenization, and
we continue it until the end of the chapter. An interlude in Section 2.5
allows us to introduce graded dual rings, and the apolarity action, crucial to
understanding secant varieties in Chapter 3.

In this chapter, we work over C.

2.1 Saturated ideals
Let X be a normal irreducible variety. For a non-zero rational function f on
X, and an irreducible subset Y of X of codimension one, we define multY (f)
to be the order of vanishing of f on Y , that is the valuation of f in the
discrete valuation ring OX,Y . We let

div(f) =
∑
Y⊆X

multY (f)Y ,

where the sum goes over all irreducible subsets Y of X of codimension one.
This sum is always finite. A divisor which is of the form div(f) for some
non-zero rational function f is called a principal divisor. The class group
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of X is the abelian group of all divisors modulo the subgroup of principal
divisors. We denote it by Cl(X).

Let K∗ be the sheaf of non-zero rational functions on X. For each divisor
D on X, we have its sheaf of sections OX(D). It is defined by

OX(D)(U) = {f ∈ K∗(U) | (div(f) +D)|U ≥ 0} ∪ {0}.

for each Zariski open set U ⊆ X. The map D 7→ OX(D) gives an isomor-
phism of the class group with the abelian group of reflexive sheaves on X of
rank 1 up to isomorphism, where the addition of the sheaves L,M is just
taking the double dual (L ⊗M)∨∨.

An important subgroup of the group of all Weil divisors on X is the
group of all locally principal divisors (also known as the group of Cartier
divisors). If we form a quotient of it by the group of principal divisors, we
get the Picard group, denoted by Pic(X) ⊆ Cl(X). The elements of the
Picard group correspond to those reflexive sheaves of rank one which are line
bundles.

Let us now proceed to the definition of the Cox ring of X. The simplest
case is when Cl(X) is finitely generated and free. Then we pick a basis
η1, . . . , ηk of Cl(X) over Z, for each 1 ≤ i ≤ k we take a divisor Di on X
with class ηi, and then we define the Cox ring of X to be⊕

l1,...,lk∈Z

H0(X,OX(l1D1 + · · ·+ lkDk)).

In general, when Cl(X) is not free, one has to use some tricks to define the
Cox ring, described for instance in [5, Section 1.4]. In this thesis, we make use
of the fact that for toric varieties the class group is always finitely generated,
and that it has a canonical system of generators, namely the classes of the
torus invariant prime divisors. We focus now on toric varieties.

Let N be a lattice (an abelian group isomorphic to Zk for some k ≥ 1).
Let XΣ be the toric variety of a fan Σ ⊆ NR := N ⊗R, as in [39, Chapter 3].
We assume that Σ has no torus factors, which means that the linear span of
Σ in NR is the whole space. Let Σ(1) denote the set of rays of the fan Σ.
Similarly, σ(1) denotes the set of rays in a cone σ.

Let r be the number of rays in Σ. Let us fix an ordering of the rays,
suppose they are ρ1, . . . , ρr. Consider the polynomial ring T = C[α1, . . . , αr].
The ring T is the Cox ring of XΣ. For more details, see [39, Section 5.2],
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where T is denoted by S, and is called the total coordinate ring. This ring
is graded by the class group ClXΣ, where

degαi = [Dρi ],

and Dρi is the torus-invariant divisor corresponding to ρi, see [39, Chapter
4]. For any η ∈ ClXΣ, we denote by Tη the graded piece of T of degree η.

For a cone σ ∈ Σ, define

ασ̂ =
r∏

i=1|ρi /∈σ

αi.

Define a homogeneous ideal in T , let B be

B = B(Σ) = (ασ̂|σ ∈ Σ) ⊆ T , (2.1)

the irrelevant ideal.
Take any ideals I, J ⊆ T . Let (I :T J) be the set of all x ∈ T such that

x · J ⊆ I; it is an ideal of T . It is sometimes called the quotient ideal, or the
colon ideal. For any ideals I, J,K ⊆ T we have:

• I ⊆ (I :T J),

• if J ⊆ K, then (I :T J) ⊇ (I :T K),

• (I :T J ·K) = ((I :T J) :T K).

We also define the J-saturation of I as

sat(I, J) =
⋃
i≥1

(I :T J
i).

Note that this is an increasing union because Bi ⊇ Bj for i < j, so sat(I, J)
is an ideal. Since T is Noetherian, the union stabilizes in a finite number of
steps. We always have I ⊆ sat(I, J). If this is an equality, we say that I is
J-saturated.

Remark 2.1. Common notation for sat(I, J) is (I :T J
∞), but we do not use

it.
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Remark 2.2 (Geometric meaning of quotient ideal and saturation). For any
ideal I ⊆ T , consider the vanishing scheme V (I) ⊆ Ar

C. Then for any two
ideals I, J ⊆ T , the scheme V (sat(I, J)) is obtained by removing from V (I)
all the irreducible components, whose support is contained in V (J), and all
the embedded components of V (I), whose support is contained in V (J).

The application V (I) 7→ V ((I :T J)) removes all the reduced irreducible
components of V (I) contained in V (J) and makes some changes on the nonre-
duced components and embedded components of V (I) contained in V (J).

Recall the ideal B ⊆ T from Equation (2.1) Our main example of satu-
ration will be the B-saturation of ideals of T .

Example 2.3. Let us look at the projective space PkC. See [39, Example
5.1.7]. Here T = C[α0, . . . , αk], and B = (α0, . . . , αk) =

⊕
i≥1 Ti. In this case

sat(I, B) = {θ ∈ T | for all i = 0, 1, . . . , k there is n such that αni · θ ∈ I}.

In this case there is a 1-1 correspondence between closed subschemes of PkC
and homogeneous B-saturated ideals of T . Moreover, for any subscheme
R ↪→ PkC with ideal sheaf IR, the ideal given by

⊕
i≥0H

0(PkC, IR ⊗O(i)), is
B-saturated. For more on this, see [55, II, Corollary 5.16 and Exercise 5.10].

For a toric variety the situation is more complicated. There can be many
B-saturated ideals defining a subscheme R. See [37, Theorem 3.7 and the
following discussion] for more details. We will not develop these ideas to full
extent, we will satisfy ourselves with only a few propositions. Our main aim
is Corollary 2.10, which will enable us to use the theory for secant varieties
in Chapter 3.

Definition 2.4. Let I ⊆ T be an ideal, and R ↪→ XΣ be a closed subscheme.
We say that I defines R if for each σ ∈ Σ the ideal

(Iασ̂)0 → (Tασ̂)0

is equal to the ideal defining R on the affine patch Spec(Tασ̂)0 → XΣ. For
any homogeneous ideal I, the scheme V (I) is obtained by patching the affine
schemes

Spec((T/I)ασ̂)0.

We say that a homogeneous element θ ∈ T vanishes on R (or is zero on
R) if the closed subscheme R ↪→ XΣ sits in the closed subscheme V (θ).
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For any subscheme R ↪→ XΣ, there always exists a B-saturated ideal
defining R.

Definition 2.5. Let R ↪→ XΣ be a closed subscheme. We define ICl(R) ⊆ T ,
the ideal of sections of R, to be the ideal generated by all homogeneous
elements of T which vanish on R.

In [16, Subsection 2.1.2] the ideal ICl(R) is called the ideal maximally
defining R.

Proposition 2.6. The ideal ICl(R) has the following properties:

(i) it defines R,

(ii) it is B-saturated,

(iii) any ideal J defining R is contained in ICl(R).

Proof. First we prove Point (i). Let IR be the ideal sheaf of R. Take any
σ ∈ Σ. We have the following inclusions of ideals in the ring (Tασ̂)0.∑

θ homogeneous, R⊆V (θ)

((θ)ασ̂)0 ⊆ IR(Uσ), (2.2)

∑
θ homogeneous, R⊆V (θ)

((θ)ασ̂)0 ⊆ (ICl(R)ασ̂)0. (2.3)

Inclusion (2.2) follows from the fact that each homogeneous θ appearing in
the sum vanishes on R, so it factors through the ideal of R on the affine open
set Uσ. Inclusion (2.3) is a consequence of the definition of ICl(R).

We prove that both Inclusions (2.2) and (2.3) are in fact equalities. We
start with Inclusion (2.2). Let ζ

(ασ̂)k
∈ IR(Uσ) for some k ∈ Z and some

homogeneous ζ ∈ T . The section ζ vanishes on R ∩ Uσ. By [39, Lemma
6.A.2(b)] applied to the sheaf i∗OR (i being the inclusion i : R → XΣ), we
get that for some l ∈ N the global section (ασ̂)lζ is zero on R, so it appears
on the left-hand side of Inclusion (2.2). Hence, Inclusion (2.2) is an equality.

We move along to Inclusion (2.3). Let θ1, . . . , θl be a set of homogeneous
generators of ICl(R). It suffices to prove that

((θ1)ασ̂)0, . . . , ((θr)ασ̂)0
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generate (ICl(R)ασ̂)0. Suppose we have

θ

(ασ̂)k
∈ (ICl(R)ασ̂)0

for some positive integer k and some homogeneous θ ∈ ICl(R). Then we get
θ = ξ1θ1+· · ·+ξlθl for some ξi ∈ T . We may assume that ξi are homogeneous
and that deg θ = deg ξi + deg θi for each i. Then

θ

(ασ̂)k
=

l∑
i=1

ξiθi
(ασ̂)k

,

as claimed.
Let us proceed to the proof of Point (ii). Let θ ∈ T be such that for each

σ ∈ Σ we have ασ̂θ ∈ ICl(R). To check if θ ∈ ICl(R), it is enough to check
locally, and on Uσ we can divide by ασ̂ which is invertible in the localization.
This justifies Point (ii).

Finally, we prove Point (iii). Let J be an ideal defining R, and let θ ∈ J be
a homogeneous element. Then R = V (J) ⊆ V (θ), so θ is a section vanishing
on R, hence θ ∈ ICl(R).

Definition 2.7. Let R ↪→ XΣ be a closed subscheme. We define IPic(R) ⊆ T ,
the ideal of Picard sections of R, to be the ideal generated by homogeneous
elements of T , which are of a degree belonging to the Picard group, and
which vanish on R.

The behaviour of the ideal IPic(R) is, in general, much worse than that
of ICl(R). On proper toric varieties whose Picard group is trivial, they are
just the zero ideals and fail to define the scheme R (except when R is equal
to XΣ). In order to mend this phenomenon, Kajiwara in [61, Definition 1.5]
made the following definition.

Definition 2.8. The toric variety XΣ has enough Cartier divisors if for each
torus-invariant open affine subset U , its complement XΣ \ U is the support
of an effective torus-invariant Cartier divisor.

Proposition 2.9. Let R ↪→ XΣ be a subscheme. The following conditions
are true:

(i) If XΣ has enough Cartier divisors, then IPic(R) defines R.
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(ii) The ideal IPic(R) agrees with its B-saturation in the degrees belonging
to the Picard group.

(iii) IPic(R) is contained in any B-saturated ideal defining R.

Proof. We start with Point (i). We have the following inclusions for each
σ ∈ Σ. ∑

θ|R⊆V (θ)
θ∈Tη for some η∈PicXΣ

((θ)ασ̂)0 ⊆ (IPic(R)ασ̂)0 ⊆ (ICl(R)ασ̂)0.

Let θ1, . . . , θl be a set of homogeneous generators of IPic(R). Since ICl(R)
defines R, it is enough to prove that

((θ1)ασ̂)0, . . . , ((θr)ασ̂)0

generate (ICl(R)ασ̂)0. As XΣ has enough Cartier divisors, we have the fol-
lowing equality

XΣ \ Uσ = suppV (αb11 · · ·αbrr )

for b1, . . . , br ∈ N such that V (αb11 · · ·αbrr ) is an effective Cartier divisor. We
set ξ = αb11 · · ·αbrr . We know that

(Tασ̂)0 = (Tξ)0.

Suppose ζ
ξk

∈ (ICl(R)ξ)0 with deg ζ, deg ξ ∈ PicXΣ, and ζ ∈ ICl(R). But
then also ζ ∈ IPic(R), hence ζ =

∑l
i=1 ζiθi for some ζi ∈ T . We may assume

that ζi are homogeneous. Then

ζ

ξk
=

l∑
i=1

ζiθi
ξk

,

as desired.
We prove Point (ii). We want to argue that IPic(R)η = (IPic(R) :T B

k)η
for each η ∈ PicXΣ and each k ∈ N. Take η ∈ PicXΣ, and k ∈ N. Pick any
θ ∈ Tη such that (ασ̂)kθ ∈ IPic(R) for each σ ∈ Σ. Then

θ(ασ̂)k =
lσ∑
i=1

ζσ,iξσ,i,
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where ζσ,i are homogeneous, and ξσ,i are homogeneous of degree belonging to
PicXΣ and vanish on R. Then, locally on Uσ, we can write

θ =
lσ∑
i=1

((ασ̂)−kζσ,i)ξσ,i.

The section ασ̂ is invertible on Uσ, so (ασ̂)−kζσ,i is defined on Uσ. Hence, θ
is zero on R on each Uσ, and thus on all of XΣ, and deg θ belongs to PicXΣ.
It follows that θ ∈ IPic(R).

Finally, we proceed to Point (iii). Let J be a B-saturated ideal defining
R. Let θ ∈ IPic(R) be a homogeneous element of degree η ∈ PicXΣ. Take
any σ ∈ Σ. By [37, Lemma 3.4] there exist integers bi1 , . . . , bil such that

η = [bi1Di1 + · · ·+ bilDil ] ,

and that Dij correspond to rays not in σ for all 1 ≤ j ≤ l. Hence,

θ

α
bi1
i1

· · ·αbilil
∈ (IPic(R)ασ̂)0 ⊆ (ICl(R)ασ̂)0 = (Jασ̂)0.

It follows that θ ∈ Jασ̂ for all σ ∈ Σ. Therefore, (ασ̂)kθ ∈ J for some k ∈ N
and all σ ∈ Σ. As J is B-saturated, it follows that θ ∈ J , as desired.

Corollary 2.10. Any two B-saturated ideals defining the same scheme agree
in degrees belonging to the Picard group.

2.2 Further properties of toric varieties
Let η ∈ ClXΣ. Recall the isomorphism of H0(XΣ,O(η)) and C[α1, . . . , αr]η
given in [39, Proposition 5.3.7]. The variety XΣ can be obtained as an almost
geometric quotient of an action of G := Hom(ClXΣ,C∗) on CΣ(1) \Z, where
Z is defined as V (B). See [39, Proposition 5.0.11] for the definition of an
almost geometric quotient and [39, Section 5.1] for an explicit construction
of this quotient. We denote this map by

CΣ(1) \ Z [·]−→ XΣ.
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Proposition 2.11. Suppose η ∈ PicXΣ. Take any section s ∈ H0(XΣ,O(η))
and the corresponding polynomial θ ∈ Tη. Also let p be a point in XΣ and
take any (λ1, . . . , λr) ∈ Cr such that [λ1, . . . , λr] = p. Then

s(p) = 0 ⇐⇒ θ(λ1, . . . , λr) = 0.

The proof can be found in the author’s master thesis [44, Fact 1.3] or in
the article [46, Proposition 3.4].

Corollary 2.12. Suppose η ∈ PicXΣ. Suppose θ1, θ2 ∈ Tη are polynomials
and s1, s2 are the corresponding sections of O(η). Also fix, as above, p ∈ XΣ

and (λ1, . . . , λr) ∈ Cr such that [λ1, . . . , λr] = p. Then if θ2(λ1, . . . , λr) and
s2(p) are non-zero, we get

θ1(λ1, . . . , λr)

θ2(λ1, . . . , λr)
=
s1(p)

s2(p)
.

Proof. Take µ ∈ C such that θ1(λ1, . . . , λr) = µθ2(λ1, . . . , λr). Then use
Proposition 2.11 for θ1 − µθ2 and the corresponding section s1 − µs2.

We need the following proposition to understand dehomogenization and
homogenization better in Section 2.3.

Proposition 2.13. Let XΣ be a smooth complete toric variety. Pick any
σ ∈ Σ of full dimension. Let ρ1, . . . , ρd be the rays that are not in σ. Then
the classes [Dρ1 ], . . . , [Dρd ] are a basis of the class group.

Proof. The fact that the classes [Dρ1 ], . . . , [Dρd ] generate the class group
follows from [37, Lemma 3.4] (recall that for smooth varieties PicXΣ =
ClXΣ).

Now consider the exact sequence ([39, Theorem 4.1.3])

0 →M → ZΣ(1) → ClXΣ → 0,

where M is the lattice dual to N . We get that rankClXΣ = #Σ(1)−dimMR,
which is equal to the number of rays not in σ, since the cone σ is smooth.
But from the fact that the classes [Dρ1 ], . . . , [Dρd ] generate the class group
and from the fact that a subgroup of a lattice is a lattice, we can write the
following exact sequence.

0 → Zl →
⊕
ρ/∈σ(1)

Z[Dρ] → ClXΣ → 0
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for some integer l. As a consequence, we get that l = 0, so

ClXΣ
∼=
⊕
ρ/∈σ(1)

Z[Dρ],

as desired.

In Chapter 5 we will encounter monomials on toric varieties whose cactus
rank is less than their border rank. To make sense of this phenomenon, it
is useful to study the following description of the tangent space at a torus-
invariant point.

Let M be the dual lattice of the lattice N . Let XP be the toric variety
embedded by a very ample polytope P with vertices in lattice M (see [39,
Chapter 2]). Let v be a vertex of the polytope P (which corresponds to a
torus fixed point p ∈ XP ).

Proposition 2.14. The projective embedded tangent space at p in the em-
bedding by P is the projective linear span of the monomials corresponding to
the lattice points

{w + v | w is an element of the Hilbert basis
of the semigroup N(P ∩M − v)} ∪ {v}.

Proof. Let z0, . . . , zk be the projective coordinates corresponding to the mono-
mials in the embedding by P , with z0 corresponding to the vertex v. Let us
look at the affine chart given by setting z0 = 1. The equations of the toric
variety in the affine chart come from integral relations between the lattice
points of P ∩M − v. The equations of the embedded tangent space at p (in
the affine chart) are given in the following way: the forms

k∑
i=1

∂f

∂zi |[z1,...,zk]=[0,0,...,0]

zi,

where f is an equation of the embedded variety XP in the affine chart, give
all the equations.

Suppose hj is an element of the Hilbert basis of N(P ∩M − v), and that
the coordinate zj corresponds to hj. Any relation is of the form

lhj + l1hj1 + · · ·+ lmhjm = lm+1hjm+1 + · · ·+ lnhjn , (2.4)
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where hji ∈ P ∩M − v, hji are mutually different, hji ̸= hj, and l ≥ 0, li ≥ 1
for i = 1, . . . , n are positive integers. In this relation the left-hand side is
not equal to hj as hj is not a sum. Let us look at the polynomial equation
coming form this Relation (2.4). It is

zljz
l1
j1
· . . . · zlmjm = z

lm+1

jm+1
· . . . · zlnjn , (2.5)

where the left-hand side is not equal to zj, and the right-hand side does not
contain zj. If we differentiate this equation with respect to zj and substitute
the point p (which has coordinates (z1, . . . , zk) = (0, . . . , 0)), we get 0 =
0. Therefore zj does not appear in the equation of the embedded tangent
space at p coming from Equation (2.5). Hence, the point (z1, z2, . . . , zk) =
(0, . . . , 0, 1, 0, . . . , 0) (where the 1 is on the j-th place) satisfies this equation
of embedded tangent space at p.

Since the point (0, . . . , 0, 1, 0, . . . , 0) is independent of the chosen Equation
(2.5), we get that it satisfies all the equations of the projectivized tangent
space at p.

We come back the projective coordinates. We proved that for every vector
hj in the Hilbert basis of N(P ∩M − v) the point [0, . . . , 0, 1, 0, . . . , 0] (where
the 1 is on the j-th place) is in the embedded tangent space. Also the point
p = [1, 0, . . . , 0] is in this space. As this projective space has dimension equal
to the cardinality of the Hilbert basis (see [39, Lemma 1.3.10]), we get the
desired equality.

2.3 Dehomogenization and homogenization
Let XΣ be a smooth projective toric variety. Denote the rays of the fan
by ρ1, . . . , ρr. Fix σ ∈ Σ. We want to restrict XΣ to the affine patch Uσ.
Suppose the rays that are not in σ are ρ1, . . . , ρk. Let S = C[αk+1, . . . , αr].
Denote by (·)deh : T → S the dehomogenization on T (i.e. setting α1, . . . , αk
to 1).

Proposition 2.15. For any η ∈ ClXΣ = PicXΣ the map

(·)deh : Tη → S

is injective.
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Proof. Suppose θdeh = 0 for some 0 ̸= θ ∈ Tη. Then there exist two different
monomials αc11 · · ·αcrr and αd11 · · ·αdrr of degree η such that after applying
(·)deh they are the same. This means that ck+1 = dk+1, . . . , cr = dr, so
degαc11 · · ·αckk = degαd11 · · ·αdkk . The tuples (c1, . . . , ck) and (d1, . . . , dk) are
different, so this gives a non-trivial relation between the classes corresponding
to α1, . . . , αk, contradicting Proposition 2.13.

Let us define the homogenization ζhom of a non-zero polynomial ζ ∈ S.
Suppose

ζ =
∑

η∈ClXΣ

ζη,

where each ζη is homogeneous of degree η. Let Di be the divisor corre-
sponding to ρi. From Proposition 2.13 we know that the classes [Di], where
i = 1, . . . , k, form a basis of the class group. Hence, for each η ∈ ClXΣ such
that ζη ̸= 0 we have

η = aη,1[D1] + . . .+ aη,k[Dk],

where aη,i ∈ Z. Let bi = max{aη,i|η ∈ ClXΣ, ζη ̸= 0}. Then we set

ζhom =
∑

η∈ClXΣ

α
b1−aη,1
1 · . . . · αbk−aη,kk ζη.

This is homogeneous of degree b1[D1] + . . .+ bk[Dk].

Proposition 2.16. Suppose θ ∈ T is homogeneous and non-zero. Write
θ = αe11 · · ·αekk θ̂ in such a way that θ̂ is not divisible by α1, . . . , αk. Then
(θdeh)hom = θ̂.

Proof. We know that θdeh is non-zero by Proposition 2.15. Let θdeh =∑
η∈ClXΣ

ζη, where each ζη has degree η. Then

θ = αe11 · · ·αekk ·

( ∑
η∈ClXΣ

α
dη,1
1 · · ·αdη,kk ζη

)

for some natural dη,i. For any η ∈ ClXΣ there exist integers aη,1, . . . , aη,k
such that

η = aη,1[D1] + . . .+ aη,k[Dk].
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It follows that for any η ∈ ClXΣ such that ζη ̸= 0 we have

deg θ = (e1 + dη,1 + aη,1)[D1] + . . .+ (ek + dη,k + aη,k)[Dk].

Therefore, for each i = 1, . . . , k the number dη,i+ aη,i is independent of η, so
we can set ci = dη,i + aη,i. We know that ci ≥ aη,i for each η ∈ ClXΣ such
that ζη ̸= 0, so

ci ≥ max
η∈ClXΣ|ζη ̸=0

aη,i.

If this inequality is strict for some i, then αi divides θ̂, which is a contradic-
tion. Hence, for every i = 1, 2, . . . , k we have

ci = max
η∈ClXΣ|ζη ̸=0

aη,i,

and therefore
dη,i = max

η∈ClXΣ|ζη ̸=0
aη,i − aη,i.

It follows that θ̂ is the homogenization of θdeh.

Definition 2.17. Suppose I ⊆ S is an ideal. Let

Ihom = (ζhom|ζ ∈ I \ {0})

be the homogenization of I. It is a homogeneous ideal of T .

Proposition 2.18. The ideal Ihom is saturated with respect to α1 · · ·αk.

Proof. Suppose that α1 · · ·αkθ ∈ Ihom for some non-zero homogeneous θ ∈ T ,
then

α1 · · ·αkθ = ξ1ζ
hom
1 + . . .+ ξlζ

hom
l

for some ξi ∈ T and ζi ∈ I. If we set α1, . . . , αk to 1, we get

θdeh = ξdeh1 ζ1 + . . .+ ξdehl ζl.

This means that θdeh ∈ I, and it follows that (θdeh)hom ∈ Ihom from the
definition of Ihom. But θ is divisible by (θdeh)hom by Proposition 2.16, so
θ ∈ Ihom.

Remark 2.19. Since Ihom is saturated with respect to α1 · · ·αk, it is saturated
with respect to any ideal B containing α1 · · ·αk.
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Proposition 2.20. Suppose θ ∈ T is homogeneous, and I ⊆ S is an ideal.
Then we have the following equivalence

θdeh ∈ I ⇐⇒ θ ∈ Ihom.

Proof. Assume that θdeh ∈ I. Let us write θ = αe11 · · ·αekk θ̂ with θ̂ not
divisible by α1, . . . , αk. By Proposition 2.16 we have θ̂ = (θdeh)hom, so θ̂ ∈
Ihom. It follows that θ = αe11 · · ·αekk θ̂ ∈ Ihom.

Now assume θ ∈ Ihom, then θ = ξ1ζ
hom
1 + · · · + ξmζ

hom
m for some ζi ∈ I

and ξi ∈ T . After applying (·)deh, we get

θdeh = ξdeh1 ζ1 + · · ·+ ξdehm ζm ∈ I,

as desired.

2.4 Homogenization of binomial ideals
In general, the homogenization of an ideal on the affine patch Uσ can be
computed by homogenizing the generators and saturating with respect to
α1 · · ·αk (where 1, . . . , k are the indices of rays outside σ). A drawback of
this method is that saturation is hard to control. In this section, we show
that for unital binomial ideals, saturation can be tamed.

Recall that S = C[αk+1, . . . , αr]. In the following propositions, a bold font
denotes multi-indices (vectors of integers), indexed by integers k + 1, . . . , r.
For a multi-index t = (tk+1, . . . , tr) we use the notation αt = α

tk+1

k+1 · · ·αtrr .
The following proposition is the main part of this section. It is a part of

the author’s article [46]. In order to prove it, we need Lemma 2.22.

Proposition 2.21. Suppose I ⊆ S is an ideal generated by binomials of the
form αa − αb, where a,b ∈ Nr−k. Then

Ihom = ((αa − αb)hom|αa − αb ∈ I \ 0).

Lemma 2.22. Suppose I ⊆ S is an ideal generated by binomials of the
form αa − αb and that ζ ∈ I. There exist binomials αci − αdi ∈ I (where
ci,di ∈ Nr−k) and λi ∈ C, where i = 1, 2, . . . , l, such that

ζ =
l∑

i=1

λi(α
ci − αdi)

and every αci , αdi appears as a monomial of ζ with a non-zero coefficient.
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Proof. Suppose we have

ζ =
m∑
i=1

κi(α
ai − αbi),

where αai − αbi ∈ I and κi ∈ C \ {0} for i = 1, 2, . . . ,m. Suppose that some
monomial αb appears in the sum on right-hand side and that it does not
appear on the left-hand side. Possibly changing the signs of some κi, we may
assume that there are indices i1, . . . , in such that bi1 = · · · = bin = b and∑n

j=1 κij = 0, and that b appears nowhere else in the sum on the right-hand
side. In this case κi1 = −

∑n
j=2 κij and therefore

ζ =
∑
i|bi ̸=b

κi(α
ai − αbi) +

n∑
j=2

κij(α
aij − αai1 ),

where each αaij − αai1 = (αaij − αbij )− (αai1 − αbi1 ) ∈ I. We have reduced
the number of summands on the right-hand side. Continuing this process,
we get to the situation where every monomial on the right-hand side appears
on the left-hand side with a non-zero coefficient.

Proof of Proposition 2.21. Let ζ ∈ I be a non-zero polynomial. From Lemma
2.22 we get that there are λi ∈ C and αci −αdi , where i = 1, . . . , l, such that

ζ =
l∑

i=1

λi(α
ci − αdi)

and every αci , αdi appears as a monomial αes of ζ with a non-zero coefficient.
Let s(i), s′(i) be such that αci = αes(i) and αdi = αes′(i) . We need to get back
to the definition of homogenization. Suppose αes is of degree as,1[D1] + · · ·+
as,k[Dk]. Then αci is of degree as(i),1[D1] + · · · + as(i),k[Dk], and αdi is of
degree as′(i),1[D1] + · · ·+ as′(i),k[Dk]. It follows that

(αci − αdi)hom = α
bi,1−as(i),1
1 · · ·αbi,k−as(i),kk αci − α

bi,1−as′(i),1
1 · · ·αbi,k−as′(i),kk αdi ,

where bi,j = max(as(i),j, as′(i),j). We write

ζ =
m∑
s=1

µsα
es .
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Then

ζhom =
m∑
s=1

µsα
b̄1−as,1
1 · · ·αb̄k−as,kk αes .

Here

b̄j = max{as,j|s = 1, . . . ,m} = max{as(i),j, as′(i),j|i = 1, . . . , l}
= max{bi,j|i = 1, . . . , l},

as every αci , αdi appears as a monomial of ζ. Hence

ζhom =
l∑

s=1

µsα
b̄1−as,1
1 · · ·αb̄k−as,kk αes

=
l∑

i=1

λi

(
α
b̄1−as(i),1
1 · · ·αb̄k−as(i),kk αci − α

b̄1−as′(i),1
1 · · ·αb̄k−as′(i),kk αdi

)
=

l∑
i=1

λiα
b̄1−bi,1
1 · · ·αb̄k−bi,kk

(
α
bi,1−as(i),1
1 · · ·αbi,k−as(i),kk αci

− α
bi,1−as′(i),1
1 · · ·αbi,k−as′(i),kk αdi

)
=

l∑
i=1

λiα
b̄1−bi,1
1 · · ·αb̄k−bi,kk (αci − αdi)hom.

2.5 Interlude: divided power structures
In order to better understand secant varieties in Chapter 3, we need the
notion of the derivation action. In what follows, we define the annihilator
with respect to this action, and we investigate its properties in Sections 2.6
and 2.7. We use the divided power language since it allows us to write the
derivation action without the coefficients coming from factorials. We start
with the following definition, taken from [1, Tag 07GK].

Definition 2.23. Let A be a ring. Let I be an ideal of A. A collection
of maps (·)(n) : I → I, n ≥ 1 is a called a divided power structure if for all
x, y ∈ I, a ∈ A, n,m ≥ 0 we have:
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(a) x(1) = x, we also set x(0) = 1,

(b) x(n)x(m) =
(
n+m
n

)
x(n+m),

(c) (ax)(n) = anx(n),

(d) (x+ y)(n) =
∑n

i=0 x
(i)y(n−i),

(e) (x(m))(n) = (nm)!
n!(m!)n

x(nm).

Let H be a finitely generated abelian group, T = C[α1, . . . , αr] be a
polynomial ring. Suppose T is graded byH in such a way that each variable is
homogenous and that for each η ∈ H the vector space Tη is finite-dimensional.
In this section, we will call such gradings proper. This is satisfied when T
is the Cox ring of a projective toric variety, and the reader may safely think
of it as the main example. The ring T has a canonical coalgebra structure
given by the map

T → T ⊗ T ,
αi 7→ αi ⊗ 1 + 1⊗ αi,

see [42, Section A2.4]. This induces a canonical algebra structure on the dual
vector space

T ∗
H :=

⊕
η∈H

Hom(Tη,C),

called the divided power algebra. As the name suggests, there is a canonical
divided power structure on T ∗

H , see [42, Proposition–Definition A2.6].

Proposition 2.24. The ring T ∗
H does not depend on H, where H defines a

proper grading on T .

Proof. Let H1, H2 be any two finitely generated abelian groups. Suppose T
is graded in a proper way by Hi for i = 1, 2. Then T is naturally graded by
H1 ⊕H2 in the following way: for η1 ∈ H1, η2 ∈ H2, we define

Tη1,η2 = Tη1 ∩ Tη2 .
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This grading is also proper. We show that T ∗
H1

is cannonically isomorphic to
T ∗
H1⊕H2

.

T ∗
H1⊕H2

=
⊕

(η1,η2)∈H1⊕H2

Hom(Tη1,η2 ,C) =
⊕
η1∈H1

⊕
η2∈H2

Hom(Tη1,η2 ,C)

=
⊕
η1∈H1

Hom

(⊕
η2∈H2

Tη1,η2 ,C

)
=
⊕
η1∈H1

Hom(Tη1 ,C).

Then also T ∗
H1

= T ∗
H1⊕H2

= T ∗
H2

.

We write T ∗ from now on. Let x1, . . . , xr denote the basis dual to
α1, . . . , αr. In this thesis, we use another notation for the graded dual ring,
we write T ∗ = Cdp[x1, . . . , xr]. However, Cdp[x1, . . . , xr] is isomorphic to the
polynomial ring C[x1, . . . , xr], and x

(d)
i = xi

d!
for 1 ≤ i ≤ r and d ∈ N. We

define a grading on T ∗ by

deg xi = degαi.

For any proper grading H on T , and any η ∈ H, the basis

{x(a1)1 · · ·x(ar)r | deg x(a1)1 · · ·x(ar)r = η}

of T ∗
η is dual to the basis

{αa11 · · ·αarr | degαa11 · · ·αarr = η}

of Tη.
The ring T acts on T ∗ in a canonical way. This action is known by different

names: derivation, contraction or apolarity, and is defined in coordinates by:

αi ⌟ x
(a1)
1 · · ·x(ar)r =

{
x
(a1)
1 · · ·x(ai−1)

i · · ·x(ar)r if ai > 0,
0 otherwise.

(2.6)

Remark 2.25. Notice that when we take θ ∈ Tη and F ∈ T ∗
ϵ , then θ ⌟ F is

homogeneous of degree ϵ−η for any η, ϵ ∈ H. That follows from the fact that
when we multiply by subsequent αi’s, the degree of F decreases by degαi.
This means that, although T ∗ is not a graded T -module, it becomes a graded
T -module if we define the grading by

deg x
(a)
i = − degαai .
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The introduction of graded dual rings gives us a way to describe maps
from toric varieties to projective spaces. By Corollary 2.12 we get the fol-
lowing proposition.

Proposition 2.26. Let XΣ be a proper normal toric variety. Then for any
η ∈ PicXΣ such that O(η) is basepoint free, the map

φ : XΣ → P(H0(XΣ,O(η))∗),

attached to the complete linear system |O(η)|, is given by

φ([λ1, . . . , λr]) =

 ∑
b1,...,br∈Z≥0|
x
(b1)
1 ···x(br)r ∈T ∗

η

λb11 · · ·λbrr · x(b1)1 · · ·x(br)r

 . (2.7)

The proof is given in the author’s master thesis [44, Fact 2.4] and in the
article [46, Proposition 4.4].

Definition 2.27. If V ⊆ T ∗ is a finite-dimensional vector subspace, we
denote by Ann(V ) ⊆ T its annihilator with respect to the ⌟ action. The set
Ann(V ) is an ideal of T .

Note that Ann(V ) is homogeneous if V has a basis consisting of homoge-
neous elements.

2.6 Dehomogenization and homogenization in
case of the product of projective spaces

If is often crucial to know the behaviour of the minimal generators of Ann(F )
or of Ann(V ). We will need to apply this in two cases: the case of a product
of projective spaces Pn1 × · · · × Pnk , and a special case of Pn. In the latter
case, we get stronger results.

We start with the product of projective spaces Pn1 × · · · × Pnk . Let
n = n1+ · · ·+nk. In this subsection, we modify the way of indexing variables
of S and T , we let

S = C[α1,1, . . . , α1,n1 , . . . , αk,1, . . . , αk,nk
]

T = C[α1,0, α1,1, . . . , α1,n1 , . . . , αk,0, αk,1, . . . , αk,nk
].
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There are k variables, with respect to which we homogenize, α1,0, . . . , αk,0,
each one corresponding to one copy of projective space. The graded duals
are

S∗ = Cdp[x1,1, . . . , x1,n1 , . . . , xk,1, . . . , xk,nk
]

T ∗ = Cdp[x1,0, x1,1, . . . , x1,n1 , . . . , xk,0, xk,1, . . . , xk,nk
].

The rings S,T , S∗, T ∗ are naturally graded by Zk. We define a partial order
on multi-indices of length k: we let d ≤ e if and only if di ≤ ei for all
1 ≤ i ≤ k. For a multi-index of non-negative integers d = (d1, . . . , dk), we
define Sd (Td, S∗

d, T
∗
d) to be the graded piece of S (T, S∗, T ∗) of degree d.

Similarly, let
S≤d =

⊕
i≤d

Si.

We use analogous notation for the rings T, S∗, T ∗.

Lemma 2.28. Let W ⊆ S∗
≤d be a subspace. Let

E = Sd1+1,0,...,0 ∪ S0,d2+1,0,...,0 ∪ · · · ∪ S0,...,0,dk+1.

The ideal Ann(W )hom ⊆ T is generated by

{ζhom|ζ ∈ Ann(W ) ∩ S≤d} ∪ {ζhom|ζ ∈ E}.

Proof. Suppose θ ∈ Ann(W )hom is a homogenous polynomial. Then θdeh ∈
Ann(W ) by Proposition 2.20. We write

θdeh = ζ≤d + ζother,

with ζ≤d ∈ S≤d and
ζother ∈

⊕
j∈Nk,ji>di for some i

Sj.

Since θ is homogeneous, the map (·)deh gives a bijection between the terms
of θ and the terms of θdeh. It follows that we can write

θ = θ≤d + θother,

where θ≤d, θother ∈ T are homogeneous with (θ≤d)
deh = ζ≤d and (θother)

deh =
ζother. But then, by Proposition 2.16 applied to θ≤d and θother, we get

θ = αe11,0 · · ·α
ek
k,0(ζ≤d)

hom + α
e′1
1,0 · · ·α

e′k
k,0(ζother)

hom (2.8)
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for some ei, e
′
i ∈ N. As ζother ∈ Ann(W ) because it has a large degree,

we get that ζ≤d ∈ Ann(W ). Moreover, ζother is a sum of monomials, each
one divisible by an element of the set E. Therefore, Equation (2.8) is a
presentation of θ as a combination of something from {ζhom | ζ ∈ Ann(W )∩
S≤d} and something from {ζhom | ζ ∈ E}.

If A is an algebra graded in Zk, and e ∈ Zk, then

H(A, e) := dimCAe

is called the Hilbert function of A at e. We use this notation from now on.

Lemma 2.29. If W ⊆ S∗
≤d is a linear subspace, and e ≥ d is a multi-index

of length k, then

H(T/Ann(W )hom, e) = dimC S/Ann(W ).

Proof. We claim that for any e ≥ d the map (·)deh induces a linear isomor-
phism

(T/Ann(W )hom)e → S/Ann(W ). (2.9)

To see this, consider the composition of dehomogenization and projection
onto Ann(W )

χ : Te
(·)deh−−−→ S → S/Ann(W ).

By Proposition 2.20,
kerχ = (Ann(W )hom)e.

It is enough to prove that χ is surjective. For this, take ζ ∈ S and write

ζ = ζ≤d + ζother,

with ζ≤d ∈ S≤d and
ζother ∈

⊕
j∈Nk,ji>di for some i

Sj.

Since S≤d ⊆ S≤e, and the map Te
(·)deh−−−→ S≤e is surjective, there exists θ ∈ Te

such that θdeh = ζ≤d. Then χ(θ) = [ζ≤d] = [ζ]. The claim that the map in
Equation (2.9) is an isomorphism follows, and so does the statement of the
proposition.
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Up to this point, we have only used dehomogenization and homogeniza-
tion between the rings S and T . However, we also need another type of
homogenization, on the graded dual rings.

Definition 2.30. If e is a multi-index with e, and f ∈ S∗, then

fhom,e =
∑
i≤e

x(e−i)fi,

where x(j) = x
(j1)
1,0 · · ·x(jk)k,0 for any j ∈ Nk.

Notice that we do not define any dehomogenization on the graded dual
ring T ∗. The following lemma shows the interplay between homogenization,
dehomogenization and the apolarity action.

Lemma 2.31. Let m,d, and e be multi-indices of length k. Let θ ∈ Tm, and
g ∈ S∗

≤d. Suppose at least one of the following conditions holds:

(i) m+ d ≤ e, or

(ii) k = 1, e = 2d− 1,m ≥ d, and θ ∈ (S1)
m−d+1Td−1.

Then we have the following equality.

(θdeh ⌟ g)hom,e−m = θ ⌟ ghom,e. (2.10)

Proof. Note that both Point (i) and Point (ii) imply that for every term u of
θdeh ⌟ g we have

deg u ≤ e−m. (2.11)

Both sides of Equation (2.10) are bilinear, hence we may assume that θ and
g are monomials. Suppose

θ =

(
k∏
i=1

αbii,0

)
k∏
i=1

ni∏
j=1

α
ai,j
i,j , and

g =
k∏
i=1

ni∏
j=1

x
(ci,j)
i,j .

If deg g = l = (l1, . . . , lk), then

ghom,e =

(
k∏
i=1

x
(ei−li)
i,0

)
k∏
i=1

ni∏
j=1

x
(ci,j)
i,j .
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We calculate the apolarity action

θdeh ⌟ g =

{∏k
i=1

∏nk

j=1 x
(ci,j−ai,j)
i,j if ci,j ≥ ai,j for 1 ≤ i ≤ k, 1 ≤ j ≤ ni,

0 otherwise.

θ ⌟ ghom,e =


(∏k

i=1 x
(ei−li−bi)
i,0

)∏k
i=1

∏ni

j=1 x
(ci,j−ai,j)
i,j if

{
ci,j ≥ ai,j

ei ≥ li + bi

0 otherwise.

We claim that ei ≥ li + bi for 1 ≤ i ≤ k. To see this, let us calculate
deg(θdeh ⌟ g), which is well-defined, since we assumed that θ and g are mono-
mials. We know that deg g = l, deg θ = m, and deg θdeh = m− b, hence

deg(θdeh ⌟ g) = l−m+ b.

It follows that
e− b− l = e−m− deg(θdeh ⌟ g) (2.12)

By Equation (2.11) we obtain that e−m−deg(θdeh ⌟ g) ≥ 0, so also ei ≥ li+bi
for 1 ≤ i ≤ k. But this means that the conditions{

ci,j ≥ ai,j for 1 ≤ i ≤ k and 1 ≤ j ≤ ni.
ej ≥ lj + bj for 1 ≤ j ≤ k

and {
ci,j ≥ ai,j for 1 ≤ i ≤ k and 1 ≤ j ≤ ni

are equivalent. We want to homogenize θdeh ⌟ g to degree e−m. Therefore,
by Equation (2.12), the difference in degrees is equal to e− b− l, hence, in
order to homogenize θdeh ⌟ g, we need to multiply it by

∏k
i=1 x

(ei−bi−li)
i,0 . This

shows that Equation (2.10) holds for monomials, and thus for all polynomials.

In Definition 2.30 we defined homogenization on the dual ring S∗. We
extend this for finite dimensional subspaces of S∗.

Definition 2.32. Assume d, e are vectors of positive integers with e ≥ d
and W ⊆ S∗

≤d is a linear subspace. We let

W hom,e = {fhom,e|f ∈ W}

be the homogenization of a subspace.
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Lemma 2.33. Fix a multi-index e with e ≥ d. Let W ⊆ S∗
≤d be a subspace.

Then we have:

(i)
Ann(W )hom ⊆ Ann(W hom,e).

(ii)
(Ann(W )hom)≤e−d = Ann(W hom,e)≤e−d.

The proof is an adaptation of [8, Lemma 2] to the multigraded setting.

Proof. We begin with proving Point (ii). Let θ be a homogeneous polynomial
in T ∗

≤e−d. We have

θ ∈ Ann(W )hom
by Proposition 2.20⇐⇒ θdeh ∈ Ann(W )

⇐⇒ ∀g∈W (θdeh ⌟ g = 0)

by Lemma 2.31⇐⇒ ∀g∈W (θ ⌟ ghom,e = 0)

⇐⇒ θ ∈ Ann(W hom,e),

which proves Point (ii).
Now we prove the first statement. Let ẽ = max(m + d, e). Suppose

θ ∈ Ann(W )hom is homogenous of degree m and that g ∈ W . Then by
Proposition 2.20 we get θdeh ∈ Ann(W ), and therefore θdeh ⌟ g = 0, which
implies that θ ⌟ ghom,ẽ = 0 by Proposition 2.31. But

θ ⌟ ghom,e = θ ⌟ ((αẽ1−e11,0 · · ·αẽk−ekk,0 ) ⌟ ghom,ẽ)

= αẽ1−e11,0 · · ·αẽk−ekk,0 ⌟ (θ ⌟ ghom,ẽ)

= 0.

2.7 Dehomogenization and homogenization in
the Veronese case

We go to the simple case when k = 1. In order to make the results in
Sections 3.6 and 6.2 stronger than in the case of the Segre-Veronese, we need
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to analyze the Veronese case in more detail. This part of the thesis comes
from [47, Section 3].

Here the coordinate rings are

S = C[α1, . . . , αn],
T = C[α0, α1, . . . , αn].

We dehomogenize with respect to the variable α0. The graded duals are

S∗ = Cdp[x1, . . . , xn],
T ∗ = Cdp[x0, x1, . . . , xn].

Lemma 2.34. Let f = fd + fd−1 + · · ·+ f0 be a polynomial of degree d ≥ 2
in S∗ where fi ∈ S∗

i . Assume that fd is not a divided power of a linear form.
Then Ann(f)hom ⊆ T has a set of minimal generators of degrees not greater
than d.

Proof. We have Sd+1 ⊆ Ann(f) so we may choose a set of generators of
Ann(f) of the form

Ann(f) = ({αu | u ∈ Zn≥0 s.t. |u| = d+ 1}) + (ζ1, . . . , ζk) with deg(ζi) ≤ d.

Using Buchberger’s algorithm for this set of generators and grevlex mono-
mial order, we obtain a Gröbner basis of Ann(f) of the form

{αu | u ∈ Zn≥0 s.t. |u| = d+ 1} ∪ {ζ1, . . . , ζk} ∪ {ξ1, . . . , ξl}. (2.13)

We claim that deg ξi ≤ d. Let G = {αu | u ∈ Zn≥0 s.t. |u| = d+1}. Note that
each S-polynomial considered in the Buchberger’s algorithm is divided with
remainder by a set of polynomials containing G. Therefore, S-polynomials
of degree at least d+ 1 do not give new elements of the Gröbner basis.

The ideal Ann(f)hom is generated by the homogenizations of the elements
in Equation (2.13) ([38, Theorem 8.4.4]). It is enough to show that we
can replace the monomial generators of degree d+ 1 written above by some
generators of degree not greater than d. Let u ∈ Zn≥0 with |u| = d + 1.
Then in S, we can write αu =

∑m
i=1 θiγi for some θi ∈ Ann(fd)d and γi ∈ S1

([23, Prop. 1.6]). We have θi ∈ Ann(f) for degree reasons. Therefore
αu ∈ ((Ann(f)hom)≤d) as an element of T .
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Lemma 2.35. Let f = fd+fd−1+ . . .+f0 be a degree d ≥ 1 polynomial in S∗

and r = dimC S/Ann(f). Let e = 2d − 1. We have H(T/Ann(fhom,e), d) =
r or H(T/Ann(fhom,e), d) = r − 1. Moreover, in the latter case we get
Ann(fhom,e) = (αd0 + ρ) + Ann(f)hom, where ρ ∈ Td has degree smaller than
d with respect to α0.

Proof. We start with the following
Observation. Assume thatm ≥ 0. For Γ = αd0θ1+m+α

d−1
0 θ2+m+. . .+θd+1+m

we have
Γ ⌟ fhom,e = 0 ⇒ Γ ∈ Ann(f)hom.

Indeed, by Lemma 2.31, Point (ii), we have

Γ ⌟ fhom,e = (Γdeh ⌟ f)hom,e−m = 0,

which implies that Γdeh ⌟ f = 0. Then Γ ∈ Ann(f)hom.
We claim that Ann(fhom,e) has at most one minimal homogeneous gen-

erator of degree d modulo the generators of (Ann(f)hom)d. Indeed, by the
above observation with m = 0, any such generator is (up to a scalar) of the
form αd0 + ρ, where αd0 does not divide any monomial in ρ. Given two such
generators, say αd0+ρ and αd0+ρ′, we have αd0+ρ = (αd0+ρ

′)+(ρ−ρ′). From
the above observation for m = 0, it follows that ρ− ρ′ is in (Ann(f)hom)d, so
the second new generator is not needed. Therefore, either

H(T/Ann(fhom,e), d) = H(T/Ann(f)hom, d) = r, or
H(T/Ann(fhom,e), d) = H(T/Ann(f)hom, d)− 1 = r − 1.

Now we assume H(T/Ann(fhom,e), d) = r − 1. Then there exists a ho-
mogeneous generator of Ann(fhom,e) of the form αd0 + ρ, where αd0 does not
divide any monomial in ρ. It is enough to show that for any m ≥ 0, if
Γ = αd−1

0 θ1+m+α
d−2
0 θ2+m+. . .+θd+m annihilates fhom,e, then Γ ∈ Ann(f)hom.

This is the observation from the beginning.

The following result is similar to Lemma 2.29. It compares the Hilbert
functions of two related quotient algebras, one of S and one of T . We use it
in the proof of Part (iii) of Theorem 3.31.

Lemma 2.36. Let J ⊆ T be a homogeneous ideal and θ = αd0 + ρ be an
element of Jd with ρ of degree smaller than d with respect to α0. Consider
the elimination ideal J c = J ∩ S. Then for any integer e we have

H(T/J, e) ≤ H(S/J c, e) +H(S/J c, e− 1) + . . .+H(S/J c, e− d+ 1).
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Proof. Let ≺ be a graded lexicographic order on T with αn ≺ αn−1 ≺ . . . ≺
α0 and consider its restriction ≺′ to S. It follows from [42, Theorem 15.3])
that H(T/J, e) is the number of monomials of degree e, not in LT≺(J).
Observe that every monomial divisible by αd0 is in LT≺(J). Therefore, we
have

H(T/J, e) =
d−1∑
i=0

#{µ ∈ Se−i | µ is a monomial and αi0µ /∈ LT≺(J)}.

Fix 0 ≤ i ≤ d − 1 and let µ be a monomial of degree e − i from S. If
µ ∈ LT≺′(J c), then there is a homogeneous ζ ∈ J c such that LM≺′(ζ) = µ.
Therefore, αi0ζ ∈ J and LM≺(α

i
0ζ) = αi0µ. Thus for i ∈ {0, . . . , d − 1} we

have

#{µ ∈ Se−i | µ is a monomial and αi0µ /∈ LT≺(J)} ≤ H(S/J c, e− i).
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Chapter 3

Secant varieties

This chapter is concerned with secant varieties. Section 3.1 is devoted to
some of their basic properties. Sections 3.2 and 3.3 introduce apolarity in its
standard and border version. In Sections 3.4 and 3.5 we discuss equations
of secant varieties. Section 3.6 is about bounding the cactus rank of special
forms. The goals of Section 3.7 are proving Proposition 1.19 and discussing
some applications.

Throughout the chapter, we work over C.

3.1 Basic properties
In this section we review the basic properties of secant varieties. Assume W
is a vector space over C, and that X ⊆ PW is a variety not contained in
any hyperplane. Recall the definition of the secant varieties of X given in
Definition 1.11.

Proposition 3.1. The algebraic set σr(X) is irreducible for any r ≥ 1.

Proof. For any projective algebraic set Y ⊆ PW , let Ŷ ⊆ W denote the
affine cone of Y . Consider the map

φ : X̂ × · · · × X̂︸ ︷︷ ︸
r times

→ W , given by

(x̂1, . . . , x̂r) 7→ x̂1 + · · ·+ x̂r.
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Since X is irreducible, so is X̂. It follows that the product (X̂)r is irreducible,
and hence the algebraic set

φ((X̂)r) = σ̂r(X)

is irreducible.

Let PT̂qX denote the projective tangent space of X embedded in PW at
a point q, i.e. the projectivization of the affine tangent space to the affine
cone of X. The following Lemma is an important tool.

Proposition 3.2 (Terracini’s Lemma). Assume that X ⊆ PW is a non-
degenerate projective variety. Let r be a positive integer. Then for r general
points p1, . . . , pr ∈ X and a general point q ∈ ⟨p1, . . . , pr⟩ we have

PT̂qσr(X) = ⟨PT̂p1X, . . . ,PT̂prX⟩.

For a proof, see [62, Section 5.3] or [79, Chapter V, Proposition 1.4].

Corollary 3.3. The dimension of σr(X) is not greater than r(dimX+1)−1.

Corollary 3.4. Assume X ⊆ PW is a non-degenerate projective variety. If
for some r the variety σr(X) is strictly contained in PW , then the inequality
dimσr+1(X) > dimσr(X) holds.

Proof. Suppose we have dimσr+1(X) = dim σr(X). It follows that for general
points p1, . . . , pr, q ∈ X we get

PT̂qX ⊆ ⟨PT̂p1X, . . . .,PT̂prX⟩,

which means that all the subsequent secant varieties will be equal to σr(X).
This is a contradiction, as X is not contained in any hyperplane.

Definition 3.5. When we have dimσr(X) = min(dimPW, r(dimX+1)−1),
we say that σr(X) is of expected dimension.

3.2 Classical Apolarity Lemma
In this section, we formulate the Apolarity Lemma. To our knowledge, it
first appeared in [57, Lemma 1.15] for Pn. Later it was also stated in the “if
and only if” form—the point F has rank at most r if and only if there exists
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a radical ideal of r points contained in Ann(F ). Since its formulation, it was
clear to the experts that it can be generalized in two ways: first by allowing
the embedded variety to be something other than Pn, second by demanding
that we calculate the simultaneous rank of many forms of the same degree.

The former generalization was done independently in the author’s master
thesis [44, Chapter 3] and in [48, Lemma 1.3].

Since we sometimes need the Apolarity Lemma to calculate the simulte-
neous rank of many forms, and this is done neither in [44] nor in [48], we
provide the proofs. Still, they are not much different than the ones in the
cited sources.

Before we state the most common version of the Apolarity Lemma, we
give a simpler version, which has the advantage that it works for any pro-
jective variety X ⊆ PW embedded by the complete linear system of a very
ample line bundle L. Then we have W = H0(X,L)∗.

Note that for any closed subscheme R ↪→ X with ideal sheaf IR, and for
any line bundle L on X, the vector subspace H0(X, IR ⊗ L) ⊆ H0(X,L)
consists of sections which pull back to zero on R. Let

(· ⌟ ·) : H0(X,L)⊗H0(X,L)∗ → C

denote the natural pairing. The notation agrees with the one in Section 2.5,
in particular with Equation (2.6) when X is a toric variety. Now we are
ready to formulate the Apolarity Lemma, the simple version:

Proposition 3.6 (Apolarity Lemma, first version). Let V ⊆ H0(X,L)∗ be a
non-zero linear subspace. Let R ↪→ X be a closed subscheme with ideal sheaf
IR ⊆ OX . Then we have the following equivalence

P(V ) ⊆ ⟨R⟩ ⇐⇒ H0(X, IR ⊗ L) ⌟ V = 0.

Proof. Take any θ ∈ H0(X,L), let Hθ be the corresponding hyperplane in
P(H0(X,L)∗). The following equivalence holds

⟨R⟩ ⊆ Hθ ⇐⇒ θ ∈ H0(X, IR ⊗ L).

For any R we have

P(V ) ⊆ ⟨R⟩ ⇐⇒ ∀θ∈H0(X,L)(⟨R⟩ ⊆ Hθ =⇒ P(V ) ⊆ Hθ)

⇐⇒ ∀θ∈H0(X,L)(θ ∈ H0(X, IR ⊗ L) =⇒ P(V ) ⊆ Hθ)

⇐⇒ ∀θ∈H0(X,L)(θ ∈ H0(X, IR ⊗ L) =⇒ θ ⌟ V = 0)

⇐⇒ H0(X, IR ⊗ L) ⌟ V = 0.
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Let X be a projective normal toric variety. Let T be the Cox ring of X
(see the beginning of Section 2.1), and T ∗ be graded dual (see Section 2.5).
Suppose X is embedded by the complete linear system of a very ample line
bundle O(η), where η ∈ PicX. We denote this embedding by

φ : X → PT ∗
η .

Before we give the common version of the Apolarity Lemma for toric varieties,
we generalize the basic of definitions of ranks and cactus ranks to linear spaces
of forms of the same degree.

Definition 3.7. For a positive integer k, the rank of a k-dimensional linear
subspace V of T ∗

η is

r(V ) = min{r ∈ Z>0|PV ⊆ ⟨φ(p1), . . . , φ(pr)⟩ for some p1, . . . , pr ∈ X}.

For positive integers r, k, the (r, k)-th Grassmann secant variety of X φ−→
P(H0(X,T ∗

η )) is

σr,k(φ(X)) = {[V ] ∈ Gr(k, T ∗
η )| r(V ) ≤ r}.

The cactus rank of a k-dimensional linear subspace V of T ∗
η is

cr(V ) = min{r ∈ Z>0 |there exists R ↪→ X a finite scheme
of length r such that PV ⊆ ⟨φ(R)⟩}.

The (r, k)-th Grassmann cactus variety of X φ−→ P(H0(X,L)∗) is

κr,k(φ(X)) = {[V ] ∈ Gr(k, Tη)| cr(V ) ≤ r}.

For the next lemma, recall that for a linear subspace V ⊆ T ∗, the set
Ann(V ) ⊆ T is the annihilator of V with respect to the ⌟ action. It is an
ideal of T . Moreover, it is homogeneous, if V is contained in a graded piece
of T ∗.

Lemma 3.8. Let η ∈ PicX. Let J ⊆ T be a homogenous ideal, and V ⊆ T ∗
η

be a subspace. We have

Jη ⌟ V = 0 ⇐⇒ J ⊆ Ann(V ).
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Proof. It suffices to prove that Jη ⊆ Ann(V )η implies J ⊆ Ann(V ). Suppose
Jη ⊆ Ann(V )η. Take any θ ∈ Jϵ for some ϵ ∈ ClXΣ. We want to show that
θ ⌟ V = 0. We have Tη−ϵ · θ ⊆ Jη, because θ is in the ideal. This means that
(Tη−ϵ · θ) ⌟ V = 0, i.e. Tη−ϵ ⌟ (θ ⌟ V ) = 0. Now, for each F ∈ V we know that
θ ⌟ F is an element of T ∗

η−ϵ, which is zero when multiplied by anything from
Tη−ϵ. It follows that θ ⌟ F is zero. Hence, θ ⌟ V = 0.

Finally, we are ready to give the most common version of the Apolarity
Lemma. See Definition 2.4 for what it means for an ideal I ⊆ T to define a
subscheme R ↪→ X.

Theorem 3.9 (Apolarity Lemma, second version). Let R ↪→ X be closed
subscheme, and I ⊆ T be a B-saturated ideal defining it. For a linear sub-
space V ⊆ T ∗

η we have

V ⊆ ⟨R⟩ ⇐⇒ I ⊆ Ann(V ).

Proof. From Proposition 3.6 we know that V ⊆ ⟨R⟩ if and only if ICl(R)η ⊆
Ann(V )η. However, by Corollary 2.10, I agrees with ICl(R) in degree η. It
remains to prove that Iη ⊆ Ann(V )η implies I ⊆ Ann(V ). But this follows
from Lemma 3.8.

3.3 Border rank and border apolarity
For the following definition, we work in the same setting as in Section 3.2.
Let X be a projective normal toric variety. Let T be the Cox ring of X
(see the beginning of Section 2.1), and T ∗ be graded dual (see Section 2.5).
Suppose X is embedded by the complete linear system of a very ample line
bundle O(η), where η ∈ PicX. We denote this embedding by

φ : X → PT ∗
η .

Definition 3.10. The border rank of a k-dimensional linear space V ⊆ T ∗
η

is
br(V ) = min{r ∈ Z>0|[V ] ∈ σr,k(φ(X))}.

The border cactus rank of V is

bcr(V ) = min{r ∈ Z>0|[V ] ∈ κr,k(φ(X)}.
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If k = 1, i.e. if V = ⟨F ⟩ for an element F ∈ T ∗
η we obtain the classical

notion of border rank of F , as in [62, Chapter 3].
Note that the border rank is more natural from the point of view of

algebraic geometry than the rank, since it provides a condition for [F ] to be
a point of a Zariski closed subset of PT ∗

η . However, the variant of apolarity
for the border rank has been stated only very recently (see [22] for the case
V = ⟨F ⟩ and [21] for the general case). Nevertheless, it has already been
applied in [36],[56], and [66].

However, we only need border apolarity for the Segre-Veronese case. We
define the coordinate ring and the graded dual ring to be

T = C[α1,0, . . . , α1,n1 , . . . , αk,0, . . . , αk,nk
],

T ∗ = Cdp[x1,0, . . . , x1,n1 , . . . , xk,0, . . . , xk,nk
].

The rings T , and T ∗ are naturally graded by Zk. As before, for a vector of
non-negative integers d = (d1, . . . , dk), we define Td (T ∗

d) to be the graded
piece of T (T ∗) of degree d.

In Theorem 3.12, we consider the cactus and border cactus rank with
respect to the Segre-Veronese embedding vd of degree d for a multi-index d.
This is the map attached to the linear system |O(d)| or, equivalently, it is
given on points by

vd : PT ∗
1,0,...,0 × · · · × PT ∗

0,...,0,1 → PT ∗
d

([l1], . . . , [lk]) 7→ [l
(d1)
1 · · · l(dk)k ].

For simplicity, let us write X = vd(Pn1 × · · · × Pnk).

Definition 3.11. For a positive integer s, let hs : Nk → N be given by

hs(d) = min{dimC Td, s}.

Notice that hs depends on the numbers n1, . . . , nk.

We have to consider multigraded Hilbert schemes, see [52]. Denote by
HilbhrT the multigraded Hilbert scheme associated with the polynomial ring
T (with the natural grading by Zk, and Hilbert function hr). Let Slipr,X
be the closure in HilbhrT of points corresponding to B-saturated ideals of r
points.
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Theorem 3.12 (Border Apolarity Lemma). Let r be a positive integer, d be
a vector of positive integers of length k, and V ⊆ T ∗

d be a linear subspace.
Then br(V ) ≤ r holds if and only if there exists an ideal [I] ∈ Slipr,X such
that

I ⊆ Ann(V ).

The proof is just a version of [22, Lemma 3.16], but for subspaces. Since
we need it in the more general version, we give it here. Theorem 3.12 follows
directly from Lemma 3.13.

Lemma 3.13. Let r be a positive integer, set k = dimC V , r′ = hr(d),
and consider the (r, k)-th Grassmann secant variety σr,k(X). The natural
map p : Slipr,X → Gr(r′, T ∗

d) taking a homogeneous ideal I to I⊥d exists and
is regular. Define U ⊆ Slipr,X ×Gr(k, T ∗

d) to be the pullback via p of an
indicence subbundle on the Grassmannian Gr(k, T ∗

d), i.e.

U = {(I, V ) | I ∈ Slipr,X , V ∈ Gr(k, T ∗
d),V ⊆ p(I)}.

Then the Grassmann secant variety σr,k(X) is equal to the image of U under
the projection U → Gr(k, T ∗

d):

σr,k(X) = {V ∈ Gr(k, T ∗
d) | ∃I ∈ Slipr,X such that V ⊆ p(I)}.

Proof. The natural map p exists and is regular by the universal properties
of the Grassmannian Gr(r′, T ∗

d) and of the multigraded Hilbert scheme. To
prove the second assertion, note that Slipr,X is projective by [52, Corollary
1.2]; thus U is projective and therefore the image of U under the projection
is also closed in Gr(k, T ∗

d). Moreover, by [22, Proposition 3.13] a very general
ideal I ∈ Slipr,X is the saturated ideal of r distinct points p1, . . . , pr ∈ X. The
fiber Gr(k, I⊥d ) = UI ⊆ {I}×Gr(k, T ∗

d) is the set of k-dimensional subspaces
of T ∗

d that are contained in the linear span ⟨p1, . . . , pr⟩, hence the fiber is
contained in σr,k(X). On the other hand, reversing the above argument, we
pick a very general point V ∈ σr,k(X). Then we have V ⊆ ⟨p1, . . . , pr⟩ for
some points p1, . . . , pr in a very general position, and I = ICl(p1, . . . , pr) is
a B-saturated ideal with Hilbert function hr ([22, Lemma 3.6]). Thus I ∈
Slipr,X and V ∈ Gr(k, I⊥d ) by Theorem 3.9, and therefore V is in the image
of the second projection U → Gr(k, T ∗

d). Hence, the image of U → Gr(k, T ∗
d)

is dense in σr,k(X).
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In order to formulate a version of apolarity for the border cactus rank,
we need to consider more general Hilbert functions that just hr. However,
we only need it for the Veronese case, i.e. we assume that k = 1.

Definition 3.14. A function h : N → N satisfying the following conditions
will be called an s-standard Hilbert function:

(a) h(d) ≤ h(d+ 1) for all nonnegative integers d,

(b) if h(d) = h(d + 1) for some nonnegative integer d, then h(e) = s for all
integers e with e ≥ d,

(c) 0 ≤ h(d) ≤ hs(d) for all nonnegative integers d.

Theorem 3.15 (Weak Border Cactus Apolarity Lemma). Let d, r be positive
integers, and V ⊆ T ∗

d be a non-zero subspace. If bcr(V ) ≤ r, then there exists
a homogeneous ideal I ⊆ Ann(V ) such that T/I has an r-standard Hilbert
function for Pn.

For a proof see [21, Theorem 1.1].

3.4 Proofs of Theorems 1.17 and 1.18
Some parts of the following proofs are based on [45, Section 2]. However, some
of them had to be modified so that they could help us to justify Proposition
3.21 in the next section.

Let X be a complex projective variety embedded by the complete linear
system of a very ample line bundle L. For a closed subscheme i : R ↪→
X, let IR denote its ideal sheaf on X, and ⟨R⟩ denotes its linear span in
P(H0(X,L)∗) (as in Section 3.2). Recall that for any locally free sheaf E on
X, the vector subspace H0(X, IR ⊗ E) ⊆ H0(X, E) consists of the sections
which pull back to zero on R.

Take a coherent sheaf E on X. Let ⌟ be the map

H0(X, E)⊗H0(X,L)∗ · ⌟ ·−−→ H0(X,L ⊗ E∨)∗

given by rearranging terms of Equation (1.2). The notation agrees with
the one in Section 2.5, in particular with Equation (2.6) when X is a toric
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variety and E is a line bundle. If we fix F ∈ H0(X,L)∗, we get the so-called
catalecticant homomorphism CE

F = · ⌟ F

CE
F : H0(X, E) → H0(X,L ⊗ E∨)∗

corresponding to the tensor

jE(F ) ∈ H0(X, E)∗ ⊗H0(X,L ⊗ E∨)∗.

Notice that rankCE
F = rank jE(F ).

Proposition 3.16. Suppose R ↪→ X is a subscheme of X. Suppose E is a
coherent sheaf on X. Then for any F ∈ ⟨R⟩ the image of the linear map

H0(X, IR ⊗ E) → H0(X, E),

induced by the map of sheaves IR⊗E → E, is contained in the kernel of CE
F .

Remark 3.17. Proposition 3.16 can be thought of as a version of the apolarity
lemma for coherent sheaves on X.

Proof of Proposition 3.16. We have the following commutative diagram of
sheaves on X:

IR ⊗ E ⊗ E∨ ⊗ L IR ⊗ L

E ⊗ E∨ ⊗ L L.

This gives rise to a commutative diagram of global sections:

H0(X, IR ⊗ E)⊗H0(X, E∨ ⊗ L) H0(X, IR ⊗ L)

H0(X, E)⊗H0(X, E∨ ⊗ L) H0(X,L)

C.
· ⌟ F

The composition

H0(X, E)⊗H0(X, E∨ ⊗ L) → H0(X,L) · ⌟ F−−→ C
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is equal to the tensor corresponding to CE
F . Therefore, we want to show that

the composition along the dashed path in the diagram is zero. It suffices to
show that the dotted arrow is zero. But it is true by Proposition 3.6.

For a complex variety X, a coherent sheaf E on X, and an ideal sheaf
I ⊆ OX , we denote by I · E the image of the canonical map

I ⊗ E → E .

Proposition 3.18. Let X be a complex proper variety, and let U be a non-
empty open subset of X. Let R be a zero-dimensional subscheme of X with
ideal sheaf IR. Let E be a coherent sheaf on X of rank k. If the support of R
is contained in U , and E is locally free on U , then the length of R is greater
or equal to

h0(X, E)− h0(X, IR · E)
k

.

Proof. We have an exact sequence

0 → IR → OX → OR → 0.

We tensor it with E :
IR ⊗ E → E → E|R → 0. (3.1)

The Sequence (3.1) does not have to be exact on the left, so let us replace the
first term by the image of the map IR ⊗ E → E , getting the exact sequence

0 → IR · E → E → E|R → 0.

After taking global sections (which are left-exact), we get an exact sequence

0 → H0(X, IR · E) → H0(X, E) → H0(R, E|R).

It follows that
h0(R, E|R) ≥ h0(X, E)− h0(X, IR · E).

But on a zero-dimensional scheme, every locally free sheaf trivializes. This
means h0(R, E|R) = h0(R,O⊕k

R ), which is equal to k times the length of R.
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Proof of Theorem 1.17. Take any zero-dimensional scheme R ↪→ X such that
F ∈ ⟨R⟩ and cr(F ) = lengthR. Since we assume that E is locally free on X,
we know that IR · E = IR ⊗ E . We have

lengthR ≥ h0(X, E)− h0(X, IR ⊗ E)
k

≥ h0(X, E)− dimkerCE
F

k
=

dim imCE
F

k

=
rank j(F )

k
,

where the first inequality follows from Proposition 3.18 applied for U = X,
and the second from Proposition 3.16.

Proof of Theorem 1.18. Consider the canonical map OX⊗V ∗
1 ⊗V ∗

2 → OX(1),
which comes from the map j : V ∗

1 ⊗V ∗
2 → W ∗. After rearranging the factors,

it becomes
f : OX ⊗ V ∗

1 → OX(1)⊗ V2.

For every point x ∈ X, the linear map f |x : V ∗
1 → V2 equals j(x), so

dim im f |x is constant. Thus E = im f is a rank k vector bundle. Pick
any finite R ⊆ X of length at most r. Then dimCH

0(R, E|R) ≤ kr. Consider
the C-linear map V ∗

1 → H0(R, E|R), ψ 7→ f(1 ⊗ ψ). Its kernel Z ⊆ V ∗
1 is of

codimension at most kr. Then we get dimC Z
⊥ ≤ kr. Moreover, we claim

j(R) ⊆ P(Z⊥ ⊗ V2).

Indeed, Z is also the kernel of the map p : V ∗
1 → H0(R,OR(1) ⊗ V2) ∼=

H0(R,OR(1))⊗ V2. Thus, if we look at the corresponding linear map

q : V ∗
1 ⊗ V ∗

2 → W ∗ → H0(R,OR(1)),

we get that q(Z ⊗ V ∗
2 ) = 0. But this means that j(R) ⊆ P(Z⊥ ⊗ V2), as

claimed.
Every map in Z⊥ ⊗W has rank at most dimC Z

⊥ ≤ kr, hence we have

⟨j(R)⟩ ⊆ P(Z⊥ ⊗ V2) ⊆ σkr(Seg(PZ⊥ × PV2)).

As a corollary of Theorem 1.17 and main theorems of [19], we get that
equations coming from vector bundles are not enough to define secant vari-
eties of the Veronese embedding in general. The slogan is that cactus varieties
fill up the ambient space much quicker than the secant varieties.
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Corollary 3.19. Let vd : PV → PSdV be the d-th Veronese embedding of
the n-dimensional complex projective space PV . Let r be a positive integer.
For each vector bundle E on PV of rank k, let Zr,E ⊆ PSdV be the vanishing
set of equations coming from (kr + 1)-th minors of E, and let

Zr =
⋂
E

Zr,E .

Suppose either

• n ≥ 6 and r ≥ 14 or

• n = 5 and r ≥ 42 or

• n = 4 and r ≥ 140.

Suppose d ≥ 2r − 1. Then σr(vd(PV )) ⊊ Zr.

Proof. From [19, Proposition 6.2 and Theorem 1.4] for such n, d, r we have
σr(vd(PV )) ⊊ κr(vd(PV )). Since from Theorem 1.17 we know that

κr(vd(PV )) ⊆ Zr,

we get the desired result.

3.5 Examples of equations
The following example is a private communication from Jarosław Buczyński.

Example 3.20. Suppose A,B are 5-dimensional vector spaces. Let PA ×
PB → P(A⊗B) be the Segre embedding, and consider

X = σ2(Seg(PA× PB)) ↪→ P(A⊗B),

so that X is the projectivization of the set of matrices of rank at most 2.
We study the second secant variety of X (not of PA × PB), which is the
projectivization of the set of matrices of rank at most 4. The singular points
of X are the matrices of rank 1. Take j : A ⊗ B → A ⊗ B to be identity.
The highest rank of j(F ) for [F ] ∈ X is 2. Hence Proposition 1.12 for k = 2
and r = 2 says that σ2(X) ⊆ σ4(Seg(PA× PB)), so that the determinant of
A ⊗ B gives a non-trivial equation of σ2(X). But κ2(X) is P(A ⊗ B), and
therefore κ2(X) ⊈ σ4(Seg(PA × PB)). This follows from the fact that for
any projective variety Y the cactus variety κ2(Y ) contains all projectivized
tangent spaces at the points of Y and that the projectivized tangent space
at any singular point of X is P(A⊗B).
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3.5.1 Equations given by coherent sheaves that are not
vector bundles

The following proposition says that vector bundles are not the only sheaves
that can give useful equations. In fact, equations given by other coherent
sheaves have the advantage that they do not necessarily vanish on cactus
varieties (see Remark 5.6). However, such equations are not so widely studied
as the ones given by vector bundles.

Proposition 3.21. Let X be a complex projective variety embedded by the
complete linear system of a line bundle L. Suppose F is a coherent sheaf on
X. Then for every point in x̂ ∈ X̂ we have

rank jF(x̂) ≤ rankF .

Therefore the conditions in Proposition 1.12 hold for k = rankF .

Proof. Let U be a dense open subset of X such that F|U is a locally free
sheaf. We claim that rank jF(x̂) ≤ rankF for points [x̂] ∈ U . Indeed, by
Proposition 3.18 applied to the scheme R = [x̂] ∈ U , we get that

rankF ≥ codimH0(X,F)H
0(X, I[x̂] · F).

But then Proposition 3.16 tells us that this codimension is greater or equal
to rankCF

x̂ = rank jF(x̂), proving the claim.
The set of points x̂ ∈ H0(X,L)∗ such that rank jF(x̂) ≤ rankF is closed,

as it is the inverse image of the affine cone of the variety

σrankF(Seg(PH0(X,F)∗ × PH0(X,L ⊗ F∨)∗))

under the map jF . Hence rank jF(x̂) ≤ rankF for all x̂ ∈ X̂.

3.5.2 Equations given by reflexive sheaves of rank one

The main examples of determinantal equations are catalecticant equations.
These can be either given by line bundles or by other reflexive sheaves of
rank one. In the former case, they give equations of the cactus variety, and
in the latter case, they can give equations of secant varieties which are not
equations of the corresponding cactus variety (i.e. they can overcome the
barriers, see Sections 1.3 and 1.4). Unfortunately, on smooth varieties all
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reflexive sheaves of rank one are line bundles, so in this way we do not get
anything new.

Catalecticant equations can be written down in a simple way. Suppose
XΣ is a toric variety embedded by the complete linear system of a very ample
line bundle O(η). Suppose T is the Cox ring of XΣ. Let ϵ ∈ ClXΣ. Consider
the linear map

⌟ : Tϵ ⊗ T ∗
η → T ∗

η−ϵ

(see Equation (2.6)). We fix bases of Tϵ and T ∗
η−ϵ, and interpret this map as

a matrix with entries in Tη. Then the equations coming from the reflexive
sheaf O(ϵ) are given by the minors of this matrix. Therefore to understand
the equations coming from the reflexive sheaves of rank one is the same as
to understand the apolarity map ⌟ .

The following proposition will be useful in Section 3.6 and Chapter 5.

Proposition 3.22. For any class ϵ ∈ ClXΣ, and any F ∈ T ∗
η we have

H(T/Ann(F ), ϵ) ≤ br(F ) ≤ r(F ).

Moreover, if ϵ ∈ PicXΣ, then for any F ∈ T ∗
η

H(T/Ann(F ), ϵ) ≤ bcr(F ) ≤ cr(F ).

Proof. The first assertion follows from Proposition 3.21. The second assertion
for the cactus rank follows from Theorem 1.17. But Proposition 1.16 implies
that it also works for the border cactus rank.

Example 3.23. If d ≥ 4, then size 4 minors given by O(2) and O(1) cut out
σ3(vd(Pn)) scheme-theoretically. See [64, Chart on page 572].

Example 3.24. If j ≤
(
δ+n−1
n

)
, then size j + 1 minors of O(δ) cut out

a scheme, one of whose irreducible components is σj(v2δ(Pn). This is [57,
Theorem 4.10A].

3.5.3 Equations given by Young flattenings

Example 3.25 (Aronhold invariant). Let V be a 3-dimensional vector space
over C. We consider the third Veronese embedding v3 : PV → PS3V . Take
the linear map ϕ : S3V → (V ⊗ Λ2V ) ⊗ (V ∗ ⊗ V ) given by first embedding
S3V ⊆ V⊗V⊗V , then tensoring with idV ∈ V ∗⊗V , then skew-symmetrizing.
Then the principal Pfaffians of ϕ are (up to scale) equal to the classical
Aronhold invariant, that is the equation of σ3(v3(PV )) ⊆ PS3V , which is a
hypersurface. See [64, Example 1.2.1] for more details.
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We can put Example 3.25 into a more general setting of Young flattenings.
By a partition we mean a non-increasing finite sequence of positive integers.
We denote partitions by Greek letters µ, ν, λ. The group GL(V ) acts on the
Young module SµV . Let X ⊆ SµV be the unique closed orbit of this action.
If we embed SµV into a tensor product of two representations

SµV ⊆ SνV ⊗ SλV ,

we get equations for the cactus varieties κr(X) by Theorem 1.18.
If we go back to Example 3.25, it can be verified that the Aronhold

invariant is given by the inclusion

S3V ⊆ S2,1V ⊗ S2,1V .

Using this method, G. Ottaviani and J.M. Landsberg obtain equations of
secant varieties of the Veronese surface (see [64, Section 4]).

3.5.4 Equations given by locally free sheaves of rank at
least two

An interesting family of equations is given in the master thesis of Adam
Michalik [67, Section 3.3]. He needs the following definition.

Definition 3.26. A presentation of a locally free sheaf E on Pn is a morphism
of vector bundles

pE : L1 → L0

such that L0,L1 are direct sums of line bundles on Pn, and

im pE = E .

Notice that for each d ∈ Z, the map pE induces a morphism of sheaves on
Pn

O(d) → O(d)⊗Hom(L1,L0)

given by
O(d)(U) ∋ s 7→ s⊗ pE |U .

After rearranging the factors, and taking global sections, this gives rise to a
linear map

PE : H0(Pn,L1)⊗H0(Pn,L∨
0 ⊗O(d)) → H0(Pn,O(d)).
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The reason why this definition is useful is the following theorem. We
consider the secant varieties to d-th Veronese embedding of Pn. The following
Theorem is a combination of [64, Proposition 5.1.1] and [67, Theorem 3.3.1]

Theorem 3.27. Suppose that the maps

H0(Pn,L1) → H0(Pn, E), and H0(Pn,L∨
0 ⊗ L) → H0(Pn, E∨ ⊗ L)

are surjective. Then for any positive integer r the (r rank E + 1)-th minors
of PE vanish on σr(vd(Pn)).

Michalik considers a specific vector bundle E on P3 of rank 2, called a
null-correlation bundle, which can be given the following presentation pE :
O5 → O(2)5

0 −x20 x22 x0x1 + x2x3 −x0x2
x20 0 x2x3 − x0x1 x23 −x0x3
−x22 x0x1 − x2x3 0 −x21 x1x2

−x0x1 − x2x3 −x23 x21 0 x1x3
x0x2 x0x3 −x1x2 −x1x3 0

 .

Using this, he proves the following theorem ([67, Theorem 3.3.2]).

Theorem 3.28. Let k, d, r be integers with d, r > 0. Then the (2r + 1)-th
minors of

PE : H0(P3,O(k))5) → H0(P3,Hom(O(k + 2)5,O(d)))

vanish on σr(vd(P3)).

3.6 Bounding the cactus rank of special forms
or spaces

In this section, we state some results concerning upper bounds on the cactus
rank of (divided power) homogenization of forms. Notice that we continue
to use the language of divided powers, as it makes the statements and proofs
cleaner.

Let S, T, S∗, T ∗, Sd, S≤d, etc. and variables αi,j be as in Section 2.6. Recall
the definition of Hilbert function hr given in Definition 3.11.

The following simple lemma will make the proofs easier.
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Lemma 3.29. Let J,K ⊆ T be homogeneous ideals such that Js = Ks for a
multi-index s. If K is generated in degrees at most s, then Jt ⊇ Kt for all
multi-indices t with t ≥ s.

Proof. We have Jt ⊇ (Js)t = (Ks)t = Kt.

We consider the cactus rank and border cactus rank with respect to the
Segre-Veronese embedding of degree d for a multi-index d. This is the map
attached to the linear system |OPT ∗

1,0,...,0×···×PT ∗
0,...,0,1

(d)| or, equivalently, it is
given on points by

vd : PT ∗
1,0,...,0 × · · · × PT ∗

0,...,0,1 → PT ∗
d

([l1], . . . , [lr]) 7→ [l
(d1)
1 · · · l(dk)k ].

Theorem 3.30 (Multigrading). Let e,d be multi-indices with e ≥ d. Let
W ⊆ S∗

≤d be a linear subspace and r = dimC S/Ann(W ).

(i) The cactus rank cr(W hom,e) of W hom,e is not greater than r.

(ii) If we have ei ≥ 2di for 1 ≤ i ≤ k, and W = ⟨f⟩, the border cactus rank
bcr(fhom,e) of fhom,e equals r.

(ii’) If k = 1 (i.e. we are in the case of the Veronese embedding), and we
have e1 ≥ 2d1, then the border cactus rank bcr(W hom,e1) of W hom,e1

equals r.

(iii) If we have ei ≥ 2di + 1 for 1 ≤ i ≤ k, and J ⊆ Ann(W hom,e)
is a homogeneous ideal such that T/J has Hilbert function hr, then
sat(J,B) = Ann(W )hom.

Proof.

(i) We have Ann(W )hom ⊆ Ann(W hom,e) by Lemma 2.33(i). Let R be the
scheme defined by the ideal Ann(W )hom. Since the Hilbert function of
T/Ann(W )hom is r in large enough degrees (Lemma 2.29), the length
of R is equal to r. The ideal Ann(W )hom is saturated (Remark 2.19),
and it defines R. By Theorem 3.9, we have W hom,e ⊆ ⟨ve(R)⟩. Hence,
the cactus rank of W hom,e is at most r.

63



(ii) We have H(T/Ann(f)hom,m) = r for m ≥ d by Lemma 2.29. There-
fore, by Lemma 2.33(ii) we have

H(T/Ann(fhom,e), e− d) = r.

By Proposition 3.22 we get bcr(fhom,e) ≥ r, which together with Point
(i) (and the standard inequality bcr(G) ≤ cr(G) for any G ∈ T ∗

e ) implies
that

bcr(fhom,e) = r.

(ii’) We have H(T/Ann(W )hom,m) = r for m ≥ d1 by Lemma 2.29. There-
fore, by Lemma 2.33(ii) we have

H(T/Ann(W hom,e1), e1 − d1) = r.

Thus there exists no ideal J ⊆ Ann(W hom,e1) such that T/J has an (r−
1)-standard Hilbert function for Pn (see Definition 3.14). By Theorem
3.15 we get bcr(W hom,e1) ≥ r, which together with Point (i) implies
that bcr(W hom,e1) = r.

(iii) Assume that J ⊆ Ann(W hom,e) is such that T/J has Hilbert function
hr. By Lemmas 2.33(ii) and 2.29

H(T/Ann(W hom,e), e− d) = H(T/Ann(W )hom, e− d) = r.

We have H(T/J, e − d) ≤ r, since the Hilbert function of T/J is hr,
but we also have

H(T/J, e− d) ≥ H(T/Ann(W hom,e), e− d) = r.

Thus the quotients T/J and T/Ann(W hom,e) have the same Hilbert
function r at e− d and J ⊆ Ann(W hom,e), hence

Je−d = Ann(W hom,e)e−d.

In particular, we have

Je−d = Ann(W hom,e)e−d = (Ann(W )hom)e−d.

Since by Lemma 2.28 the ideal Ann(W )hom is generated in degrees
smaller or equal to (d1 + 1, . . . , dk + 1), it follows from Lemma 3.29
that Jm ⊇ (Ann(W )hom)m for every m ≥ e− d.
But ideals J and Ann(W )hom have the same Hilbert function for large
enough degree, so they agree in large enough degree. Hence we have
sat(J,B) = sat(Ann(W )hom, B) = Ann(W )hom.
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In the case when W = ⟨f⟩, and k = 1 (so that we consider the Veronese
embedding), we get stronger results. They originally appeared in [47, Section
4]. We write T = C[α0, . . . , αn] and T ∗ = Cdp[x0, . . . , xn]. Now α0 is the
additional variable, with respect to which we homogenize.

Theorem 3.31 (Standard grading, polynomial). Let f = fd + . . . + f0 ∈
S∗ = Cdp[x1, ..., xn] be a degree d ≥ 2 polynomial, r = dimC S/Ann(f). For
an integer e ≥ d, we have the following:

(i) The cactus rank cr(fhom,e) of fhom,e is not greater than r.

(ii) If e ≥ 2d, the border cactus rank bcr(fhom,e) of fhom,e equals r. More-
over, the same is true for e = 2d − 1 if we assume further that fd is
not a divided power of a linear form.

(iii) Assume that fd is not a divided power of a linear form. If e ≥ 2d
and J ⊆ Ann(fhom,e) is a homogeneous ideal such that T/J has Hilbert
function hr, then sat(J,B) = Ann(f)hom. Moreover, the same is true
for e = 2d− 1 if we assume further that r > 2d.

Proof.

(i) It follows directly from Theorem 3.30(i).

(ii) If e ≥ 2d, then the claim follows from Theorem 3.30(ii).

Suppose that e = 2d − 1 and fd is not a power of a linear form. If
H(T/Ann(fhom,e), d) = r, then we get the inequality

bcr(fhom,e) ≥ r

by Proposition 3.22. Together with Point (i), we get the desired equal-
ity. Suppose that

H(T/Ann(fhom,e), d) ̸= r. (3.2)

From Lemma 2.34 it follows that Ann(f)hom is generated in degrees at
most d. Then Equation (3.2) and Lemma 2.35 together imply that

H(T/Ann(fhom,e), d) = r − 1

and Ann(fhom,e) has no minimal generator of degree greater than d.
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We prove that there is no homogeneous ideal J ⊆ Ann(fhom,e) such that
T/J has an (r − 1)-standard Hilbert function (see Definition 3.14).
Assume that J is such an ideal. Then we have Jd = Ann(fhom,e)d
since H(T/Ann(fhom,e), d) = r − 1 = H(T/J, d). Therefore for every
m ≥ d we have Jm ⊇ Ann(fhom,e)m, by Lemma 3.29. This gives a
contradiction since H(T/Ann(fhom,e), t) = 0 for t≫ 0.

From Theorem 3.15 it follows that bcr(fhom,e) ≥ r and from Point (i)
we have an equality.

(iii) Suppose that J ⊆ Ann(fhom,e) is such that T/J has Hilbert function
hr. We consider the following four cases:

(I) e ≥ 2d;

(II) e = 2d− 1 and H(T/Ann(fhom,e), d) = r;

(III) e = 2d− 1, H(T/Ann(fhom,e), d) = r − 1 and H(T/J, d) = r − 1;

(IV) e = 2d− 1, H(T/Ann(fhom,e), d) = r − 1, H(T/J, d) = r.

We explain that these are the only possible cases. Suppose that e =
2d− 1 and

H(T/Ann(fhom,e), d) ̸= r.

Then
H(T/Ann(fhom,e), d) = r − 1

by Lemma 2.35. It suffices to show that if H(T/Ann(fhom,e), d) = r−1,
then H(T/J, d) ∈ {r−1, r}. This holds since T/J has Hilbert function
hr and J ⊆ Ann(fhom,e).

We prove that sat(J,B) = Ann(f)hom in each case.

(I) By Lemma 2.33(ii) and Lemma 2.29

H(T/Ann(fhom,e), e− d) = H(T/Ann(f)hom, e− d) = r.

We have H(T/J, e − d) ≤ r, since the Hilbert function of T/J is
hr, but we also have

H(T/J, e− d) ≥ H(T/Ann(fhom,e), e− d) = r.
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Thus the quotients T/J and T/Ann(fhom,e) have the same Hilbert
function r at e− d and J ⊆ Ann(fhom,e), hence

Je−d = Ann(fhom,e)e−d = (Ann(f)hom)e−d.

Since Ann(f)hom is generated in degrees smaller or equal d ≤
e − d, by Lemma 2.34, it follows from Lemma 3.29 that Jm ⊇
(Ann(f)hom)m form ≥ e−d. The quotients T/J and T/Ann(f)hom
have the same Hilbert polynomial. Hence we have sat(J,B) =
sat(Ann(f)hom, B) = Ann(f)hom.

(II) We know that both ideals J and Ann(f)hom are contained in
Ann(fhom,e), and the Hilbert function of the quotients T/J and
T/Ann(f)hom is bounded from above by r. Hence, we have

Jd = Ann(fhom,e)d = (Ann(f)hom)d.

The ideal Ann(f)hom is generated in degrees at most d by Lemma
2.34. Thus from Lemma 3.29 we have Jm ⊇ (Ann(f)hom)m for
m ≥ d. Ideals J and Ann(f)hom have the same Hilbert polynomial,
therefore sat(J,B) = sat(Ann(f)hom, B) = Ann(f)hom.

(III) We have Jd = Ann(fhom,e)d and the ideal Ann(fhom,e) is generated
in degrees at most d by Lemmas 2.35 and 2.34. Thus for m ≥ d we
get Jm ⊇ Ann(fhom,e)m, by Lemma 3.29. This is a contradiction,
as the Hilbert polynomial of T/J is nonzero.

(IV) The ideal J has a generator of the form αd0 + ρ where ρ ∈ Td has
degree smaller than d with respect to α0 (again by Lemma 2.35).
Since codimAnn(fhom,e)d Jd = 1 we have

codim(Ann(fhom,e)c)d(J
c)d ≤ 1.

Here Kc denotes K ∩ S for any ideal K ⊆ T . We shall consider
I = Ann(fd). We claim that Id ⊆ (Ann(fhom,e)c)d. To justify
the claim, it suffices to show that for every θ ∈ Sd such that
θ ⌟ fd = 0, we have θ ⌟ fhom,e = 0. But the form θ annihilates
the form x

(d−1)
0 fd, since θ ⌟ fd = 0. It also annihilates any form

x
(2d−1−i)
0 fi for 1 ≤ i ≤ d − 1, as deg θ > deg fi. This finishes the

proof of the claim Id ⊆ (Ann(fhom,e)c)d.
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We also have H(S/I, d) = 1. Therefore we get

H(S/J c, d) ≤ H(S/Ann(fhom,e)c, d) + 1 ≤ H(S/I, d) + 1 = 2.

Since d ≥ 2, it follows from the Macaulay’s bound ([17], Theorem
4.2.10) that for m ≥ d we have H(S/J c,m) ≤ 2. Hence

H(T/J,m) ≤ H(S/J c,m) + . . .+H(S/J c,m− (d− 1)) ≤ 2d < r

for m ≥ 2d − 1. We used here Lemma 2.36. This gives a contra-
diction since the Hilbert polynomial of T/J is equal to r.

The following examples show that the assumptions of Theorem 3.31 are
in general as sharp as possible.

Example 3.32. Let S = Cdp[x1, x2], f = x
(2)
1 +x1x2 and assume e = 2d−2 =

2. Then r = 4 and Ann(fhom,2) = (α0, α
2
1 − α1α2, α

2
2). Consider the ideal

J = (α2
0, α0α1, α

2
1 − α1α2). Then C[α0, α1, α2]/J has Hilbert function h3.

Therefore, the assumption e ≥ 2d−1 in Theorem 3.31 (ii) cannot be weakened
in general.

Example 3.33. As in Example 3.32, let S = Cdp[x1, x2] and f = x
(2)
1 +x1x2.

Then r = 4 = 2d. If e = 3, then Ann(fhom,3) = (α2
0, α

2
1−α1α2, α

2
2). The ideal

J = (α2
0, α

2
1 −α1α2) is saturated and C[α0, α1, α2]/J has Hilbert function h4.

However, J does not contain α2
2 ∈ Ann(f)hom. Therefore, the assumption

r > 2d in Theorem 3.31 (iii) cannot be skipped.

Example 3.34. Let S = Cdp[x1, x2, x3] and f = x1x2x3. Then r = 8 >
6 = 2d1. If e = 2d − 2 = 4, then Ann(fhom,4) = (α2

0, α
2
1, α

2
2, α

2
3). Consider

the ideal J = (α3
0, α

2
0α1, α

2
1, α

2
0α2, α

2
2, α

2
0α3). Then C[α0, α1, α2, α3]/J has

Hilbert function h8 and sat(J,B) = (α2
0, α

2
1, α

2
2) ̸= Ann(f)hom. Therefore,

the assumption e ≥ 2d − 1 in Theorem 3.31 (iii) cannot be weakened in
general.

We recall some notation from Section 3.3 which will be used in the proof
of the following lemma. Let HilbhrT denote the multigraded Hilbert scheme
associated with the polynomial ring T (with the standard Z-grading) and the
function hr, as defined in Definition 3.11. Let Slipr,PT1 be the closure in HilbhrT
of points corresponding to saturated ideals of r points. Let Hilbr(Pn) denote
the Hilbert scheme of r points on Pn and Hilbsmr (Pn) denote the closure of
the set of smooth schemes.
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Lemma 3.35. Let d, e be positive integers with e ≥ d. Let W ⊆ S∗
≤d be

a linear subspace. Let r = dimC S/Ann(W ). If S/Ann(W ) is smoothable,
then the border rank of W hom,e is at most r.

Proof. Observe that Slipr,PT1 surjects onto Hilbsmr (Pn) under the natural map

HilbhrT → Hilbr(Pn)

given on closed points by [I] 7→ [ProjT/I]. Thus there is an ideal [J ] ∈
Slipr,PT1 with sat(J,B) = Ann(W )hom. Since Ann(W )hom ⊆ Ann(W hom,e) by
Lemma 2.33(i). We have J ⊆ Ann(W hom,e) and hence

[W hom,e] ∈ σr,dim(Whom,e)(vd(PT1))

by Theorem 3.12.

3.7 Bounding the cactus rank of any forms
In this section, originating from [46], we use apolarity and we improve the
bound for the cactus rank given in [7]. We prove Proposition 1.19 from the
Introduction. However, first we restate it in the language from Chapters 2
and 3.

Let h1, . . . , hk be the basis dual to the standard basis of Rk. Let l = c1h1+
· · ·+ ckhk be a non-zero linear form on Rk, where c1, . . . , ck are nonnegative
real numbers. Let b be a positive real number.

Proposition 3.36. Let

Pn1 × · · · × Pnk
vd−→ P(T ∗

d)

be the Segre-Veronese embedding. Let F ∈ T ∗
d be a non-zero form. Then

cr(F ) ≤
∑

(e1,...,ek)|
l(e1,...,ek)≤b
0≤ei≤di

(
n1 − 1 + e1

e1

)
· · ·
(
nk − 1 + ek

ek

)

+
∑

(e1,...,ek)|
l(e1,...,ek)>b
0≤ei≤di

(
n1 − 1 + d1 − e1

d1 − e1

)
· · ·
(
nk − 1 + dk − ek

dk − ek

)
.
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Proof. Let f be the unique polynomial in S∗
≤d such that fhom,d = F . Such

an f exists, because we work over C, which has characteristic 0. We get
that f is a polynomial in n1 variables of degree (1, 0, . . . , 0), n2 variables of
degree (0, 1, 0, . . . , 0), . . . , and nk variables of degree (0, . . . , 0, 1). By Lemma
2.33(i), we get

cr(F ) ≤ dimC S/Ann(f).

Therefore, we need to bound from above

dimC S/Ann(f).

This is equal to the dimension of the space of all partial derivatives of f . We
do this just as in [9, Proof of Theorem 3]. The space of all multihomogeneous
polynomials of degree (e1, . . . , ek) in n1+n2+· · ·+nk variables has dimension(

n1 − 1 + e1
e1

)
· · ·
(
nk − 1 + ek

ek

)
.

We bound the linear span of partials θ ⌟ f , where θ is a form in S of degree
e satisfying l(d− e) > b, by

dimC
⊕

e:l(d−e)>b
0≤ei≤di

Se = dimC
⊕

e:l(e)>b
0≤ei≤di

Sd−e.

We bound the space of the other partials by the dimension of the space of
all polynomials inside ⊕

e:l(e)≤b
0≤ei≤di

Se.

Hence,

cr(F ) ≤
∑

(e1,...,ek)|
l(e1,...,ek)≤b
0≤ei≤di

(
n1 − 1 + e1

e1

)
· · ·
(
nk − 1 + ek

ek

)

+
∑

(e1,...,ek)|
l(e1,...,ek)>b
0≤ei≤di

(
n1 − 1 + d1 − e1

d1 − e1

)
· · ·
(
nk − 1 + dk − ek

dk − ek

)
.
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This is stronger than the bound in [7], since we take into account the
grading by Zk.

Example 3.37. Consider the Segre embedding

Pn × · · · × Pn︸ ︷︷ ︸
k times

↪→ P(Cn+1 ⊗ · · · ⊗ Cn+1),

which is given by the line bundle O(1, . . . , 1). Then for any F the linear form
h1 + · · ·+ hk and b = k

2
give the bound

cr(F ) ≤ 1 + kn+

(
k

2

)
n2 + · · ·+

(
k

k/2

)
nk/2

+

(
k

k/2− 1

)
nk/2−1 + · · ·+

(
k

2

)
n2 + kn+ 1

for k even, and

cr(F ) ≤ 1 + kn+

(
k

2

)
n2 + · · ·+

(
k

⌊k/2⌋

)
n⌊k/2⌋

+

(
k

⌊k/2⌋

)
n⌊k/2⌋ + · · ·+

(
k

2

)
n2 + kn+ 1

for k odd.

Example 3.38. Consider the Segre-Veronese embedding

vd,d : Pn × P1 → P(SymdCn+1 ⊗ SymdC2).

For any F the linear form h1 and b = d/2 give the bound

cr(F ) ≤ 2(d+ 1)

(
n+ d−1

2

n

)
for d odd, and

cr(F ) ≤ (d+ 1)

((
n+ d−2

2

n

)
+

(
n+ d

2

n

))
(3.3)

for d even.
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Example 3.39. Consider the Segre-Veronese embedding

v3,3,2 : P3 × P3 × P3 → P(Sym3C4 ⊗ Sym3C4 ⊗ Sym2C4).

For any F the linear form 2h1 + 2h2 + 3h3 and b = 9 give the bound

cr(F ) ≤ 780,

which is better than the bound 810 given by h1 + h2 + h3 and b = 4.
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Chapter 4

Applications of Hilbert schemes

In this chapter we state some properties of the Hilbert scheme of points
Hilbp(An), and then look at a few applications of Hilbert schemes. These
include bounding the number of components of the corresponding cactus va-
rieties (Section 4.2), proving that mapping a polynomial to its apolar algebra
is a morphism of schemes under certain assumptions (Section 4.3), and ana-
lyzing sets of cubics or subspaces with a given Hilbert function (Sections 4.4,
4.5).

A simple intuition what a Hilbert scheme of points is, is given in the
beginning of Section 1.4. For precise definitions and a construction, see [69].

Throughout the chapter, we work over C, except in Section 4.3, where we
only need an algebraically closed field k of any characteristic.

4.1 Description of reducible Hilbert schemes
First we give a theorem of Casnati, Jelisiejew and Notari describing when
HilbGorr (An) is reducible for r ≤ 14. Recall that HilbGorr (An) ⊆ Hilbr(An) is
the open subset of Gorenstein subschemes (see Definition 1.20).

Remark 4.1. The Hilbert scheme is defined as a scheme representing a functor
(see [69]), so it has a scheme structure. In particular, we consider it with
Zariski topology. That is why in Theorems 4.2 and 4.3 we can take the
closure and talk about irreducibility.

Theorem 4.2 (Casnati, Jelisiejew, Notari).

(i) the scheme HilbGorr (An) is irreducible for r < 14 and any n ∈ N,
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(ii) the scheme HilbGor14 (An) is reducible if and only if n ≥ 6,

(iii) if the scheme HilbGor14 (An) is reducible, it has two irreducible compo-
nents: HilbGor,sm14 (An), the closure of the set of smooth schemes, and
H1661(An), the closure of the set of local algebras with local Hilbert func-
tion (1, 6, 6, 1).

Proof. See [30, Theorems A and B] for Parts (i) and (ii). Part (iii) follows
from [30, Theorem 6.17 and Lemma 6.19]. For a precise proof, see [30, p.
1567].

This allows us to distinguish between secant and cactus varieties, in other
words, to overcome the barriers of determinantal methods. We do this in
Chapter 6, in particular in Theorem 6.1.

There is a similar classification for the whole Hilbert scheme.

Theorem 4.3 ([29, Theorem 1.1]).

(i) the scheme Hilbr(An) is irreducible for r < 8 and any n ∈ N,

(ii) the scheme Hilb8(An) is reducible if and only if n ≥ 4,

(iii) if the scheme Hilb8(An) is reducible, it has two irreducible components
Hilbsm8 (An), the closure of the set of smooth schemes, and H143(An) the
closure of the set of local algebras with local Hilbert function (1, 4, 3).

This result allows us to distinguish between the Grassmann secant and
cactus varieties, in other words, to overcome the barriers of determinantal
methods. We do this in Chapter 6, in particular in Theorem 6.3. See Remark
6.19 for the reason why this result concerns Grassmann secant varieties, not
usual secant varieties.

Let n = (n1, . . . , nk) be a multi-index of positive integers, and define
n = n1 + · · ·+ nk. We show that the number of components of HilbGorr (An)
and HilbGorr (Pn1 × · · · ×Pnk) is the same and that the corresponding compo-
nents have the same dimension. We also prove an analogous statement for
Hilbr(An) and Hilbr(Pn1 × · · · × Pnk). Since the proofs of these statements
are the same, we do two proofs in one. We introduce the notation Hilb∗r(X),
where ∗ ∈ {∅, Gor}. The scheme Hilb∅r(X) := Hilbr(X).

The standard inclusion An ⊆ Pn1 × · · · × Pnk of an open subset induces
an inclusion of an open subset

i : Hilb∗r(An) ↪→ Hilb∗r(Pn1 × · · · × Pnk)
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for ∗ ∈ {∅, Gor}.

Proposition 4.4. For any positive integers r, n, and ∗ ∈ {∅, Gor} the inclu-
sion i induces a bijection between irreducible components of Hilb∗r(An) and
Hilb∗r(Pn1 × · · · × Pnk). In particular, the corresponding irreducible compo-
nents have the same dimension.

Proof. Let G = GL(n1 + 1)× · · · ×GL(nk + 1), and consider the morphism

p : G×Hilb∗r(An) → Hilb∗r(Pn1 × · · · × Pnk),

induced by the standard action of G on Pn1 × · · · × Pnk . We claim that
p is surjective. The claim follows from the fact that for each set of points
x1, . . . , xr on Pn1 × · · · × Pnk , and for every i with 1 ≤ i ≤ k, there exists
a hyperplane in Pni that does not pass through any of the projections of
x1, . . . , xr on the i-th factor (this follows from the dual statement which says
that for any arrangement of hyperplanes there exists a point not passing
through any of them). The action of G allows us to move those hyperplanes
so that their complements become the desired distinguished open affines.

Take an irreducible component Z of Hilb∗r(Pn1 ×· · ·×Pnk). Then, since p
is surjective, there exists an irreducible component W of G×Hilb∗r(An) such
that p(W ) = Z. But all irreducible components of G×Hilb∗r(An) are of the
form G ×W ′, where W ′ is an irreducible component of Hilb∗r(An). Hence,
W = G×W ′ for some irreducible component W ′ of Hilb∗r(An). Since

Hilb∗r(An) ⊆ Hilb∗r(Pn1 × · · · × Pnk)

is an open subset, the set W ′ is an irreducible component of Hilb∗r(Pn1×· · ·×
Pnk). But W ′ ⊆ p(W ) = Z, so Z = W ′ is an irreducible component coming
from Hilb∗r(An).

Therefore, we proved that Hilb∗r(An) is an open dense subset of the scheme
Hilb∗r(Pn1 × · · · × Pnk). The claim on dimension follows.

Proposition 4.4 allows us to use the notation H1661(Pn1 × · · · × Pnk) and
H143(Pn) for the irreducible components of HilbGor14 (Pn1 × · · · × Pnk) and
Hilb8(Pn), respectively, whose general element is a non-smoothable scheme.

In order to perform the last step of the algorithms in Theorems 6.6 and
6.7 we need to know the dimension of the tangent space to H1661(Pn) and
H143(Pn) at a general point.
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Lemma 4.5. Let [R] ∈ H1661 ⊆ HilbGor14 (Pn) be a non-smoothable subscheme.
Then the dimension of the tangent space dimC T[R]HilbGor14 (Pn) equals 14n−8.

Proof. Let R′ ⊆ P6 be a subscheme abstractly isomorphic to R. From [31,
Lem. 2.3] we have

dimC T[R]HilbGor14 (Pn) = 14n+ T[R′]HilbGor14 (P6)− 84.

From [24, Theorem 1.1] R′ is non-smoothable, hence dimT[R′]HilbGor14 (P6) =
76 by [59, Claim 3].

Lemma 4.6. Let n ≥ 4 and [R] ∈ H143 ⊆ Hilb8(Pn) be a non-smoothable
subscheme. Then the dimension of the tangent space dimC T[R]Hilb8(Pn)
equals 8n− 7.

Proof. Let R′ ⊆ P4 be a subscheme abstractly isomorphic to R. From [31,
Lem. 2.3] we have

dimC T[R]Hilb8(Pn) = 8n+ T[R′]Hilb8(P4)− 32.

From [24, Theorem 1.1] R′ is non-smoothable, hence dimT[R′]Hilb8(P4) = 25
by [29, Theorem 1.3 and the comment above].

4.2 Components of cactus varieties
We examine the fourteenth cactus variety of the Segre-Veronese embedding.
As we will see, it has at most two components.

Let n = (n1, . . . , nk) be a multi-index of positive integers and define
n = n1 + · · ·+ nk. Let d = (d1, . . . , dk) be a multi-index of positive integers.
For the sake of simplicity, in this section we use the notation

Symd = Symd1 Cn1+1 ⊗ · · · ⊗ Symdk Cnk+1,
Pn = Pn1 × · · · × Pnk .

Recall that the Segre-Veronese embedding is the map attached to the linear
system |OPn(d)|. Equivalently, it is given on points by

vd : Pn → P Symd ,

([l1], . . . , [lk]) 7→ [ld11 · · · ldkk ].
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Consider the following rational map φ, which assigns to a scheme R its
projective linear span ⟨vd(R)⟩

φ : HilbGor14 (Pn) Gr(14, Symd).

Assume that each di ≥ 2, and n ≥ 6, so that dimSymd ≥ 14. Let U ⊆
HilbGor14 (Pn) be a dense open subset on which φ is regular.

Consider the projectivized universal bundle PS over Gr(14, Symd), given
as a set by

PS = {([P ], [p]) ∈ Gr(14, Symd)× P(Symd)) | p ∈ P},

together with the inclusion i : PS ↪→ Gr(14, Symd)× P(Symd). We pull the
commutative diagram

PS Gr(14, Symd)× P(Symd)

Gr(14, Symd)

i

π

pr1

back along φ to U , getting the commutative diagram

φ∗(PS) U × P(Symd)

U .

φ∗i

φ∗π

pr1

Let Y be the closure of φ∗(PS) inside HilbGor14 (Pn) × P(Symd). The scheme
Y has the following decomposition into irreducible components

Y = Y1 ∪ Y2, (4.1)

corresponding to two irreducible components of HilbGor14 (Pn), the schemes
HilbGor,sm14 (Pn) and H1661(Pn), respectively. For the description of irreducible
components of HilbGor14 (Pn), see Theorem 4.2 and Proposition 4.4.

Then

κ14(vd(Pn)) = pr2(Y ) (4.2)
σ14(vd(Pn)) = pr2(Y1), and we define (4.3)
η14(vd(Pn)) := pr2(Y2). (4.4)
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In Proposition 4.7 we bound from above the dimension of the irreducible
subset η14(vd(Pn)) by 14n + 5. Later, in the proof of Theorem 6.2, we will
identify a (14n + 5)-dimensional subset of κ14(vd(Pn)) \ σ14(vd(Pn)). It will
allow us to conclude that the closure of this subset is η14(vd(Pn)).

Proposition 4.7. Dimension of η14(vd(Pn)) is less or equal 14n+ 5.

Proof. We have the following commutative diagram

P(Symd) ⊇ σ ∪ η Y1 ∪ Y2 PS

HilbGor14 (Pn) HilbGor,sm14 (Pn) ∪H1661(Pn) Gr(14, Symd)

χ

where σ and η denote σ14(vd(Pn)) and η14(vd(Pn)) respectively, and χ : Y1 ∪
Y2 → HilbGor14 (Pn) is the projection. Then dim η14(vd(Pn)) ≤ dim(Y2) = m+
13, where m = dimH1661(Pn) and 13 is the dimension of the general fiber of
the map χ|Y2 : Y2 → H1661(Pn). It follows from Theorem 4.2 and Proposition
4.4, that m = 14n− 8 and therefore dim η14(vd(Pn)) ≤ 14n+ 5.

Now we do a similar thing for the Grassmann secant and cactus varieties.
We assume that k = 1 and we consider the d-th Veronese embedding vd.

For d ≥ 2 and n ≥ 4 we will define a subset η8,3(vd(Pn)) of the Grassmann
cactus variety κ8,3(vd(Pn)). Later, in Theorem 6.3, it will be shown that for
d ≥ 5

κ8,3(vd(Pn)) = σ8,3(vd(Pn)) ∪ η8,3(vd(Pn))

is the decomposition into irreducible components.
Assume that d ≥ 2 and n ≥ 4, so that dimSymdCn+1 > 8. Consider the

following rational map φ, which assigns to a scheme R its projective linear
span ⟨vd(R)⟩

φ : Hilb8(Pn) Gr(8, SymdCn+1).

Let U ⊆ Hilb8(Pn) be a dense open subset on which φ is regular. Consider the
projectivized incidence bundle PS over the Grassmannian Gr(8, SymdCn+1),
given as a set by

PS = {([V1], [V2]) ∈ Gr(8, SymdCn+1)×Gr(3, SymdCn+1)|V2 ⊆ V1},
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together with the inclusion i : PS ↪→ Gr(8, SymdCn+1) × Gr(3, SymdCn+1).
We pull the commutative diagram

PS Gr(8, SymdCn+1)×Gr(3, SymdCn+1)

Gr(8, SymdCn+1)

i

π

pr1

back along φ to U , getting the commutative diagram

φ∗(PS) U ×Gr(3, SymdCn+1)

U .

φ∗i

φ∗π

pr1

Let Y be the closure of φ∗(PS) inside Hilb8(Pn) × Gr(3, SymdCn+1). The
scheme Y has two irreducible components, Y1 and Y2, corresponding to two
irreducible components of Hilb8(Pn), the schemes Hilbsm8 (Pn) and H143(Pn),
respectively, see Theorem 4.3 and Proposition 4.4. Then for d ≥ 2

κ8,3(vd(Pn)) = pr2(Y ) (4.5)
σ8,3(vd(Pn)) = pr2(Y1), and we define (4.6)
η8,3(vd(Pn)) := pr2(Y2). (4.7)

In the following proposition we bound from above the dimension of the
irreducible subset η8,3(vd(Pn)) by 8n + 8. Later, in Theorem 6.3, we will
identify a (8n+ 8)-dimensional subset of κ8,3(vd(Pn)) \ σ8,3(vd(Pn)). We will
be able to conclude that the closure of this subset is η8,3(vd(Pn)).
Proposition 4.8. Dimension of η8,3(vd(Pn)) is less or equal 8n+ 8.

Proof. We have the following commutative diagram

Gr(3, SymdCn+1) ⊇ σ ∪ η Y1 ∪ Y2 PS

Hilb8(Pn) Hilbsm8 (Pn) ∪H143(Pn) Gr(8, SymdCn+1),

χ

where σ and η denote σ8,3(vd(Pn)) and η8,3(vd(Pn)) respectively, and χ : Y1 ∪
Y2 → Hilb8(Pn) is the projection. Then dim η8,3(vd(Pn)) ≤ dim(Y2) = m+15,
where m = dimH143 and 15 is the dimension of the general fiber of the map
χ|Y2 : Y2 → H143. It follows from Theorem 4.3 and Proposition 4.4, that
m = 8n− 7 and therefore dim η8,3(vd(Pn)) ≤ 8n+ 8.
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4.3 Construction of a morphism to the Hilbert
scheme

Let k be an algebraically closed field, S = k[α1, α2, ..., αn] be a polynomial
ring and consider its graded dual S∗ = kdp[x1, x2, ..., xn]. In this section
(coming from [47, Appendix A]) we prove the following theorem, which is
used in Chapter 6.

Theorem 4.9. Let l,m, r be positive integers. Consider a locally closed
reduced subscheme E of Gr(l, S∗

≤m) whose closed points satisfy

E(k) ⊆ {[W ] ∈ Gr(l, S∗
≤m) | SpecS/Ann(W ) has length r}.

The natural map from E to the Hilbert scheme of r points in An, given on
closed points by [W ] 7→ [SpecS/Ann(W )], is a morphism of k-schemes.

For a k-algebra A we define S∗
A := S∗ ⊗k A and SA = S ⊗k A. Given

a k-algebra homomorphism φ : A → B we will denote by the same letter
the induced homomorphisms SA → SB and S∗

A → S∗
B. The action ⌟ :

S × S∗ → S∗ as defined in Equation (2.6) extends A-linearly to an action
⌟ : SA × S∗

A → S∗
A. Moreover, any homomorphism of algebras φ : A→ B is

compatible with the ⌟ action (see [13, Page III.158]). For any A-submodule
W of S∗

A, by SA ⌟W we denote the SA-submodule of S∗
A generated by W .

Given t in SpecA we denote by k(t) the residue field of t on SpecA and we
denote by ιt the natural morphism from A to k(t).

Lemma 4.10. Let φ : A → B be a morphism of k-algebras and W ⊆ S∗
A be

an A-submodule. Then the natural map

(SA ⌟W )⊗A B → S∗
B

surjects onto SB ⌟ φ(W ).

Proof. Let θ ∈ SA, f ∈ W and b ∈ B. Then (θ ⌟ f) ⊗A b 7→ b(φ(θ) ⌟ φ(f))
so the image of (SA ⌟W ) ⊗A B is contained in SB ⌟ φ(W ). Let η ⌟ φ(f) ∈
SB ⌟ φ(W ) with η =

∑
u buα

u for some f ∈ W and bu ∈ B. Then∑
u

(αu ⌟ f)⊗ bu 7→ (η ⌟ φ(f)).
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In some special cases, the surjection from Lemma 4.10 is in fact an iso-
morphism.

Corollary 4.11. If S∗
A/(SA ⌟W ) is a flat A-module or if B is a flat A-module

(for instance if B = Ap), then the map

(SA ⌟W )⊗A B → SB ⌟ φ(W )

from Lemma 4.10 is an isomorphism.

Proof. By Lemma 4.10 it is enough to show that the natural map

(SA ⌟W )⊗A B → S∗
B

is injective. This follows from the Tor-exact sequence given by application
of the functor −⊗A B to the short exact sequence

0 → (SA ⌟W ) → S∗
A → S∗

A/(SA ⌟W ) → 0.

Lemma 4.12. Let A be a k-algebra and W be a finite A-submodule of S∗
A.

Then HomA(SA ⌟W,A) ≃ SA/Ann(W ).

Proof. Let N = SA ⌟W and define a homomorphism ψA by

ψA : SA → HomA(N,A)

(ψA(θ))(f) = (θ ⌟ f)0.

We have a factorization of ψA through SA/Ann(W ).
We show that ker(ψA) ⊆ Ann(W ). Let θ ∈ ker(ψA) and f ∈ W . Let

θ ⌟ f = hd + . . . + h0 for a positive integer d. Then for every j ∈ {0, . . . , d}
and η ∈ (SA)j we have 0 = (θ ⌟ (η ⌟ f))0 = η ⌟ hj. Thus hj = 0 and hence
θ ∈ Ann(f). Since f ∈ W was arbitrary, we have θ ∈ Ann(W ).

We first assume that (A,m) is a local ring. Assume that g1, . . . , gs is a
minimal set of generators of the A-module N = SA ⌟W . Let M be the set of
divided power monomials in S∗

A of degree at most n0 = max{deg(f)|f ∈ W}.
Form a matrix M over A with rows corresponding to g1, . . . , gs and entries
equal to coordinates of gi in the basis M. Then there exists an invertible
s × s minor of M . Indeed, otherwise all minors are in the maximal ideal of
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A and therefore g1, . . . , gs ∈ N/mN are A/m-linearly dependent. Thus, by
Nakayama’s lemma, g1, . . . , gs is not a minimal set of generators.

We proceed to showing that ψA is surjective (for the special case when
A is local). Let φ ∈ HomA(N,A) and let ai = φ(gi) for i = 1, . . . , s. If
we write θ ∈ SA as a vector v in the basis dual to M, then ψA(θ)(gi) is
the i-th coordinate of the vector M · v. Therefore, there exists θ ∈ SA with
ψA(θ) = φ, as long as there exists v with M · v = [a1, . . . , as]

T . Therefore, it
is enough to show that M gives a surjective morphism A#M → As. Let M ′

be a s × s submatrix of M with invertible determinant. We will show that
M ′ defines a surjective morphism As → As. Let M ′D be the adjugate matrix
of M ′. Given w ∈ As we have w =M ′ · v for v = 1

detM ′M
′D ·w.

Let A be an arbitrary k-algebra and Q be the cokernel of ψA. We claim
that Q = 0. It is enough to show that Qp = 0 for all p ∈ SpecA. Let
l : A → Ap be the localization. Then Np ≃ SAp ⌟ l(W ) ≃ SAp ⌟Wp (the
first isomorphism follows from Corollary 4.11). Therefore, by the local case
considered before, it is enough to show that (ψA)p = ψAp .

Using isomorphisms (SA)p ≃ SAp , SAp ⌟Wp ≃ Np and (HomA(N,A))p ≃
HomAp(Np, Ap) we can write for θ ∈ SA, f ∈ N , a, b ∈ A \ p:(

ψAp

(θ
a

))(f
b

)
=
(θ
a
⌟
f

b

)
0

and (
(ψA)p

(θ
a

))(f
b

)
=
ψA(θ)

a

(f
b

)
=

(
ψA(θ)

)
(f)

ab
=

(θ ⌟ f)0
ab

.

The following lemma is a slight modification of [59, Proposition 2.12].
Recall for t a point of SpecA, we denote by ιt the natural map S∗

A → S∗
k(t).

Lemma 4.13. Let l,m ∈ Z≥1, let A be a Noetherian k-algebra, and let
[W ] be a (SpecA)-point of Gr(l, S∗

≤m), i.e. W is an A-submodule of (S∗
A)≤m

such that the quotient module is locally free of rank dimk S
∗
≤m − l. Define

aW : Spec(SA/Ann(W )) → SpecA to be the natural map. Then the following
holds:

(i) If A is a reduced finitely generated k-algebra and

lengthSk(t)/Ann(ιt(W ))
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is independent of the choice of a closed point t ∈ SpecA then

S∗
A/(SA ⌟W ) and SA/Ann(W )

are flat A-modules.

(ii) If aW is such that S∗
A/(SA ⌟W ) is a flat A-module, then its base change

via any homomorphism between Noetherian rings φ : A → B is equal
to

Spec(SB/Ann(φ(W ))) → SpecB.

In particular, the fiber of aW over t ∈ SpecA is naturally

SpecSk(t)/Ann(ιt(W )).

Proof. (i) First we prove that S∗
A/(SA ⌟W ) is a flat A-module. We know

that
S∗
A
∼= (S∗

A)≤m ⊕ (S∗
A)>m.

Since (S∗
A)>m is a free A-module, it suffices to show that

(S∗
A)≤m/(SA ⌟W )

is A-flat. Denote this module by P .

The module P is finitely generated, hence it is flat if and only if it is
locally free. Now A is reduced and finitely generated, so P is A-flat if
and only if it has locally constant rank: dimk(t)(P⊗k(t)) is independent
of the choice of a closed point t ∈ SpecA.

We have an exact sequence

0 → SA ⌟W → (S∗
A)≤m → P → 0.

We tensor it by k(t), getting the exact sequence

(S ⌟W )⊗A k(t)
u−→ (S∗

A)≤m ⊗A k(t) → P ⊗A k(t) → 0.

Then

dimk(t)(P ⊗A k(t)) = dimk(t)((S
∗
A)≤m ⊗A k(t))− dimk(t) imu

by Lemma 4.10
= dimk S

∗
≤m − dimk(t) Sk(t) ⌟ ιt(W )

by Lemma 4.12
= dimk S

∗
≤m − dimk(t) Sk(t)/Ann(ιt(W )),
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which is constant by assumption.

It remains to prove that S/Ann(W ) is a flat A-module. It follows from
Lemma 4.12, that

S/Ann(W ) ≃ HomA(SA ⌟W,A).

Since SA ⌟W is the kernel of a surjection of flat A-modules, it is a flat
A-module. Because it is finite as an A-module, it is locally free of finite
rank. Therefore HomA(SA ⌟W,A) is a locally free A-module of finite
rank, thus flat.

(ii) Let N = SA ⌟W . Suppose that S∗
A/N is a flat A-module. By Corol-

lary 4.11 the natural morphism N ⊗A B → S∗
A ⊗A B ≃ S∗

B sends
N ⊗AB isomorphically to SB ⌟ φ(W ). By Lemma 4.12 SA/Ann(W ) ≃
HomA(SA ⌟W,A) and SB/Ann(φ(W )) ≃ HomB(SB ⌟ φ(W ), B). Thus
it is enough to show that HomA(N,A) ⊗A B ≃ HomB(N ⊗A B,B).
This follows from [50, Exercise 7.20(a)] and the fact that N = SA ⌟W
is flat and finitely generated over a Noetherian ring, hence locally free
of finite rank, see [12, Proposition 4.4.3].

Lemma 4.14. Let W ⊆ (S∗
A)≤m be an A-submodule, and let Q = (S∗

A)≤m/W .
Let t ∈ SpecA be any closed point. If Q is A-flat, then ιt(W ) = W ⊗A k(t).

Proof. Consider the following commutative diagram:

0 W (S∗
A)≤m Q 0

0 W ⊗A k(t) (S∗
k(t))≤m Q⊗A k(t) 0.

a

b

The map a is a surjection since tensoring is right-exact. The map b is an
injection, because Q is A-flat. Hence ιt(W ) = W ⊗A k(t).

Proof of Theorem 4.9. Take any cover of E by open affines SpecAi. We
construct morphisms

φi : SpecAi → Hilbr(An),

and finally we show that these morphisms glue.
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Let U be the universal subbundle on Gr(l, S∗
≤m), treated as a locally free

sheaf. Let U|SpecAi
= W̃i, where Wi ⊆ S∗

≤m ⊗ Ai is a submodule. Observe
that (SAi

)≤m/Wi is Ai-flat from the definition of the Grassmann functor, see
[50, §8.4].

Our morphism is defined by the family SpecSAi
/Ann(Wi) → SpecAi.

We know that the scheme SpecSAi
/Ann(Wi) is a closed subscheme of An

Ai
.

We use Part (i) of Lemma 4.13 for Wi. In order to do it, it suffices to show
that for every closed point t ∈ SpecAi, the vector space Sk(t)/Ann(ιt(Wi))
has dimension r. But this follows from the fact that [Wi ⊗ k(t)] = [ιt(Wi)]
by Lemma 4.14, and the fact that [Wi⊗ k(t)] ∈ E ⊆ Gr(l, S∗

≤m). Hence both
modules SAi

/Ann(Wi) and S∗
Ai
/SAi

⌟Wi are Ai-flat. Then we can use Part
(ii) of Lemma 4.13 to show that our family has fibers of length r. Hence,
from the defining property of the Hilbert scheme, we have a morphism φi :
SpecAi → Hilbr(An). Moreover, the fiber of the family SpecSAi

/Ann(Wi)
over the closed point t is Sk(t)/Ann(ιt(Wi)). Therefore φi on closed points is
defined by

[W ] 7→ [SpecS/Ann(W )].

Since the morphims φi are defined on closed points by the same formula,
they glue together.

4.4 Cubics with Hilbert function (1, 6, 6, 1)

In Lemma 4.16, we give a useful characterization of cubics f such that the
Hilbert function of S/Ann(f) is (1, 6, 6, 1). This is inspired by [8, Example
8]. Then we establish Lemma 4.17 about topological properties of the set
of such cubics. Finally, we spread this set by the action of the product
GL(n1 + 1)× · · · ×GL(nk + 1), and we look at topological properties of the
result. This part is taken from [47, Subsection 5.1].

In this section S = C[α1, . . . , αn], and S∗ = C[x1, . . . , xn] is its graded
dual. We assume that n ≥ 6. Given f ∈ S∗, we denote by fj its homogeneous
part of degree j. For a finite-dimensional subspace W ⊆ S∗, the algebra
Apolar(W ) is defined as S/Ann(W ).

Up to this point, we only used graded Hilbert function, i.e. for a graded
module M , and an integer i we defined

H(M, i) = dimCMi.
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But from now on, we also use local Hilbert function, i.e. for a local finite-
dimensional algebra A with maximal ideal m, and an integer i, we define

H(A, i) = dimC

(
mi

mi+1

)
.

If the algebra is graded, the two notions coincide.

Lemma 4.15. Let W ⊆ S∗ be a finite-dimensional linear subspace. Then

H(Apolar(W ), k) = codimSk
Ek,

where Ek = {θk ∈ Sk| there exists θ≥k+1 ∈ S≥k+1 such that (θk+θ≥k+1) ⌟W =
0}.

Proof. Let m be the maximal ideal of Apolar(W ).

H(Apolar(W ), k) = dimCm
k/mk+1

= codimS≥k
Ann(W ) ∩ S≥k − codimS≥k+1

Ann(W ) ∩ S≥k+1

= codimS≥k
S≥k+1 − codimAnn(W )∩S≥k

Ann(W ) ∩ S≥k+1

= dimC Sk − dimC
Ann(W ) ∩ S≥k

Ann(W ) ∩ S≥k+1

= dimC Sk − dimCEk

Lemma 4.16. For [f ] ∈ PS≤3 the following are equivalent:

(a) Apolar(f) has Hilbert function (1, 6, 6, 1),

(b) There exists [U ] ∈ Gr(6, S1) such that f3 ∈ Sym3 U , f2 ∈ U · S∗
1 and

H(Apolar(f3), 1) = 6.

Proof. Notice that we can assume that f3 ̸= 0 since it follows from both
Conditions (a) and (b).

By Iarrobino’s symmetric decomposition (see [30, Theorem 2.3 and the
following remarks]), the algebra Apolar(f) has Hilbert function (1, c+e, c, 1),
where (1, c, c, 1) is the Hilbert function of Apolar(f3). From Lemma 4.15, we
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know that c + e = codimS1 E1, where E1 = {θ1 ∈ S1| there exists θ≥2 ∈ S≥2

such that (θ1 + θ≥2) ⌟ f = 0}. We use the following computation

(θ3 + θ2 + θ1) ⌟ (f3 + f2 + f1 + f0)

= (θ1 ⌟ f3) + (θ1 ⌟ f2 + θ2 ⌟ f3) + (θ1 ⌟ f1 + θ2 ⌟ f2 + θ3 ⌟ f3). (4.8)

Assume that Apolar(f) has Hilbert function (1, 6, 6, 1). We show that
Condition (b) is satisfied. Let U be S2 ⌟ f3, which is 6-dimensional, since the
Hilbert function of Apolar(f3) is (1, 6, 6, 1), by the properties of Iarrobino’s
symmetric decomposition mentioned above. It is enough to show that f2 ∈
U · S∗

1 . Assume that this does not hold. Up to a linear change of variables
we can assume that U = ⟨x1, x2, . . . , x6⟩. Let V = ⟨x7, x8, . . . , xn⟩. By
classification of quadratic forms over C we may assume that f2 = x2n+H+K
where H ∈ Sym2(⟨x7, x8, . . . , xn−1⟩) and K ∈ S∗

1 · U . Then αn ⌟ f2 /∈ U and
hence αn /∈ E1 by Equation (4.8).

We claim that dimCE1 ≤ n − 7. It suffices to show that the classes of
α1, α2, . . . , α6, αn are linearly independent in the vector space S1/E1. Let
ω = a1α1 + a2α2 + . . .+ a6α6 for some a1, . . . , a6 ∈ C and assume that there
is b ∈ C and θ≥2 ∈ S≥2 such that (ω+ bαn+ θ≥2) ⌟ f = 0. Then by Equation
(4.8) we get (ω + bαn) ⌟ f3 = 0. Since U = S2 ⌟ f3 = ⟨x1, x2, . . . , x6⟩, it
follows that f3 is a polynomial in x1, . . . , x6. Therefore, bαn ⌟ f3 = 0 and as
a consequence ω ⌟ f3 = 0. We know that Apolar(f3) has Hilbert function
(1, 6, 6, 1), thus ω = 0. As a result, bαn ∈ E1 which shows that b = 0.

The claim proven above contradicts Lemma 4.15 and the assumption that
H(Apolar(f), 1) = 6.

For the other direction, assume that (b) holds, we show that Apolar(f)
has Hilbert function (1, 6, 6, 1). It is enough to show that codimS1 E1 = 6. By
assumption dimC Ann(f3)1 = n−6, so it suffices to show that E1 = Ann(f3)1.
Assume that θ = θ3 + θ2 + θ1 ∈ Ann(f), then it follows from Equation (4.8)
that θ1 ∈ Ann(f3)1. Thus E1 ⊆ Ann(f3)1. Let us take θ1 ∈ Ann(f3)1. From
the assumption f2 =

∑
i uihi where ui ∈ U, hi ∈ S∗

1 . Therefore

θ1 ⌟ f2 =
∑
i

ui(θ1 ⌟ hi) ∈ U.

Since (·) ⌟ f3 : S2 → U is surjective, there exists θ2 ∈ S2, such that θ2 ⌟ f3 =
−θ1 ⌟ f2. By Equation (4.8) it is enough to observe that there exists θ3 ∈ S3,
such that θ3 ⌟ f3 = −(θ1 ⌟ f1 + θ2 ⌟ f2)
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Lemma 4.17. The following subset of PS∗
≤3 is locally closed, irreducible, and

of dimension 13n+ 5

A = {[f ] ∈ PS∗
≤3|Apolar(f) has Hilbert function (1, 6, 6, 1)}.

Moreover the set

B = {[f ] ∈ A|[SpecApolar(f)] /∈ HilbGor,sm14 (An)}

is dense in A.

Proof. Consider

A = {([U ], [f ]) ∈ Gr(6, S∗
1)× PS∗

≤3 | [f ] ∈ P(Sym3 U ⊕ (S∗
1 · U)⊕ S∗

≤1)}.

and
A0 = {([U ], [f ]) ∈ A | H(Apolar(f3), 1) = 6}.

We have a pullback diagram

A Fl(1, 7n+ 42, S∗
≤3)

Gr(6, S∗
1) Gr(7n+ 42, S∗

≤3)

where Fl(1, 7n+ 42, S∗
≤3) is the flag variety parametrizing flags of subspaces

M ⊆ N ⊆ S∗
≤3 with dimCM = 1, dimCN = 7n+42 and the lower horizontal

map sends [U ] to [Sym3 U ⊕ (S∗
1 · U)⊕ S∗

≤1].
The varieties A and Gr(6, S∗

1) are projective. Moreover, the left vertical
map is surjective and its fibers are irreducible varieties isomorphic to P7n+41.
Since P7n+41 is irreducible, it follows from [72, Theorems 1.25-26] that A is
irreducible and of dimension 6(n− 6) + 7n+ 41 = 13n+ 5.

We will show that A0 is open in A. Consider the subset

B = {([U ], [f ]) ∈ Gr(6, S∗
1)× PS∗

≤3 | H(Apolar(f3), 1) ≥ 6}.

Observe that A0 = A∩B. It is enough to show that B is open in Gr(6, S∗
1)×

PS∗
≤3. Let

C = {[f ] ∈ PS∗
≤3 | H(Apolar(f3), 1) ≥ 6}.
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It suffices to show that C is open in PS∗
≤3, which holds since its complement

is given by catalecticant minors. We have established that A0 = A ∩ B is
open in A.

By Lemma 4.16 we have A = π2(A0), where π2 : Gr(6, S∗
1)×PS∗

≤3 → PS∗
≤3

is the projection. Since π2|A0 : A0 → A has a finite fiber over every point,
it follows from [77, Theorem 11.4.1] that A is irreducible and of dimension
13n+ 5.

We know that A = π2(A0) = π2(A)∩C which is locally closed since π2(A)
is closed and C is open. Therefore we have a morphism µ : A→ HilbGor14 (An)
given on closed points by [f ] 7→ [SpecS/Ann(f)], see Theorem 4.9.

By Theorem 4.2, the scheme HilbGor14 (An) has two irreducible components
HilbGor,sm14 (An) and H1661(An). We obtain

B = µ−1(H1661(An) \ HilbGor,sm14 (An)),

so it is open in A. Since B is non-empty (see [59, Remark 3.7], and [24,
Theorem 3.16, Proposition 5.6]) and A is irreducible, it follows that B is
dense in A.

We consider

S∗ = C[x1,1, . . . , x1,n1 , . . . , xk,1, . . . , xk,nk
], and

T ∗ = C[x1,0, x1,1, . . . , x1,n1 , . . . , xk,0, xk,1, . . . , xk,nk
]

= SymV ∗
1 ⊗ · · · ⊗ SymV ∗

k ,

where V ∗
i = ⟨xi,0, xi,1, . . . , xi,ni

⟩ for 1 ≤ i ≤ k. The rings S∗ and T ∗ are
naturally graded by Zk.

Definition 4.18. Given multi-indices e,d ∈ Nk with e ≥ d and a linear
subspace W ⊆ S∗

≤d we define

W▼e = {
∑
i≤d

(e1 − i1)! · · · (ek − ik)!fi | f ∈ W}.

Definition 4.19. Given a polynomial F ∈ T ∗
≤d, and for each i a basis

zi, zi,1, . . . , zi,ni
of V ∗

i for 1 ≤ i ≤ k, we consider the dehomogenization of
F with respect to bases zi, zi,1, . . . , zi,ni

, denoted by

F|z1=1,z2=1,...,zk=1 ∈ C[z1,1, . . . , z1,n1 , . . . , zk,1, . . . , zk,nk
].

We calculate it by writing the polynomial in the given bases, and setting
z1 = 1, . . . , zk = 1.
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Remark 4.20. For any multi-index e ≥ d, when we dehomogenize by the
standard bases of V ∗

i , we get the following equality

((F|x0,1=1,...,x0,k=1)
▼e)hom,e = xe1−d11,0 · · ·xek−dkk,0 F .

Since in Chapter 6, we often consider forms divisible by some powers of
linear forms, we need to consider the triangle operator.

Let d be a multi-index of length k with di ≥ 3 for each i.
Notice that in the following lemma the main actors—sets C and D do

not depend on d except in two little places. We need a different definition of
these sets to prove our main theorems for all degrees of the embedding vd in
Sections 6.2, and 6.3.

Lemma 4.21. The following subset is irreducible, of dimension 14n+6+ k,

C = {(z1, . . . , zk, P ) ∈
k∏
i=1

V ∗
i × T3,...,3 | for each i there exists a completion

of zi to a basis (zi, zi,1, . . . , zi,ni
) of V ∗

i such that
Apolar((P |z0,z1,...,zk=1)

▼d) has Hilbert function
(1, 6, 6, 1)}.

Moreover the set

D = {(z1, . . . , zk, P ) ∈
k∏
i=1

V ∗
i × T3,...,3 | for each i there exists a completion

of zi to a basis (zi, zi,1, . . . , zi,ni
) of V ∗

i such that
Apolar((P |z0,z1,...,zk=1)

▼d) has Hilbert function
(1, 6, 6, 1), and [SpecApolar((P |z1=1,...,zk=1)

▼d)]

/∈ HilbGor,sm14 (An)}

is dense in C.

Proof. We consider the morphism φ : GL(V ∗
1 )×· · ·×GL(V ∗

k )×T3,...,3 → T3,...,3
given by a change of basis. Then we have a product morphism

τ : GL(V ∗
1 )× · · · ×GL(V ∗

k )× T3,...,3 →
k∏
i=1

V ∗
i × T3,...,3,

given by (a1, . . . , ak, P ) 7→ (a1(y1), . . . , ak(yk), φ(a1, . . . , ak, P )).
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Recall the sets A and B from Lemma 4.17. Let Â, B̂ be the affine cones over
A and B, respectively, with the origins removed. Let χ : S≤3 → T3,...,3 be the
C-linear monomorphism given by f 7→ (f▼d−1

)hom(3,...,3) (here hom denotes
standard homogenization to degree (3, . . . , 3), equal to the composition of
((·)▼(3,...,3))hom,(3,...,3)). We have τ(GL(V ∗

1 )×· · ·×GL(V ∗
k )× (χ(Â))) = C and

τ(GL(V ∗
1 )× · · · ×GL(V ∗

k )× (χ(B̂))) = D. These follow from the definitions
of the sets A,B,C, and D, and the identity

(φ(a1, . . . , ak, χ(f))|a1(z1)=1,...,ak(zk)=1)
▼d

= f(a1(x1,1), . . . , a1(x1,n1), . . . , ak(xk,1), . . . , ak(xk,nk
)).

It follows from Lemma 4.17 that C is irreducible, D is dense in C, and
dimD = dimC = 14n+ 6 + k.

4.5 Subspaces with Hilbert function (1, 4, 3)

In Lemma 4.22, we give a useful characterization of subspaces W of a poly-
nomial ring such that the Hilbert function of Apolar(W ) is (1, 4, 3). Then
we establish Lemma 4.23 about topological properties of the set of such sub-
spaces. Finally, in Lemma 4.24 we spread this set by the action of GL(n+1),
and look at topological properties of the result. This part is taken from [47,
Subsection 6.1].

In this section S = C[α1, . . . , αn], and S∗ = C[x1, . . . , xn] is its graded
dual. We assume that n ≥ 4. Given an integer i, and a linear subspace
W ⊆ S∗, we denote by Wi the image of the projection of W onto the i-th
graded part.

Lemma 4.22. For [W ] ∈ Gr(3, S∗
≤2) the following are equivalent:

(a) Apolar(W ) has Hilbert function (1, 4, 3),

(b) dimCW2 = 3, [W ] ∈ Gr(3, Sym2 U ⊕ S∗
≤1) for some [U ] ∈ Gr(4, S∗

1) and
H(Apolar(W2), 1) = 4,

(c) Apolar(W2) has Hilbert function (1, 4, 3).

Proof. Conditions (b) and (c) are equivalent. We show that Conditions (a)
and (c) are equivalent. Observe that H(Apolar(W ), 2) = 3 if and only if
dimCW2 = 3 since

H(Apolar(W ), 2) = H(Apolar(W2), 2).
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Therefore, we are left to show that H(Apolar(W ), 1) = 4 if and only if

H(Apolar(W2), 1) = 4.

By Lemma 4.15, we obtain H(Apolar(W ), 1) = codimS1(E1), where

E1 = {θ1 ∈ S1 | there exists θ≥2 ∈ S≥2 such that θ1 + θ≥2 ∈ Ann(W )}.

We will show that E1 = Ann(W2)1.
Let W = ⟨Qj + Lj + Cj | j ∈ {1, 2, 3}, Qj ∈ S∗

2 , Lj ∈ S∗
1 and Cj ∈ S∗

0⟩.
Assume that θ1 ∈ E1 and let θ1 + θ≥2 ∈ Ann(W ) for some θ≥2 ∈ S≥2. Then
for j ∈ {1, 2, 3}

0 = (θ1 + θ≥2) ⌟ (Qj + Lj + Cj) = (θ1 ⌟Qj) + (θ1 ⌟ Lj + θ≥2 ⌟Qj),

so θ1 ⌟Qj = 0 for j ∈ {1, 2, 3}.
Now assume that θ1 ∈ Ann(W2). Since dimCW2 = 3, there is θ2 ∈ S2

such that θ2 ⌟Qj = −θ1 ⌟ Lj for j ∈ {1, 2, 3}. Then θ1 + θ2 ∈ Ann(W ), so
θ1 ∈ E1.

Lemma 4.23. The following subset of Gr(3, S∗
≤3) is locally closed, irre-

ducible, and of dimension 7n+ 8

A = {[W ] ∈ Gr(3, S∗
≤2) |Apolar(W ) has Hilbert function (1, 4, 3)}.

Moreover the set

B = {[W ] ∈ A |[SpecApolar(W )] /∈ Hilbsm8 (An)}

is dense in A.

Proof. Consider

A = {([U ], [W ]) ∈ Gr(4, S∗
1)×Gr(3, S∗

≤2) | [W ] ∈ Gr(3, Sym2 U ⊕ S∗
≤1)}.

and
A0 = {([U ], [W ]) ∈ A | H(Apolar(W2), 1) = 4}.
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We have a pullback diagram

A Fl(3, n+ 11, S∗
≤2)

Gr(4, S∗
1) Gr(n+ 11, S∗

≤2)

where Fl(3, n + 11, S∗
≤2) is the flag variety parametrizing flags of subspaces

M ⊆ N ⊆ S∗
≤2 with dimCM = 3, dimCN = n+ 11 and the lower horizontal

map sends [U ] to [Sym2 U ⊕ S∗
≤1].

The varieties A and Gr(4, S∗
1) are projective. Moreover, the left vertical

map is surjective and its fibers are irreducible and isomorphic to Gr(3, n+11).
Since Gr(3, n+11) is irreducible, it follows from [72, Theorems 1.25-26] that
A is irreducible and of dimension 4(n− 4) + 3(n+ 8) = 7n+ 8.

We will show that A0 is open in A. Consider the subset

B = {([U ], [W ]) ∈ Gr(4, S∗
1)×Gr(3, S∗

≤2) | H(Apolar(W2), 1) ≥ 4}.

Observe that A0 = A ∩ B, therefore it is enough to show that B is open in
Gr(4, S∗

1)×Gr(3, S∗
≤2). Let

C = {[W ] ∈ Gr(3, S∗
≤2) | H(Apolar(W2), 1) ≥ 4}.

It is enough to show that C is open in Gr(3, S∗
≤2). Let

D = {([U ], [W ]) ∈ Gr(3, S∗
1)×Gr(3, S∗

≤2) | [W ] ∈ Gr(3, Sym2(U)⊕ S∗
≤1)},

and ρ2 : Gr(3, S∗
1) × Gr(3, S∗

≤2) → Gr(3, S∗
≤2) be the natural projection.

Observe that the complement of C in Gr(3, S∗
≤2) is equal to ρ2(D) which is

closed since D is projective. This concludes the proof that A0 is open in A.
By Lemma 4.22 we have A = π2(A0) ∩ F where

F = {[W ] ∈ Gr(3, S∗
≤2) | dimCW2 = 3}

and π2 : Gr(4, S∗
1)×Gr(3, S∗

≤2) → Gr(3, S∗
≤2) is the projection.

Since π2|A0 : A0 → π2(A0) has a finite fiber over a general point, it follows
from [77, Theorem 11.4.1] that π2(A0) is irreducible and of dimension 7n+8.
The subset F ⊆ Gr(3, S∗

≤2) is open and π2(A0) ∩ F is non-empty, so A =
π2(A0) ∩ F is irreducible and of dimension 7n+ 8.
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We know thatA = π2(A)∩C∩F , soA is locally closed since π2(A) is closed
and C, F are open. Therefore we have a morphism µ : A→ Hilb8(An) given
on closed points by [W ] 7→ [SpecS/Ann(W )], see Theorem 4.9. We obtain
B = µ−1(H143(An)\Hilbsm8 (An)), so it is open in A. We claim that B is non-
empty. Indeed, consider the subspace W = ⟨x2x4, x1x3, x2x3 − x1x4⟩ ⊆ S∗

≤2.
By Lemma 4.22 we have that [W ] ∈ A. Furthermore, we can calculate that

Ann(W ) = (α2
1, α

2
2, α

2
3, α

2
4, α1α2, α3α4, α1α4 + α2α3, α5, α6, . . . , αn),

and therefore ApolarW is non-smoothable, see [29, the proof of Prop. 5.1].
This finishes the proof of the claim. Since B is open and non-empty and A
is irreducible it follows that B is dense in A.

We consider the ring T = C[α0, . . . , αn], and the graded dual T ∗ =
C[x0, . . . , xn]. Let d ≥ 3 be an integer. Recall the notions of triangle opera-
tor from Definition 4.18 and dehomogenization with respect to a basis from
Definition 4.19. In the following lemma, we use them for k = 1.

Lemma 4.24. The following set is irreducible, and of dimension 8n+ 9

C = {(z0, [U ]) ∈ T1 ×Gr(3, T2) | there exists a completion of z0 to a basis
(z0, z1, . . . , zn) of T1 such that Apolar((U |z0=1)

▼d)

has Hilbert function (1, 4, 3)}.

Moreover, the set

D = {(z0, [U ]) ∈ T1 ×Gr(3, T2) | there exists a completion of z0 to a basis
(z0, z1, . . . , zn) of T1 such that Apolar((U |z0=1)

▼d)

has Hilbert function (1, 4, 3), and
[SpecApolar((U |z0=1)

▼d)] /∈ Hilbsm8 (An)}.

is dense in C.

Proof. Consider the morphism φ : GL(T ∗
1 ) × Gr(3, T ∗

2 ) → Gr(3, T ∗
2 ), given

by a change of basis. We have a product morphism

τ : GL(T ∗
1 )×Gr(3, T ∗

2 ) → T ∗
1 ×Gr(3, T ∗

2 ).
(a, [U ]) 7→ (a(x0), φ(a, [U ])).
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Recall the sets A,B from Lemma 4.23. Let χ : S∗
≤2 → T ∗

2 be the inverse
of the C-linear isomorphism T ∗

2 → S∗
≤2 given by P 7→ (P |x0=1)

▼d. We have
τ(GL(T ∗

1 ) × A) = C and τ(GL(T ∗
1 ) × B) = D. These follow from the

definitions of the sets A,B,C,D and the identity

(φ(a, χ(W ))|a(x0)=1)
▼d = ⟨f(a(x1), . . . , a(xn)) | f ∈ W ⟩

for every [W ] ∈ Gr(3, S∗
≤2) and a ∈ GL(T ∗

1 ). It follows from Lemma 4.23
that C is irreducible, D is dense in C, and that dimD = dimC = 8n+9.
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Chapter 5

Examples of rank calculation

Finally, we look at some examples of rank calculation. In this section, we
denote the variables of the ring T by Greek letters α, β, . . . and the corre-
sponding variables in T ∗ by x, y, . . . (possibly with subscripts).

We work over C.
We calculate the ranks, cactus ranks and border ranks (denoted by r(F ),

cr(F ), br(F )) of some monomials F for toric surfaces embedded into projec-
tive spaces. See Definitions 3.7 and 3.10 for the definitions of these ranks.
Remark 5.1. It would be interesting to look at some toric varieties of higher
dimension and apply the techniques of this chapter to them. In particular,
to calculate the simultaneous rank of k forms of different degrees d1, . . . , dk,
one may consider the projective bundle P(OPn(d1)⊕ · · · ⊕ OPn(dk)) over Pn.
This is a toric variety. The rank calculated with respect to the canonical
embedding

P(OPn(d1)⊕ · · · ⊕ OPn(dk)) → P(H0(Pn,OPn(d1))⊕ · · · ⊕H0(Pn,OPn(dk)))

is the simultaneous rank.

5.1 P1 × P1

Consider the set

{ρα = (1, 0), ρβ = (−1, 0), ργ = (0, 1), ρδ = (0,−1)}.

Let Σ be the only complete fan such that this set is its set of rays. Then XΣ

is P1 × P1, which is smooth.
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ρα

ργ

ρβ

ρδ

Its class group is the free abelian group on two generators Dρα ∼ Dρβ and
Dργ ∼ Dρδ . Here and later in this chapter Dρ is the toric invariant divisor
corresponding to ρ (as in Chapter 2) and ∼ is the linear equivalence. Let
α, β, γ, δ be the variables corresponding to ρα, ρβ, ργ, ρδ. As a result, we
may think of T as the polynomial ring C[α, β, γ, δ] graded by Z2, where the
grading is given by

f α β γ δ

deg f
1 1 0 0
0 0 1 1

The nef cone in (ClXΣ)R is generated by Dρα and Dργ .
Let x, y, z, w be the basis dual to α, β, γ, δ. We consider the problem of

determining the cactus ranks and ranks of monomials F = x(k)y(l)z(m)w(n),
where k ≥ l ≥ 1,m ≥ n ≥ 1. The annihilator ideal is (αk+1, βl+1, γm+1, δn+1).
We have

dim(T/Ann(F ))(l,n) = (l + 1)(n+ 1).

It follows from Proposition 3.22 that

cr(F ) ≥ (l + 1)(n+ 1).

But I = (βl+1, γn+1) ⊆ Ann(F ) is a B-saturated ideal of a scheme of length
(l+1)(n+1). This is because we can look locally at the affine open set where
α, γ ̸= 0. There our scheme becomes

SpecC
[
β

α
,
δ

γ

]
/

(
βl+1

αl+1
,
δn+1

γn+1

)
∼= SpecC[u, v]/(ul+1, vn+1)

for some variables u, v. The scheme constructed in this way has the desired
length. Hence, by Theorem 3.9

cr(F ) = (l + 1)(n+ 1).
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Now we address the problem of finding the ranks of such monomials. We
prove Theorem 1.9. The formulation and the proof come from the author’s
article [46].

Let S be the polynomial ring C[u, v]. In the following, we consider the
dehomogenization given by the ring homomorphism T → S, α 7→ u, β 7→ 1,
γ 7→ v, δ 7→ 1, and the corresponding homogenization.

Lemma 5.2. Consider the ideal I = (uovp − 1, uq − vr) ⊆ S, where o, p ≥ 1
and at least one of the integers q, r is greater than or equal to 1. Then
V (I) ⊂ A2 consists of or+pq reduced points, and the ideal I is (uv)-saturated.

Proof. First we show that uovp− 1, uq− vr intersect transversally. Let s ∈ N
be the smallest number such that usvt − 1 ∈ I for some t ∈ Z>0. Let i ∈ N
be the smallest number such that ui − vj ∈ I for some j ∈ Z>0. We claim
that s = 0 or i = 0. Assume to the contrary, that min(s, i) > 0. If s ≥ i,
then we have

usvt − 1− us−ivt(ui − vj) = us−ivj+t − 1 ∈ I,

which contradicts the minimality of s. If s < i, then

vt(ui − vj)− ui−s(usvt − 1) = ui−s − vt+j ∈ I,

which contradicts the minimality of i.
We get that vi − 1 ∈ I for some i ∈ Z>0. Similarly, by interchanging the

roles of i, s with j, t, we get that uj−1 ∈ I for some j ∈ Z>0. The polynomials
vi− 1 and uj − 1 intersect transversally in ij points, so uovp− 1, uq − vr also
intersect transversally.

We want to use Bézout’s theorem for P1 × P1. In order to do so, we
homogenize generators of I and check that they have no roots at infinity.
Then the generators of I become

αoγp − βoδp, αqδr − βqγr. (5.1)

Now we can see that if β = 0, then α ̸= 0, so if we put this into the first
generator in Equation 5.1, we get that γ = 0, and if we put it into the second
generator, we get δ = 0. But γ and δ cannot simultaneously be 0. Similarly,
if δ = 0, then γ ̸= 0. From the first generator, we get that α = 0, and from
the second we have β = 0, but the two equalities cannot hold at the same
time.
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This means that the polynomials uovp−1, uq−vr have no common roots at
infinity, so we can use multihomogeneous Bézout’s theorem (see [72, Example
4.9]) to get that uovp − 1, uq − vr have or + pq common roots.

The second claim follows from the fact that uj − 1, vi − 1 ∈ I, hence all
the points of V (I) lie outside of the lines uv = 0.

The proof of Theorem 1.9(i) can be better understood when we put bino-
mials on the Z2 lattice. We put the binomial uovp − 1 in degree (o, p) (that
is the degree of the homogenization). We also put the binomial uq − vr in
degree (q, r). In order to prove Point (i), we define the ideal of (k + 1)(n +
1) + (l + 1)(m− n) points

I = (ul+1 − vn+1, uk+1vm−n − 1).

The part in the proof that is hardest to picture is showing that Ihom ⊆
Ann(F ). For this, we need to argue that for each binomial uovp − 1 ∈ I, we
have (uovp − 1)hom ∈ Ann(F ), and that for each binomial uq − vr ∈ I, we
have (uq − vr)hom ∈ Ann(F ). To get ready for the proof, we study the case
of F = x(4)y(2)z(12)w(4).

Example 5.3. Let F = x(4)y(2)z(12)w(4). Then I = (u3 − v5, u5v8 − 1). By
Lemma 5.2, I is a radical ideal of 49 points. First we tackle the binomials of
the form uovp − 1. We need to show that their homogenizations are in the
ideal (α5, β3, γ13, δ5). We calculate that (uovp − 1)hom ∈ Ann(F ) if and only

99



if o ≥ 5 or p ≥ 13.

(5,8)

(5,13)(2,13)

u4v12 − 1

o

p

So suppose uovp − 1 ∈ I for some nonnegative integers o, p. Since (uovp −
1, u3 − v5) ⊆ I, by Lemma 5.2 we get that 5o+ 3p ≥ 49. Geometrically, this
means that the monomial uovp − 1 lies on or above the line 5o + 3p = 49.
Hence, it suffices to show that neither the points in the interior of the red
triangle nor the ones in the interior of the segment (5, 8)−(2, 13) can be in I.
Take for instance the point (4, 12), corresponding to the monomial u4v12−1.
Assume that u4v12 − 1 ∈ I. But then

u4v12 − 1− (u5v8 − 1) = u4v8(u− v4) ∈ I.

As I is uv-saturated by Lemma 5.2, we get that u− v4 ∈ I. It follows that

(u− v4, u5v8 − 1) ⊆ I,

however, by Lemma 5.2 the vanishing locus of the ideal (u−v4, u5v8−1) has
28 points, a contradiction.

Now we want to show that binomials of the form uq − vr belonging to I
satisfy (uq− vr)hom ∈ Ann(F ). We calculate that this condition is equivalent
to

(q ≥ 5 or r ≥ 5) and (q ≥ 3 or r ≥ 13).
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(5,5)(3,5)

(3,13)

u2 − v8

q

r

Suppose uq−vr ∈ I for some nonnegative integers q, r. Since (uq−vr, u5v8−
1) ⊆ I, by Lemma 5.2, we get that 8q + 5r ≥ 49. Geometrically, this means
that the monomial uq − vr lies on or above the line 8q + 5r = 49. Hence, it
suffices to show that the points in the interior of the red rectangles as well as
the ones in the interior of the segments (3, 0)−(5, 0) and (0, 5)−(0, 13) cannot
be in I. Take for instance the point (2, 8), corresponding to the monomial
u2 − v8. Assume that u2 − v8 ∈ I. But then we have

u2 − v8 − v3(u3 − v5) = u2(1− uv3).

As I is uv-saturated by Lemma 5.2, we get uv3 − 1 ∈ I. It follows that we
have the following inclusion

(uv3 − 1, u3 − v5) ⊆ I.

But the ideal (uv3 − 1, u3 − v5) has 14 points, a contradiction.

Proof of Point (i) of Theorem 1.9. If k = l or m = n, Point (i) becomes
Equation (1.1), so it is true. Now assume k > l and m > n and consider
I = (ul+1 − vn+1, uk+1vm−n − 1). Let

M = (k + 1)(n+ 1) + (l + 1)(m+ 1)− (l + 1)(n+ 1).
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From Proposition 2.18 we know that Ihom is βδ-saturated, which implies that
it is B-saturated. By Lemma 5.2, we get that Ihom is a radical ideal of M
points. We need to show that Ihom ⊆ Ann(F ). From Proposition 2.21 it
suffices to show that for uovp − 1 ∈ I we have (uovp − 1)hom ∈ Ann(F ) and
that for uq − vr ∈ I we have (uq − vr)hom ∈ Ann(F ).

Since ul+1 − vn+1 ∈ I, from Lemma 5.2 we get that any element of the
form uovp − 1 ∈ I must satisfy

(l + 1)p+ (n+ 1)o ≥M . (5.2)

Then the binomials uovp − 1 ∈ I lie above or on the line connecting two
points: (k+1, n−m) and (k− l,m+1). Similarly, the binomials uq− vr ∈ I
satisfy

(k + 1)r + (n−m)q ≥M . (5.3)

We have:
Claim 1: for each binomial of the form uovp − 1 ∈ I we have either

o ≥ k + 1 or p ≥ m + 1. It suffices to argue that there are no elements
uovp − 1 ∈ I in the interior of the segment connecting points (k + 1,m− n)
and (k− l,m+1) nor in the interior of the triangle with vertices (k+1,m−
n), (k − l,m+ 1), (k + 1,m+ 1). Suppose that uovp − 1 is such, then

uovp − 1− (uk+1vm−n − 1) = uovm−n(vp−m+n − uk+1−o) ∈ I.

Since I is uv-saturated by Lemma 5.2, we get that uk+1−o−vp−m+n ∈ I. But
k + 1− o < l + 1 and p−m+ n < n+ 1 (because o > k − l and p < m+ 1,
respectively), so the point (q, r) = (k + 1− o, p−m+ n) lies below the line
(k + 1)r + (n−m)q =M , contradicting Equation (5.3).

Claim 2: there are no binomials uq − vr ∈ I lying in the interior of the
rectangle with vertices (k + 1, 0), (l + 1, 0), (l + 1, n + 1), (k + 1, n + 1) nor
in the interior of the segment (l + 1, 0) − (k + 1, 0). Indeed, for any such
binomial uq − vr we have

uq − vr − uq−l−1(ul+1 − vn+1) = vr(uq−l−1vn+1−r − 1) ∈ I,

so also uq−l−1vn+1−r−1 ∈ I. But q− l−1 < k− l and n+1−r < m+1 (since
q < k+ 1 and r > 0, respectively), so the point (o, p) = (q− l− 1, n+ 1− r)
lies below the line (l + 1)p+ (n+ 1)o =M , contradicting Equation (5.2).

Claim 3: there are no binomials uq − vr ∈ I lying in the interior of the
rectangle with vertices (0, n+1), (0,m+1), (l+1, n+1), (l+1,m+1) nor in
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the interior of the segment (0, n+ 1)− (0,m+ 1). This is just Claim 2 with
the roles of the axes reversed.

From Claim 1, 2 and 3 it follows that for each uovp−1 ∈ I we have (uovp−
1)hom ∈ Ann(F ) and for uq − vr ∈ I we have (uq − vr)hom ∈ Ann(F ). From
it we conclude that for any binomial b ∈ I we have bhom ∈ Ann(F ) (since
homogenization is well-behaved with respect to multiplication by monomi-
als), so from Proposition 2.21 we have Ihom ⊆ Ann(F ), and we are done with
Point (i).

Proof of Point (ii). Suppose that r(F ) < (k+1)(n+1). Then by Theorem 3.9
there is a radical B-saturated ideal I of at most (k+1)(n+1)−1 points such
that I ⊆ Ann(F ) = (αk+1, βl+1, γm+1, δn+1). By Proposition 3.18 we have
that dim(T/I)k,n ≤ (k+1)(n+1)−1. We know that dimTk,n = (k+1)(n+1).
But this means that dim Ik,n ≥ 1. We have

Ann(F )k,n =

βl+1 · ⟨αk−l−1, αk−l−2β, . . . , βk−l−1⟩ · ⟨γn, γn−1δ, . . . , δn⟩

Hence there is a non-zero polynomial

βl+1(κk−l−1α
k−l−1 + κk−l−2α

k−l−2β + . . .+ κ0β
k−l−1) ∈ I, (5.4)

where κi ∈ ⟨γn, γn−1δ, . . . , δn⟩.
We prove that κj = 0 for j = 0, . . . , k − l − 1. We do this by descending

induction on j. Assume the following equation holds for a given j

κk−l−1 = κk−l−2 = · · · = κj+1 = 0.

We prove that κj = 0. By Equation (5.4) for some i ≥ 1

βi(κjα
j + κj−1α

j−1β + . . .+ κ0β
j) ∈ I.

The ideal I is radical, so we know that

β(κjα
j + κj−1α

j−1β + . . .+ κ0β
j) ∈ I.

But I ⊆ Ann(F ), so

β(κjα
j + κj−1α

j−1β + . . .+ κ0β
j) ⌟ F = 0.
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Since F is a monomial, we get that

(κjα
jβ) ⌟ F = 0.

However, we know that, as l ≥ 1 and j < k, we get

(κjα
jβ) ⌟ F = κ̄jx

(k−j)y(l−1),

where κ̄j = κj ⌟ z(m)w(n) ∈ Cdp[z, w]m. Hence,

κ̄j = 0. (5.5)

Observe that since we have

κj ∈ ⟨γn, γn−1δ, . . . , δn⟩,

and m ≥ n, we know that Equation (5.5) implies that κj = 0, as desired.
The fact that κi are all zero gives a contradition with the fact that the

polynomial was non-zero. This proves Point (ii).

Proof of Point (iii). Let I ⊆ Ann(F ) be a B-saturated radical ideal of at
most (l + 2)(n + 2) − 2 points. Then dim(T/I)l+1,n+1 ≤ (l + 2)(n + 2) − 2,
so dim Il+1,n+1 ≥ 2. Since

Ann(F )l+1,n+1 = βl+1⟨γn+1, γnδ, . . . , γδn⟩
+ ⟨αl+1, αlβ, . . . , αβl⟩ · δn+1 + ⟨βl+1δn+1⟩,

we get that Il+1,n+1 has a basis consisting of

t1 = βl+1(κ1γ
nδ + · · ·+ κnγδ

n)

+ (λ0α
l+1 + · · ·+ λlαβ

l)δn+1 + ηβl+1δn+1,
t2 = βl+1(µ0γ

n+1 + µ1γ
nδ + · · ·+ µnγδ

n)

+ (ν0α
l+1 + · · ·+ νlαβ

l)δn+1 + ζβl+1δn+1,

where κi, λi, µi, νi, η, ζ ∈ C. If κ1 = 0, then (since I is radical and t1 is
divisible by δ2) t1/δ ∈ I. Out of the monomials of t1/δ, only the ones divisible
by βl+1 are in Ann(F ). Hence, λi = 0 for all i. But then from the fact that I is
radical and that t1/δ is divisible by β2 we get that t1/(βδ) ∈ I. Since none of
the monomials of t1/(βδ) are in Ann(F ), we get η = κ2 = κ3 = · · · = κn = 0,
a contradiction. It follows that we may assume that κ1 = 1.
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If µ0 = 0, then we consider the element µ1t1 − t2. It is divisible by δ2, so
in the same way as before, we get that all the coefficients of µ1t1 − t2 are 0.
It follows that we may assume that µ0 = 1.

In this case

γt1 − δt2

= βl+1((κ2 − µ1)γ
nδ2 + · · ·+ (κn − µn−1)γ

2δn − µnγδ
n+1)

+ (λ0α
l+1 + λ1α

lβ + . . . λlαβ
l)γδn+1 + ηβl+1γδn+1

− (ν0α
l+1 + ν1α

lβ + . . . νlαβ
l)δn+2 + ζβl+1δn+2.

This is divisible by δ2, so also

γt1 − δt2
δ

∈ I.

The monomials αl+1γδn, . . . , αβlγδn are not in Ann(F ) (which is a monomial
ideal), so λi = 0 for all i. Hence t1 is divisible by βl+1, and therefore t1/βl ∈
I ⊆ Ann(F ). The monomial βγnδ is not in Ann(F ), but its coefficient in
t1/β

l is κ1 = 1, a contradiction.

5.2 Hirzebruch surface F1

This section is taken from the author’s master thesis. Still, we put it also
here, since it contains an important remark (Remark 5.5) about the wildness
or tameness of monomials.

Consider the set

{ρα = (1, 0), ρβ = (−1,−1), ργ = (0, 1), ρδ = (0,−1)}.

Let Σ be the only complete fan such that this set is the set of rays of Σ.
Then XΣ is called the Hirzebruch surface F1. It is smooth. We present a
picture of the lattice of F1.

ρα

ργ

ρβ ρδ
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Its class group is the free abelian group on two generatorsDρα ∼ Dρβ andDρδ .
Moreover, Dργ ∼ Dρδ + Dρα . Let α, β, γ, δ be the variables corresponding
to ρα, ρβ, ργ, ρδ. As a result, we may think of T as the polynomial ring
C[α, β, γ, δ] graded by Z2, where the grading is given by

f α β γ δ

deg f
1 1 1 0
0 0 1 1

The nef cone in (ClXΣ)R is generated by Dρα and Dργ ∼ dDρα +Dρδ .

Example 5.4. Consider the monomial F := xyzw, where x, y, z, w is the
basis dual to α, β, γ, δ. It has degree (3, 2), so it is in the interior of the nef
cone, hence the corresponding line bundle is very ample. We claim that the
rank and the cactus rank of F are four, and that the border rank is three:

r(F ) cr(F ) br(F )
4 4 3

Let us compute the Hilbert function of the apolar algebra of F .

1 2 1 0

1 3 3 1

0 1 2 1

Notice that it can only be non-zero in the first quadrant. Hence, the sym-
metry of the Hilbert function ([46, Proposition 4.5]) implies it can only be
non-zero in the rectangle with vertices (0, 0), (3, 0), (3, 2), (0, 2).

The apolar ideal Ann(F ) is (α2, β2, γ2, δ2). (It is independent of the
grading, so we can just copy the result from the Waring rank case, see [71].)

Firstly, we show that the rank is at most four. By Theorem 3.9, it is
enough to find a reduced zero-dimensional subscheme of length four R of XΣ
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(i.e. a set of four points in XΣ) such that ICl(R) ⊆ Ann(F ). The subscheme
defined by I = (α2 − β2, γ2 − β2δ2) ⊆ Ann(F ) satisfies these requirements.
This scheme is a reduced union of four points:

[1, 1; 1, 1], [1, 1; 1,−1], [1,−1; 1, 1], [1,−1; 1,−1].

As a consequence, we may write

xyzw =
1

4
(φ(1, 1; 1, 1)− φ(1, 1; 1,−1)− φ(1,−1; 1, 1) + φ(1,−1; 1,−1)) .

We show that the cactus rank is at least four. Suppose it is at most three.
Then there is a B-saturated homogeneous ideal I ⊆ Ann(F ) defining a zero-
dimensional subscheme R of length at most three. From the calculation of
the Hilbert function, we know that dimC Ann(F )2,1 = 2. Let us calculate
dimC I2,1. Since I is B-saturated, the vector subspace I2,1 ⊆ T2,1 are the
sections which are zero on R. But from Proposition 3.18

3 ≥ length ofR ≥ dimC T2,1 − dimC I2,1 = 5− dimC I2,1,

so
dimC I2,1 ≥ 2.

By Theorem 3.9, we have I2,1 ⊆ (Ann(F ))2,1. As the dimensions are equal,
it follows that I2,1 = (Ann(F ))2,1. This means α2δ, β2δ ∈ I. But I is B-
saturated, so αβδ ∈ I ⊆ Ann(F ), which implies that αβδ ⌟ xyzw = 0, a
contradiction.

In order to argue that br(F ) = 3, we show that the third secant variety
σ3(X) = P8. It suffices to show that dimσ3(XΣ) is eight. We will use
Terracini’s Lemma (Proposition 3.2).

Since XΣ → P(H0(XΣ,O(3, 2))∗) is given by a parametrization, we can
calculate the projectivized tangent space. Take points of the form [1, λ;µ, 1],
where λ, µ ∈ C. Then

φ([1, λ;µ, 1]) = [1, λ, λ2, λ3, µ, µλ, µλ2, µ2, µ2λ].

The coordinates are in the standard monomial basis of H0(XΣ,O(3, 2))∗.
The affine tangent space at φ([1, λ;µ, 1]) is spanned by the vector

v = [1, λ, λ2, λ3, µ, µλ, µλ2, µ2, µ2λ]
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and its two derivatives with respect to λ and µ:

∂v

∂λ
= [0, 1, 2λ, 3λ2, 0, µ, 2µλ, 0, µ2],

∂v

∂µ
= [0, 0, 0, 0, 1, λ, λ2, 2µ, 2µλ],

If we take three general points, say [1, p, q, 1], [1, s, t, 1], [1, u, v, 1], we can
look at the space spanned by the three tangent spaces. This will be the
space spanned by the rows of the following matrix:

M =



1 p p2 p3 q qp qp2 q2 q2p
0 1 2p 3p2 0 q 2qp 0 q2

0 0 0 0 1 p p2 2q 2qp
1 s s2 s3 t ts ts2 t2 t2s
0 1 2s 3s2 0 t 2ts 0 t2

0 0 0 0 1 s s2 2t 2ts
1 u u2 u3 v vu vu2 v2 v2u
0 1 2u 3u2 0 v 2vu 0 v2

0 0 0 0 1 u u2 2v 2vu


We can calculate the determinant using for instance Macaulay2

detM = (s− u)(u− p)(s− p)(qs− pt− qu+ tu+ pv − sv)4.

This is non-zero for general points on the variety. This means that the
tangent space of the cone of the third secant variety at a general point has
dimension nine, so dimσ3(XΣ) = 8, hence σ3(X) fills the whole space.

Finally, the border rank is at least three by Proposition 3.22. We use it
for the class (2, 1).
Remark 5.5. We could also define the smoothable X-rank:

srX(F ) = min{lengthR|R ↪→ X, dimR = 0, F ∈ ⟨R⟩, R smoothable}.

For the definition of a smoothable scheme, see [57, Definition 5.16]. For more
on the smoothable rank, see [20]. We always have cr(F ) ≤ sr(F ) ≤ r(F ),
so in the case of F1 we get sr(xyzw) = 4. In particular, we obtain what the
authors in [20] call a “wild” case, i.e. the border rank is strictly less than the
smoothable rank.
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This is important, since there is a conjecture that the monomials on Pn
are always “tame” (i.e. not wild) ([70, Conjecture 1.1]). This example shows
that if we look at more general smooth toric varieties, this conjecture does
not hold.

5.3 Weighted projective plane P(1, 1, 4)
This section is taken from the author’s article [46].

Consider a set of rays {ρα = (−1,−4), ρβ = (1, 0), ργ = (0, 1)}. Let Σ be
the complete fan determined by these rays. This is a fan of P(1, 1, 4), the
weighted projective space with weights 1, 1, 4, see [39, Section 2.0, Subsection
Weighted Projective Space; and Example 3.1.17].

ρβ

ργ

ρα

The class group is Z, generated by Dρα ∼ Dρβ , and we know that Dργ ∼
4Dρα . The Cox ring is C[α, β, γ], where α, β, γ correspond to ρα, ρβ, ργ,
and the degrees are given by the vector (1, 1, 4). Let x, y, z denote the dual
coordinates. The Picard group is generated by O(4). The only singular point
is [0, 0, 1].

Consider the embedding given by the complete linear system of the line
bundle OXΣ

(4). It maps X into P5 (since there are six monomials of degree 4:
x(4), x(3)y, x(2)y(2), xy(3), y(4), z). We calculate various ranks of F = x(2)y(2).
The results are shown it the following table

r(F ) cr(F ) br(F )
3 2 3

The Hilbert function of Apolar(F ) is (1, 2, 3, 2, 1) (here the first element
of the sequence corresponds to OXΣ

, the next to OXΣ
(1), and so on). This

means (by Proposition 3.22) that br(F ) ≥ 3.
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We know that Ann(F ) = (α3, β3, γ), since the annihilator remains the
same if we change the grading. Let I = (α3, β3) ⊆ Ann(F ). We show that
the length of the scheme R := V (I) is two. This will mean that cr(F ) ≤ 2.
Since R is supported at the point [0, 0, 1], we can look at it on the affine open
Uσ, where σ = Cone(ρα, ρβ). After localizing T = C[α, β, γ] at γ and taking
degree 0, we get the ring

C
[
α4

γ
,
α3β

γ
,
α2β2

γ
,
αβ3

γ
,
β4

γ

]
.

Ideal I becomes the ideal generated by α4

γ
, α

3β
γ
, αβ

3

γ
, β

4

γ
in this ring, so the

quotient is a two-dimensional vector space with basis 1, α
2β2

γ
. Hence the

length of R is two.
But the cactus rank cannot be 1, since x(2)y(2) is not in the image of

φ|O(4)| (see Proposition 2.26). It follows that cr(F ) = 2.
Now consider the ideal I = (α3 − β3, γ) ⊆ Ann(F ). We show that the

length of the scheme defined by I is three. Since I is radical, the scheme
given by I is reduced, hence this will show that r(F ) ≤ 3, as desired. But
I = (α − β, γ) ∩ (α − εβ, γ) ∩ (α − ε2β, γ), where ε is a cubic root of unity,
so the scheme given by I is the reduced union of [1, 1, 0], [ε, 1, 0], [ε2, 1, 0].
Remark 5.6. Since in this example

dimC(T/Ann(F ))2 = 3,

and cr(F ) = 2, we see that the bound stated in point (1) of Proposition 1.12
does not hold for the cactus rank (and reflexive sheaves of rank one that are
not line bundles).
Remark 5.7. One can also calculate that the projective tangent space in this
embedding at the singular point [0, 0, 1] is the whole P5 (this is a straight-
forward application of Proposition 2.14). It follows that the cactus rank of
every point in P5 is at most two, since any point of the tangent space at
[0, 0, 1] can be reached by a linear span of a scheme of length two supported
at [0, 0, 1].

5.4 Fake weighted projective plane
This section also appeared in the author’s master thesis. However, we give it
also here, since this version contains an additional picture of the polytope P
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of the embedding, and an explanation how the tangent spaces at the singular
points fit into this picture.

Consider the set of rays {ρ0 = (−1,−1), ρ1 = (2,−1), ρ2 = (−1, 2)}. Let
Σ be the complete fan determined by these rays. Then XΣ is an example of
a fake weighted projective space, see [18, Example 6.2].

ρ0
ρ1

ρ2

Let α0, α1, α2 be the corresponding coordinates in T . The class group is
generated by Dρ0 , Dρ1 , Dρ2 with relations Dρ0 ∼ 2Dρ1 −Dρ2 ∼ 2Dρ2 −Dρ1 .
This is the same as a group with two generators Dρ0 and Dρ2 −Dρ1 with the
relation 3(Dρ2 −Dρ1) ∼ 0. This choice gives an isomorphism with Z × Z/3
sending Dρ0 to (1, 0) and Dρ2 − Dρ1 to (0, 1). The Picard group is the
subgroup generated by 3Dρ0 . It is free.

As a result, T = C[α0, α1, α2] is graded by ClXΣ = Z× Z/3, where

degα0 = (1, 0),
degα1 = (1, 1),
degα2 = (1,−1) = (1, 2),

and PicXΣ is generated by (3, 0). The singular points of XΣ are [1, 0, 0],
[0, 1, 0], [0, 0, 1].

Consider the line bundle O(6, 0). It is ample, because by [39, Proposi-
tion 6.3.25] every complete toric surface is projective, and the line bundles
O(−3m, 0) for m < 0 have no non-zero sections. By [39, Proposition 6.1.10,
(b)] it is very ample. It gives an embedding φ : XΣ ↪→ P9. We denote the
dual coordinates by x0, x1, x2.

Example 5.8. Let F = x
(4)
0 x1x2 ∈ H0(XΣ,O(6, 0))∗. The apolar ideal is

(α5
0, α

2
1, α

2
2). We claim that the cactus rank is two, the rank is at most five,

and the border rank is two.

r(F ) cr(F ) br(F )
≤ 5 2 2
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Note that F is not in the image of φ|O(6,0)|, so the cactus rank and the border
rank are at least two.

We show that the cactus rank is two. Consider the ideal I = (α2
1, α

2
2) ⊆

Ann(F ). It is saturated, since B in this case is (α0, α1, α2), so it is the same
as in the case of P2. We show that the length of the subscheme given by I is
two. Since the support of the scheme is the point [1, 0, 0], we check it on the
set Uσ, where σ = Cone(ρ1, ρ2). We localize with respect to α0, take degree
zero, and get the ring

C
[
α3
1

α3
0

,
α3
2

α3
0

,
α1α2

α2
0

]
∼= C[u, v, w]/(w3 − uv). (5.6)

If we factor out by the ideal generated by α2
1 and α2

2, we get

C[u, v, w]/(w3 − uv, u, v, w2) ∼= C[w]/(w2),

so the length of the scheme defined by I is two.
Now we show that the rank is at most five. Take a homogeneous ideal I =

(α5
0 − α4

1α2, α
3
1 − α3

2) ⊆ Ann(F ). We show that the length of the subscheme
defined by I is five. From these equations we know that no coordinate can
be zero, so we can check the length on the open subset Uσ, where σ =
Cone(ρ1, ρ2). We get the same ring as in Equation 5.6, and we want to factor
it out by the ideal generated by α5

0−α4
1α2 and α3

1−α3
2. The second generator

gives the relation u− v, and the first one the relation 1− vw. So we get the
ring

C[v, w]/(w3 − v2, 1− vw).

But notice that 1 = vw implies that w is non-zero. Hence

C[v, w]/(w3 − v2, 1− vw) ∼= C[v, w, w−1]/(w3 − v2, 1− vw)
∼= C[v, w, w−1]/(w5 − 1, w−1 − v) ∼= C[w,w−1]/(w5 − 1).

We get a reduced scheme of length five, so the rank is at most five.
Now we show that br(F ) = 2. Consider the equations given by rank

one reflexive sheaves O(3, 0) and O(3, 1) (given by minors of matrices).
In order to find these equations, we give coordinates to every point p ∈
H0(XΣ,O(6, 0))∗:

p = t6,0,0x
(6)
0 + t0,6,0x

(6)
1 + t0,0,6x

(6)
2 + t4,1,1x

(4)
0 x1x2 + t1,4,1x0x

(4)
1 x2

+ t1,1,4x0x1x
(4)
2 + t3,3,0x

(3)
0 x

(3)
1 + t0,3,3x

(3)
1 x

(3)
2 + t3,0,3x

(3)
0 x

(3)
2 + t2,2,2x

(2)
0 x

(2)
1 x

(2)
2 .
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Now we write down the matrix of the map (· ⌟ p) : T(3,0) → T ∗
(3,0) in the

standard monomial bases α3
0, α

3
1, α

3
2, α0α1α2 and x(3)0 , x

(3)
1 , x

(3)
2 , x0x1x2:

M =


t6,0,0 t3,3,0 t3,0,3 t4,1,1
t3,3,0 t0,6,0 t0,3,3 t1,4,1
t3,0,3 t0,3,3 t0,0,6 t1,1,4
t4,1,1 t1,4,1 t1,1,4 t2,2,2


We also write down the matrix of the map (· ⌟ p) : T(3,1) → T ∗

(3,−1) in the
bases α2

0α1, α
2
1α2, α

2
2α0 and x(2)0 x2, x

(2)
1 x0, x

(2)
2 x1:

N =

t4,1,1 t2,2,2 t3,0,3
t3,3,0 t1,4,1 t2,2,2
t2,2,2 t0,3,3 t1,1,4


We compute that the 3 by 3 minors of M and N define a variety of di-
mension 5 over Q. But it can be found by the same method as in Sec-
tion 5.2 that the dimension of the second secant variety of the embedding
XΣ ↪→ P(H0(XΣ,O(6, 0))∗) is 5. Hence, the σ2(XΣ) is given set-theoretically
by the 3 by 3 minors of M and N over Q. But this means that it is also
defined by these equations over C. Finally, since F satisfies these equations,
the claim follows.

Example 5.9. Take

F = x
(2)
0 x

(2)
1 x

(2)
2 ∈ H0(XΣ,O(6, 0))∗.

Here the apolar ideal is Ann(F ) = (α3
0, α

3
1, α

3
2). We calculate the following

r(F ) cr(F ) br(F )
3 3 3

Let I = (α3
0 − α3

1, α
3
1 − α3

2). In this case also no coordinate can be zero, so
we may calculate the length on Uσ (where σ is as before). We get the ring
as in Equation 5.6 and the two generators become 1− u and u− v. So here
the quotient ring is

C[w]/(w3 − 1).

This means that the rank is at most three (notice that we get a reduced
scheme). We can calculate the Hilbert function of Apolar(F ) = T/Ann(F ).
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We have dimC Apolar(F )(3,1) = 3, so from Proposition 3.22 we get that
br(F ) ≥ 3.

Now we show that cr(F ) = 3. We look at the polytope P of the embedding
by O(6, 0).

(6, 0, 0)

(0, 0, 6)

(0, 6, 0)
(2, 2, 2)

The projective tangent space at the vertex v is given by the Hilbert basis of
the semigroup N(P ∩M − v) (see Proposition 2.14). The vector (2, 2, 2) is in
none of the three Hilbert bases, which means that x(2)0 x

(2)
1 x

(2)
2 is in none the

of three tangent spaces at the singular points. But the fact that br(F ) ≥ 3
means that F is neither in any projective tangent space at a smooth point
nor at any secant line passing through two points. It follows that cr(F ) > 2.
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Chapter 6

Distinguishing between secant
varieties and cactus varieties

The goal of this chapter is to prove three theorems describing cactus varieties.
In this chapter, we work over the field of complex numbers.

We present the three main theorems. Each one has two points. The
first point always claims that there are two components of the cactus variety.
The fact that there are at most two components in the cases considered is
nothing new, it follows from [29] and [30]. But in general, it is possible that
there is just one component. Consider for instance the case of v3 : P(C7) →
P(Sym3C7), where the secant variety σ14(v3(P(C7))) fills the ambient space
(which follows from the Alexander-Hirschowitz theorem).

However, in each of the theorems, the main result is Point (ii), describing
the irreducible component of the respective cactus variety which is not the
secant variety.

We define the coordinate ring and the graded dual ring to be

T = C[α1,0, . . . , α1,n1 , . . . , αk,0, . . . , αk,nk
],

T ∗ = Cdp[x1,0, . . . , x1,n1 , . . . , xk,0, . . . , xk,nk
]

= SymV ∗
1 ⊗ · · · SymV ∗

k ,

where V ∗
i = ⟨xi,0, . . . , xi,ni

⟩ for 1 ≤ i ≤ k. The rings T , and T ∗ are
naturally graded by Zk. As before, for a vector of non-negative integers
d = (d1, . . . , dk), we define Td (T ∗

d) to be the graded piece of T (T ∗) of degree
d.

In the following theorems, we consider secant varieties with respect to
the Segre-Veronese embedding vd of degree d for a multi-index d. This is

115



the map attached to the linear system |O(d)| or, equivalently, it is given on
points by

vd : PT ∗
1,0,...,0 × · · · × PT ∗

0,...,0,1 → PT ∗
d

([l1], . . . , [lk]) 7→ [ld11 · · · ldkk ].

In Theorems 6.1 and 6.3 we consider the special case of the Veronese embed-
ding (k = 1).

Recall the triangle operator from Definition 4.18, the notion of deho-
mogenizing with respect to bases (Definition 4.19) and that Apolar(W ) =
S/Ann(W ).

Theorem 6.1. Let n ≥ 6 and d ≥ 5 be integers.

(i) The cactus variety κ14(vd(PT ∗
1 )) has two irreducible components, one of

which is σ14(vd(PT ∗
1 )), and we denote the other one by η14(vd(PT ∗

1 )).

(ii) The irreducible component η14(vd(PT ∗
1 )) is the closure of the following

set

{[zd−3
0 F ] ∈ PT ∗

d | z0 ∈ T ∗
1 \ {0}, [F ] ∈ PT ∗

3 , and there exists
a completion of z0 to a basis (z0, z1, . . . , zn) of T ∗

1 such that
Apolar((F |z0=1)

▼d) has Hilbert function (1, 6, 6, 1)}.

Theorem 6.2. Let n = n1+ · · ·+nk and suppose n ≥ 6. Let d = (d1, . . . , dk)
be a multi-index with di ≥ 7 for 1 ≤ i ≤ k.

(i) The cactus variety κ14(vd(Pn1 × · · · × Pnk)) has two irreducible compo-
nents, one of which is σ14(vd(Pn1 ×· · ·×Pnk)), and we denote the other
one by η14(vd(Pn1 × · · · × Pnk)).

(ii) The irreducible component η14(vd(Pn1 × · · ·×Pnk)) is the closure of the
following set

{[zd1−3
1 · · · zdk−3

k F ] ∈ PT ∗
d | zi ∈ V ∗

i \ {0}, [F ] ∈ PT3,...,3, for each i there
exists a completion of zi to a basis (zi, zi,1, . . . , zi,ni

)

of V ∗
i such that Apolar((F |z0,z1,...,zk=1)

▼d) has
Hilbert function (1, 6, 6, 1)}
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Theorem 6.3. Let n ≥ 4 and d ≥ 5 be integers and consider the polynomial
ring T ∗ = C[x0, . . . , xn] graded in a standard way by N.

(i) The Grassmann cactus variety κ8,3(νd(PT ∗
1 )) has two irreducible com-

ponents, one of which is the Grassmann secant variety σ8,3(νd(PT ∗
1 )),

and we denote the other one by η8,3(νd(PT ∗
1 )).

(ii) The irreducible component η8,3(νd(PT ∗
1 )) is the closure of the following

set

{[zd−2
0 U ] ∈ Gr(3, T ∗

d ) | z0 ∈ T ∗
1 \ {0}, U ∈ Gr(3, T ∗

2 ), and there exists
a completion of z0 to a basis (z0, z1, . . . , zn) of T ∗

1 such that
Apolar((U |z0=1)

▼d) has Hilbert function (1, 4, 3)}.

Theorems 6.1 and 6.3 have the following corollaries (Corollary 6.4 has
been already stated in the Introduction as Theorem 1.21):

Corollary 6.4. For d ≥ 5, the cactus variety κ14(vd(P6)) has two irreducible
components: the secant variety σ14(vd(P6)), and the variety η14(vd(P6)) con-
sisting of degree d forms divisible by the (d− 3)-rd power of a linear form.

Corollary 6.5. Let d ≥ 5, the Grassmann cactus variety κ8,3(vd(P4)) has
two irreducible components: the Grassmann secant variety σ8,3(vd(P4)) and
the variety η8,3(vd(P4)) consisting of 3-dimensional vector spaces divisible by
a (d− 2)-nd power of a linear form.

Furthermore for n ≥ 6 and d ≥ 6 we present an algorithm (Theorem 6.6)
for deciding whether [G] ∈ κ14(vd(Pn)) is in σ14(vd(Pn)).

Theorem 6.6. Let T ∗ = C[x0, . . . , xn] be a polynomial ring with n ≥ 6.
Given an integer d ≥ 6 and [G] ∈ κ14(vd(PT ∗

1 )) ⊆ PT ∗
d the following algorithm

checks if [G] ∈ σ14(vd(PT ∗
1 )).

Step 1 Compute the ideal a =
√

((AnnG)≤d−3).
Step 2 If a1 is not n-dimensional, then [G] ∈ σ14(vd(PT ∗

1 )) and the algorithm
terminates. Otherwise compute {K ∈ T ∗

1 | a1⌟K = 0}. Let z0 be a
generator of this one dimensional C-vector space.

Step 3 Let e be the maximal integer such that ze0 divides G. If e ̸= d − 3,
then [G] ∈ σ14(vd(PT ∗

1 )) and the algorithm terminates. Otherwise
let G = zd−3

0 F , pick a basis (z0, z1, . . . , zn) of T ∗
1 and compute f =

F |z0=1 ∈ R∗ := C[z1, . . . , zn].
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Step 4 Let I = Ann(f▼d) ⊆ R. If the Hilbert function of R/I is not equal to
(1, 6, 6, 1), then [G] ∈ σ14(vd(PT ∗

1 )), and the algorithm terminates.

Step 5 Compute r = dimC HomR(I, R/I). Then [G] ∈ σ14(vd(PT ∗
1 )) if and

only if r > 14n− 8.

Using the description of the irreducible component η given in Theorem
6.3, we are able to determine algorithmically if a given point from the Grass-
mmann cactus variety is in the Grassmann secant variety.

Theorem 6.7. Let n be at least 4 and T ∗ = C[x0, . . . , xn] be a polynomial
ring. Given an integer d ≥ 5 and [V ] ∈ κ8,3(vd(PT ∗

1 )) ⊆ Gr(3, T ∗
d ) the

following algorithm checks if [V ] ∈ σ8,3(vd(PT ∗
1 )).

Step 1 Compute the ideal a =
√
((AnnV )≤d−2).

Step 2 If a1 is not n-dimensional, then [V ] ∈ σ8,3(vd(PT ∗
1 )) and the algo-

rithm terminates. Otherwise compute {K ∈ T ∗
1 | a1⌟K = 0}. Let z0

be a generator of this one dimensional C-vector space.

Step 3 Let e be the maximal integer such that ze0 divides V . If e ̸= d − 2,
then [V ] ∈ σ8,3(vd(PT ∗

1 )) and the algorithm terminates. Otherwise
let V = zd−2

0 U , pick a basis (z0, z1, . . . , zn) of T ∗
1 and compute W =

U |z0=1 ⊆ R∗ := C[z1, . . . , zn].
Step 4 Let I = Ann(W▼d) ⊆ R. If the Hilbert function of R/I is not

(1, 4, 3), then [V ] ∈ σ8,3(vd(PT ∗
1 )), and the algorithm terminates.

Step 5 Compute r = dimCHomR(I, R/I). Then [V ] ∈ σ8,3(vd(PT ∗
1 )) if and

only if r > 8n− 7.

Section 6.1 is intented as a warm-up. We cover the case of the third
Veronese there and argue that this case is more difficult than the cases with
higher degree. The goal of the three remaining sections is two prove Theorems
6.1–6.3, and to prove that Algorithms 6.6 and 6.7 work.

While Sections 6.2 and 6.4 come from the article [47], Sections 6.1 and
6.3 are the author’s own work that has not appeared anywhere before.

6.1 Initial cases
The first example that we would like to study is the case of cubics. However,
it is extremely hard to say anything about this case. If dimV ≤ 13, we do
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not know anything. But for at least 14 variables we know that the cactus
variety has two components, and we know their dimensions.

But first let us recall a fact mentioned in [57, Theorem 1.69].

Proposition 6.8. Let I ⊆ T be the saturated ideal of a zero-dimensional
scheme in Pn. Let τ be the degree where the Hilbert function of T/I stabilizes.
Then I is generated in degrees ≤ τ + 1.

Recall the function hr, as in Definition 3.11.

Proposition 6.9. Let n ≥ 13. Let G be a general homogeneous cubic in n+1
variables x0, . . . , xn such that Apolar(G) has Hilbert function 1, 14, 14, 1 and
cr(G) = 14. There exists exactly one saturated ideal I ⊆ Ann(G) of degree
14. Moreover, any ideal J ⊆ Ann(G) with Hilbert function h14 is equal to I.

Proof. As I is saturated of degree 14, and contained in Ann(G), it has Hilbert
function 1, 14, 14, 14, 14, . . . . This means that we can apply Proposition 6.8
to get that I is generated in degrees at most 2. But because the Hilbert
functions of Ann(G) and I at degree 2 are equal, and I ⊆ Ann(G), we have

I2 = Ann(G)2.

Since I has no generators in higher degree, we get I = (Ann(G)≤2).
Such an ideal I exists because of Theorem 3.9. Take any J ⊆ Ann(G)

such that T/J has Hilbert function h14. Then J2 = Ann(G)2 = I2, but I is
generated in degrees at most 2, so I ⊆ J . The ideals have the same Hilbert
function, so they are the same.

Theorem 6.10. Suppose dimV ≥ 14. Then

κ14(v3(PV )) = σ14(v3(PV )) ∪ η14(v3(PV ))

is a decomposition into irreducible components. Moreover,

dimσ14(v3(PV )) = 14 dimV − 1,
dim η14(v3(PV )) = 14 dimV − 9.

The component η14(v3(PV )) is the closure of the following set

{[F ] ∈ P Sym3 V | there exists a basis l, l1, . . . , ln of V
such that Apolar(F |l=1) has Hilbert function 1, 6, 6, 1}.
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Proof. Proposition 6.9 means that the projection map

χ|Y2 : Y2 → η14(v3(PV ))

is generically one-to one (Y2 is defined in Equation (4.1)). The claim on the
dimension of η14(v3(PV )) follows.

To prove that σ14(v3(PV ))) and η14(v3(PV )) are irreducible components,
notice that the general point of η14(v3(PV )) cannot belong to σ14(v3(PV )),
because then by Theorem 3.12 there would exist an ideal J ⊆ Ann(G) in
Slipr,Pn such the Hilbert function of T/J is h14, which would mean that I =
J . But since Slip surjects onto the smoothable component of the standard
Hilbert scheme, we get that V (I) would be smoothable, a contradiction.

The final claim follows from [8, Page 61].

6.2 14th secant variety of higher Veronese em-
beddings

We will consider the polynomial ring T = C[α0, α1, . . . , αn], and its graded
dual T ∗ = C[x0, x1, . . . , xn], where n ≥ 6. Given f ∈ T ∗, we denote by fj its
homogeneous part of degree j.

Our goal is to characterize for d ≥ 5 and n ≥ 6 the closure of the set-
theoretic difference between the cactus variety κ14(vd(PT ∗

1 )) and the secant
variety σ14(vd(PT ∗

1 )). For n = 6 and d ≥ 5 this closure consists of points
[G] ∈ PT ∗

d with G divisible by (d− 3)-th power of a linear form. However for
n > 6 the situation is more complicated.

Remark 6.11. Notice that we omitted the case d = 4. This is because neither
the methods for d = 3, nor the ones for d ≥ 5 seem to work here.

Proposition 6.12. Let (z0, z1, . . . , zn) be a C-basis of T ∗
1 . Assume that G =

zd−3
0 F for some natural number d ≥ 5 and F ∈ T ∗

3 . Define f := F |z0=1 ∈
R∗ := C[z1, . . . , zn]. If f satisfies the following conditions:

(a) Apolar(f▼d) has Hilbert function (1, 6, 6, 1),

(b) [SpecApolar(f▼d)] /∈ HilbGor,sm14 (An),

then [G] ∈ η14(vd(Pn)) \ σ14(vd(Pn)).
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Proof. By Condition (a) we have dimC(R/Ann(f
▼d)) = 14. Therefore from

Theorem 3.31 (i)

cr(G) = cr (
3∑
i=0

z
(d−i)
0 f▼d

i ) ≤ 14.

From Theorem 3.12, if [G] ∈ σ14(vd(Pn)) then there exists J ⊆ Ann(G) with
[J ] ∈ Slip14,PT1 ⊆ Hilbh14T . Thus [Proj(T/ sat(J,B))] ∈ Hilbsm14 (Pn). The
Hilbert function of R/Ann(f▼d

3 ) is (1, 6, 6, 1) by [30, Theorem 2.3 and the
following remarks]. In particular, f▼d

3 is not a power of a linear form. From
Theorem 3.31(iii) it follows that sat(J,B) = Ann(f▼d)hom, so

[Spec(R/Ann(f▼d))] ∈ HilbGor,sm14 (An).

This contradicts Condition (b).

Finally we present the proof of the characterization of points of the second
irreducible component of the cactus variety.

Proof of Theorem 6.1 and Corollary 6.4. We set k = 1. Recall the sets C
and D from Lemma 4.21. Let ψ : (T ∗

1 \ {0}) × (T ∗
3 \ {0}) → PT ∗

d be given
by (z0, F ) 7→ [zd−3

0 F ]. By Proposition 6.12 if (z0, F ) ∈ D, then [zd−3
0 F ] ∈

η14(vd(PT ∗
1 )). Hence ψ(C) ⊆ η14(vd(PT ∗

1 )). The fibers of ψ|C : C → ψ(C) are
two-dimensional, so dimψ(C) = 14n+5. But dim η14(vd(PT ∗

1 )) ≤ 14n+5 by
Proposition 4.7. Therefore ψ(C) = η14(vd(PT ∗

1 )). This concludes the proof
of Theorem 6.1(ii).

We proceed to the proof of Theorem 6.1(i). Let [f ] ∈ B, where B is as
in Lemma 4.17. Then by Proposition 6.12 we get [fhom,d] ∈ κ14(vd(PT ∗

1 )) \
σ14(vd(PT ∗

1 )). This is enough, since

dimσ14(vd(PT ∗
1 )) > dim η14(vd(PT ∗

1 )).

Now we prove Corollary 6.4. Assume that n = 6. Then in the above
notation the closure of C in (T ∗

1 \{0})×(T ∗
3 \{0}) has the maximal dimension

14 · 6 + 7 = 91. Thus

C = (T ∗
1 \ {0})× (T ∗

3 \ {0}). (6.1)

Notice that ψ can be factored by

(T ∗
1 \ {0})× (T ∗

3 \ {0}) q−→ PT ∗
1 × PT ∗

3

ψ′
−→ PT ∗

d ,
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where q is the product of projections, and ψ′([z0], [P ]) = [zd−3
0 P ]. Since ψ′ is

a morphism from a projective variety, the set ψ′(PT ∗
1 × PT ∗

3 ) is closed. We
have

ψ(C) ⊆ ψ(C), (6.2)

but the set
ψ(C) = ψ′(q(C)) = ψ′(PT ∗

1 × PT ∗
3 )

is closed, hence Inclusion 6.2 is an equality, which means that

η14(vd(PT ∗
1 )) = ψ(C).

But then the statement of the Corollary follows from Equation 6.1.

Proposition 6.13. Let d ≥ 4 be an integer, z0 ∈ T ∗
1 , Q ∈ T ∗

2 . Assume
z0 ̸= 0 and Q ̸= 0. Define G = zd−2

0 Q ∈ T ∗
d . If [G] ∈ κr(νd(Pn)) for a

positive integer r, then [G] ∈ σr(νd(Pn)).

Proof. Complete z0 to a basis {z0, z1, . . . , zn} of T ∗
1 . Let S∗ = C[z1, ..., zn]

and q = q2 + q1 + q0 ∈ S be such that G = q2z
(d−2)
0 + q1z

(d−1)
0 + q0z

(d)
0 . By

Theorem 3.31(ii) we have dimC S/Ann(q) = s for some s ≤ r. Therefore,

[ProjT/Ann(q)hom] ∈ Hilbs(Pn).

By [29, Prop. 4.9] this subscheme is smoothable. Hence, it follows from
Lemma 3.35 that [G] ∈ σr(νd(Pn)).

The following lemma gives a description of the set-theoretic difference of
the cactus variety and the secant variety. We need it to give a clear proof of
Theorem 6.6.

Lemma 6.14. Let d ≥ 6, n ≥ 6. The point [G] ∈ κ14(d(Pn)) does not belong
to σ14(vd(Pn)) if and only if there exists a linear form z0 ∈ T ∗

1 , and F ∈ T ∗
3

such that G = zd−3
0 F and for any completion of z0 to a basis (z0, . . . , zn) of

T ∗
1 (with dual basis equal to (γ0, . . . , γn)) we have:

(a) Apolar((F |z0=1)
▼d) has Hilbert function (1, 6, 6, 1),

(b) [SpecApolar((F |z0=1)
▼d)] /∈ HilbGor,sm14 (An).
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Proof. If z0 ∈ T ∗
1 and F ∈ T ∗

3 are such that G = zd−3
0 F , and there exists a

completion of z0 to a basis (z0, . . . , zn) of T ∗
1 , for which Conditions (a),(b)

hold, we get
[G] /∈ σ14(vd(Pn))

by Proposition 6.12.
Assume that [G] /∈ σ14(vd(Pn)). Then by Theorem 6.1 there exists a

linear form z0 ∈ T ∗
1 such that zd−3

0 |G. Hence we showed that G = zd−3
0 P for

some F ∈ T ∗
3 . Extend z0 to a basis z0, z1, . . . , zn. Let f = F |z0=1. Suppose

f = f3 + f2 + f1 + f0.
Now we prove Conditions (a), (b) hold. It follows from the definition of

()▼d that f▼d = f▼d
3 + f▼d

2 + f▼d
1 + f▼d

0 ∈ C[z1, . . . , zn]. We have

G =
3∑
i=0

z
(d−i)
0 f▼d

i .

By Lemma 2.33 (i)
Ann(f▼d)hom ⊆ Ann(G).

If dimC(Apolar(f
▼d)) ≤ 13, then cr(G) ≤ 13 by Theorem 3.9. Therefore,

[G] ∈ κ13(vd(Pn)) = σ13(vd(Pn)) ⊆ σ14(vd(Pn)), a contradiction.
From Theorem 3.31(ii) we obtain dimC(Apolar(f

▼d)) ≤ 14. We proved
that dimC(Apolar(f

▼d)) = 14.
Since we assumed that [G] ̸∈ σ14(vd(Pn)), it follows from Lemma 3.35

that SpecApolar(f▼d) is not smoothable. This implies Condition (b) holds.
By [30, Theorem 2.3] and [30, Proposition 6.11] the algebra Apolar(f▼d) has
Hilbert function (1, 6, 6, 1). Thus we proved Condition (a) holds.

Steps 2–5 of the algorithm from Theorem 6.6 verify if G satisfies necessary
conditions to be of the form given by Lemma 6.14.

Proof of Theorem 6.6. Assume that [G] /∈ σ14(vd(Pn)). Then there exist a
basis (z0, . . . , zn) of T ∗

1 and F ∈ T ∗
3 as in Lemma 6.14. Let f = F |z0=1.

It follows from the definition of ()▼d that f▼d = f▼d
3 + f▼d

2 + f▼d
1 + f▼d

0 ∈
C[z1, . . . , zn]. Therefore G = z

(d−3)
0 f▼d

3 + z
(d−2)
0 f▼d

2 + z
(d−1)
0 f▼d

1 + z
(d)
0 f▼d

0 . By
Lemma 2.33(ii), we have Ann(G)≤d−3 = (Ann(f▼d)hom)≤d−3. Moreover, by
Lemma 2.34,

((Ann(f▼d)hom)≤d−3) = Ann(f▼d)hom (6.3)
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(The assumptions of the Lemma are satisfied since the algebras Apolar(f▼d
3 )

and Apolar(f▼d) have the same Hilbert function by [30, Theorem 2.3 and the
following remarks].) Therefore we have

a =
√
(Ann(G)≤d−3) =

√
Ann(f▼d)hom = (γ1, . . . , γn),

where γ1, . . . , γn ∈ T1 are dual to z1, . . . , zn ∈ T ∗
1 . This shows that if the C-

linear space
(√

(Ann(G)≤d−3)
)
1

is not n-dimensional then [G] ∈ σ14(vd(Pn)).
Therefore, in that case, algorithm stops correctly at Step 2.

Assume that the algorithm did not stop at Step 2. Then if G is of the
form as in Lemma 6.14, then z0 divides G exactly d − 3 times. Otherwise
[G] ∈ σ14(vd(Pn)) and the algorithm stops correctly at Step 3.

Assume that the algorithm did not stop at Step 3. Then the algorithm
does not stop at Step 4 if and only if Condition (a) of Lemma 6.14 is fulfilled.
Therefore, if the Hilbert function of R/Ann(f▼d) is not equal to (1, 6, 6, 1),
the algorithm stops correctly at Step 4.

Assume that the algorithm did not stop at Step 4. Then F satisfies
Condition (a) from Lemma 6.14. Hence [G] is in σ14(vd(Pn)) if and only if F
does not satisfy Condition (b). Using Lemma 4.5, this is equivalent to

dimC HomR(I, R/I) > 14n− 8.

The left term is the dimension of the tangent space to the Hilbert scheme
HilbGor14 (An) at the point [SpecR/I] (see [53, Proposition 2.3] or [68, Theo-
rem 18.29]).

Remark 6.15. The algorithm is stated for d ≥ 6 even though it is based on
Theorem 6.1 which works for d ≥ 5. The reason for this is that we needed
d ≥ 6 to obtain Equation (6.3) and for Lemma 6.14 to work. We do not
know a counterexample for the algorithm in case d = 5.

Equations defining the cactus variety κ14(v6(Pn)) for n ≥ 6 are un-
known and there is no example of an explicit equation of the secant variety
σ14(v6(Pn)) which does not vanish on the cactus variety. We present some
known results about 14-th secant and cactus varieties of Veronese embeddings
of P6.
Remark 6.16. Let V be a 7-dimensional complex vector space. The catalecti-
cant minors define a subscheme of P(Sym6 V ) one of whose irreducible com-
ponents is the secant variety σ14(v6(PV )) (see [57, Theorem 4.10A]). More-
over, these equations are known to vanish on the cactus variety κ14(v6(PV ))
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(see [19, Proposition 3.6], or Theorem 1.17). Example 6.17 shows that the
catalecticant minors do not define κ14(v6(PV )) set-theoretically. However, if
we consider the d-th Veronese for d ≥ 28, then the catalecticant minors are
enough to define κ14(vd(PV )) set-theoretically, see [19, Theorem 1.5]. The
article [64] gives an extensive list of results on equations of secant varieties
but in the case of σ14(v6(PV )) it does not improve the result in [57].

Example 6.17. Let F = x60 + x21x
2
2x

2
3 + x34x

2
5x6 ∈ T ∗ = C[x0, . . . , x6]. Then

Hilbert function of T/Ann(F ) is (1, 7, 12, 14, 12, 7, 1) but there is only one
minimal homogeneous generator of Ann(F ) in degree 4. Therefore there is no
homogeneous ideal J in T such that T/J has an 14-standard Hilbert function
and J is contained in Ann(F ). Thus bcr(F ) > 14 by Theorem 3.15, even
though the Hilbert function of T/Ann(F ) is bounded by 14.

6.3 14th secant variety of Segre-Veronese em-
beddings

The aim of this section is to prove Theorem 6.2. We let T = SymV1 ⊗
· · · ⊗ SymVk, and the graded dual T ∗ = SymV ∗

1 ⊗ · · · ⊗ SymV ∗
k . Here

dimC Vi = ni + 1, and n = n1 + · · ·+ nk.

Proposition 6.18. For each i = 1, . . . , k, let zi, zi,1, . . . , zi,ni
be a C-basis of

Vi. Assume that G = zd1−3
1 · · · zdk−3

k F for some natural numbers d1, . . . , dk ≥
7 and F ∈ T ∗

3,...,3. Define

f := F |z1=1,...,zk=1 ∈ R∗ := C[z1,1, . . . , z1,n1 , . . . , zk,1, . . . , zk,nk
].

If f satisfies the following conditions:

(a) Apolar(f▼,d) has Hilbert function (1, 6, 6, 1),

(b) [SpecApolar(f▼,d)] /∈ HilbGor,sm14 (An),

then [G] ∈ η14(vd(Pn1 × · · · × Pnk)) \ σ14(vd(Pn1 × · · · × Pnk)).

Proof. By Condition (a) we have dimC(R/Ann(f
▼d)) = 14. Therefore from

Theorem 3.30 (i)
cr(G) = cr((f▼d)hom,d)) ≤ 14.
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From Theorem 3.12, if [G] ∈ σ14(vd(Pn1 × · · · × Pnk)) then there exists J ⊆
Ann(G) with [J ] ∈ Slip14,PV1×···×PVk ⊆ Hilbh14T ∗ . Thus [Proj(T/ sat(J,B))] ∈
Hilbsm14 (Pn1 × · · · × Pnk). From Theorem 3.30 (iii) it follows that sat(J,B) =
Ann(f▼d)hom, so

[Spec(R/Ann(f▼d))] ∈ HilbGor,sm14 (An).

This contradicts Condition (b).

Finally we present the proof of the characterization of points of the second
irreducible component of the cactus variety.

Proof of Theorem 6.2. Recall the sets C and D from Lemma 4.21. Let

ψ :
k∏
i=1

(V ∗
i \ {0})× (T ∗

3,...,3 \ {0}) → PT ∗
d

be given by (z1, . . . , zk, F ) 7→ [zd1−3
1 · · · zdk−3

k F ].

By Proposition 6.18 if (z1, . . . , zk, F ) ∈ D, then

[zd1−3
1 · · · zdk−3

k F ] ∈ η14(vd(PV ∗
1 × · · · × PV ∗

k )).

Hence ψ(C) ⊆ η14(vd(PV ∗
1 × · · · × PV ∗

k )). The fibers of ψ|C : C → ψ(C) are
(k + 1)-dimensional, so dimψ(C) = 14n+ 5. But

dim η14(vd(PV ∗
1 × · · · × PV ∗

k )) ≤ 14n+ 5

by Proposition 4.7. Therefore ψ(C) = η14(vd(PV ∗
1 × · · · × PV ∗

k )). This
concludes the proof of Theorem 6.2(ii).

We proceed to the proof of Theorem 6.2(i). Let [f ] ∈ B, where B is as
in Lemma 4.17. Then by Proposition 6.18 we get

[fhom,d] ∈ κ14(vd(PV ∗
1 × · · · × PV ∗

k )) \ σ14(vd(PV ∗
1 × · · · × PV ∗

k )).

Moreover, the class [zd11 · · · zdkk +wd11 · · ·wdkk ] is in σ14(PV ∗
1 × · · ·×PV ∗

k )), but
is not divisible by any (d1 − 3)-rd power of a linear form in V ∗

1 , hence it is
not in η(vd(PV1 × · · · × PV ∗

k )).
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6.4 Grassmann secant variety of Veronese em-
beddings

In this section we show that the Grassmann cactus variety κ8,3(vd(Pn)) has
2 components for d ≥ 5 and n ≥ 4, one of which is the Grassmann se-
cant variety σ8,3(vd(Pn)) and the other one is described in Theorem 6.3.
Furthermore, we present an algorithm (Theorem 6.7) for deciding whether
[V ] ∈ κ8,3(vd(Pn)) is in σ8,3(vd(Pn)).
Remark 6.19. By Theorem 4.3, we know that σr,k(vd(Pn)) = κr,k(vd(Pn)) for
r ≤ 7, and any k, n, d, and that σ8,k(vd(Pn)) = κ8,k(vd(Pn)) for n ≤ 3, and
any k, d. In addition, we claim that σ8,2(vd(Pn)) = κ8,2(vd(Pn)) for any n. We
sketch the proof. All local algebras of length at most 8 and socle dimension
at most 2 are smoothable by Theorem 4.3. Hence the claim follows from the
fact that κr,k(vd(Pn)) is the closure of the following set

{[V ] ∈ Gr(k,Cn+1) | ∃R ↪→ Pn such that V ⊆ ⟨vd(R)⟩, lengthR ≤ r,
H0(R,OR) is a product of local algebras of socle dimension at most k}

(a generalization of [19, Prop. 2.2]). Detailed proof of this fact is outside the
main interests of this thesis, hence we skip it.

It follows from the above discussion that the number k = 3 is the smallest
one such that the variety κ8,k(vd(Pn)) can be reducible for some d, n. That
is why we focus on studying κ8,3(vd(Pn)) for n ≥ 4.

We consider the polynomial ring T = C[α0, α1, . . . , αn], and its graded
dual T ∗ = C[x0, x1, . . . , xn], where n ≥ 4. Recall Definition 4.18.

Our goal is to characterize for d ≥ 5 and n ≥ 4 the closure of the set-
theoretic difference between the cactus variety κ8,3(vd(PT ∗

1 )) and the secant
variety σ8,3(vd(PT ∗

1 )). For n = 4 and d ≥ 5 this closure consists of points
[V ] ∈ Gr(3, T ∗

d ) such that each form in V is divisible by (d− 2)-th power of
the same linear form. However for n > 4 the situation is more complicated.
We start with showing that points of Gr(3, T ∗

d ) corresponding to subspaces
divisible by (d − 1)-st power of a linear form are in the Grassmann secant
variety σ8,3(vd(PT1)).

Proposition 6.20. Let d ≥ 2 and n ≥ 4 be integers, z0 ∈ T ∗
1 and [U ] ∈

Gr(3, T ∗
1 ). Define V = zd−1

0 U ∈ Gr(3, T ∗
d ). Then cr(V ) ≤ 4, so [V ] ∈

κ4,3(vd(PT ∗
1 )) = σ4,3(vd(PT ∗

1 )) ⊆ σ8,3(vd(PT ∗
1 )).
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Proof. Up to a linear change of variables, V is of one of the following forms

(a) V = ⟨xd−1
0 x1, x

d−1
0 x2, x

d−1
0 x3⟩ or

(b) V = ⟨xd0, xd−1
0 x1, x

d−1
0 x2⟩.

Then V = W hom,d, where W is respectively

(a) W = ⟨x1, x2, x3⟩ or

(b) W = ⟨1, x1, x2⟩.

In either case, dimC S/Ann(W ) ≤ 4, so cr(V ) = cr(W hom,d) ≤ 4 by Theorem
3.30(i).

In the rest of the section we use the notation W▼d from Definition 4.18.
In the following proposition we identify many points from the Grassmann

cactus variety which are outside of the Grassmann secant variety. In fact the
closure of the set of these points is the second irreducible component of the
Grassmann cactus variety. This will be established in Theorem 6.3.

Proposition 6.21. Let T ∗ be defined as at the beginning of this subsection
and let (z0, z1, . . . , zn) be a C-basis of T ∗

1 . Assume that V = zd−2
0 U for

some natural number d ≥ 5 and [U ] ∈ Gr(3, T ∗
2 ). Define [W ] := [U |z0=1] ∈

Gr(3, R∗
≤2) where R∗ := C[z1, . . . , zn]. If W satisfies the following conditions:

(a) Apolar(W▼d) has Hilbert function (1, 4, 3),

(b) [SpecApolar(W▼d)] /∈ Hilbsm8 (An),

then [V ] ∈ η8,3(vd(Pn)) \ σ8,3(vd(Pn)).

Proof. By Condition (a) we have dimC(R/Ann(W
▼d)) = 8. Therefore from

Theorem 3.30 (i)
cr(V ) = cr((W▼d)hom,d) ≤ 8.

From Theorem 3.12, if [V ] ∈ σ8,3(vd(Pn)) then there exists J ⊆ Ann(V )
with [J ] ∈ Slip8,PT1 ⊆ Hilbh8T . Thus [Proj(T/ sat(J,B))] ∈ Hilbsm8 (Pn). From
Theorem 3.30 (iii) it follows that sat(J,B) = Ann(W▼d)hom, so

[Spec(R/Ann(W▼d))] ∈ Hilbsm8 (An).

This contradicts Condition (b).
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Finally we present the proof of the characterization of points of the second
irreducible component of the Grassmann cactus variety.

Proof of Theorem 6.3 and Corollary 6.5. Recall the sets C and D from the
statement of Lemma 4.24. Let

ψ : (T ∗
1 \ {0})×Gr(3, T ∗

2 ) → Gr(3, T ∗
d )

be given by (z0, [U ]) 7→ [zd−2
0 U ].

By Proposition 6.21 if (z0, [U ]) ∈ D, then [zd−2
0 U ] ∈ η8,3(vd(PT ∗

1 )). Hence
ψ(C) ⊆ η8,3(vd(PT ∗

1 )). The fibers of ψ|C : C → ψ(C) are one-dimensional,
so dimψ(C) = 8n + 8. But dim η8,3(vd(PT ∗

1 )) ≤ 8n + 8 by Proposition 4.8.
Therefore ψ(C) = η8,3(vd(PT ∗

1 )). This concludes the proof of Theorem 6.3(ii).
We proceed to the proof of Theorem 6.3(i). Let [W ] ∈ B, where B is as

in Lemma 4.23. Then by Proposition 6.21 we get [W hom,d] ∈ κ8,3(vd(Pn)) \
σ8,3(vd(Pn)). It is enough to show that η8,3(vd(Pn)) ̸= κ8,3(vd(Pn)). By Point
(ii) every [V ] ∈ η8,3(vd(Pn)) is divisible by the (d − 2)-nd power of a linear
form. Therefore, [⟨xd0, xd1, xd2⟩] ∈ κ8,3(vd(Pn)) \ η8,3(vd(Pn)).

Now we prove Corollary 6.5. Assume that n = 4. Then in the above
notation the closure of C in (T ∗

1 \{0})×Gr(3, T ∗
2 ) has the maximal dimension

41. Thus
C = (T ∗

1 \ {0})×Gr(3, T ∗
2 ). (6.4)

Notice that ψ can be factored by

(T ∗
1 \ {0})×Gr(3, T ∗

2 )
q−→ PT ∗

1 ×Gr(3, T ∗
2 )

ψ′
−→ Gr(3, T ∗

d ),

where q is the product of projection and the identity, and ψ′([z0], [P ]) =
[zd−2

0 P ]. Since ψ′ is a morphism from a projective variety, the set ψ′(PT ∗
1 ×

Gr(3, T ∗
2 )) is closed. We have

ψ(C) ⊆ ψ(C), (6.5)

but the set
ψ(C) = ψ′(q(C)) = ψ′(PT ∗

1 ×Gr(3, T ∗
2 ))

is closed, hence Inclusion 6.5 is an equality, which means that

η8,3(vd(PT ∗
1 )) = ψ(C).

But then the statement of the corollary follows from Equation 6.4.
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Using the description of the irreducible component η given in Theorem
6.3, we are able to determine algorithmically if a given point from the Grass-
mmann cactus variety is in the Grassmann secant variety.

The following lemma gives a description of the set-theoretic difference of
the Grassmann cactus variety and the Grassmann secant variety. We need
it to give a clear proof of Theorem 6.7.

Lemma 6.22. Let d ≥ 5, n ≥ 4. The point [V ] ∈ κ8,3(vd(Pn)) does not
belong to σ8,3(vd(Pn)) if and only if there exists a linear form z0 ∈ T ∗

1 , and
[U ] ∈ Gr(3, T ∗

2 ) such that V = zd−2
0 U and for any completion of z0 to a basis

(z0, . . . , zn) of T ∗
1 (with dual basis equal to (γ0, . . . , γn)) we have:

(a) Apolar((U |z0=1)
▼d) has Hilbert function (1, 4, 3),

(b) [SpecApolar((U |z0=1)
▼d)] /∈ Hilbsm8 (An).

Proof. If z0 ∈ T1 and [U ] ∈ Gr(3, T ∗
2 ) are such that V = zd−2

0 U , and there
exists a completion of z0 to a basis (z0, . . . , zn) of T ∗

1 , for which Conditions
(a),(b) hold, we get

[V ] /∈ σ8,3(vd(Pn))
by Proposition 6.21.

Assume that [V ] /∈ σ8,3(vd(Pn)). Then by Theorem 6.3 there exists a
linear form z0 ∈ T ∗

1 such that zd−2
0 |V . Using Proposition 6.20 we conclude

that V is not divisible by zd−1
0 . Hence we showed that V = zd−2

0 U for some
U ∈ Gr(3, T ∗

2 ). Extend z0 to a basis z0, . . . , zn. Let W = U |z0=1.
Now we prove Conditions (a), (b) hold. We have

V = (W▼d)hom,d.

By Lemma 2.33 (i)
Ann(W▼d)hom ⊆ Ann(V ).

If dimC(Apolar(W
▼d)) ≤ 7, then cr(V ) ≤ 7 by Theorem 3.9, since the ideal

Ann(W▼d)hom is saturated. Therefore,

[V ] ∈ κ7,3(vd(Pn)) = σ7,3(vd(Pn)) ⊆ σ8,3(vd(Pn)),

a contradiction.
From Theorem 3.30(ii’) we obtain dimC(Apolar(W

▼d)) ≤ 8. We proved
that dimC(Apolar(W

▼d)) = 8. Since we assumed that [V ] /∈ σ8,3(vd(Pn)), it
follows by Lemma 3.35 that Spec(Apolar(W▼d)) is not smoothable. This im-
plies Condition (b) holds. From [29, Theorem 4.20], the algebra Apolar(W▼d)
has Hilbert function (1, 4, 3). We proved Condition (a) holds.
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Steps 2–5 of the algorithm verify if V satisfies necessary conditions to be
of the form given by Lemma 6.22.

Proof of Theorem 6.7. Assume that [V ] /∈ σ8,3(vd(Pn)). Then there exist
a basis (z0, . . . , zn) of T ∗

1 and U ⊆ C[z0, . . . , zn] as in Lemma 6.22. Let
W = U |z0=1 ⊆ C[z1, ..., zn].

We get
V = (W▼d)hom,d.

By Lemma 2.33(ii), we have Ann(V )≤d−2 = (Ann(W▼d)hom)≤d−2. Moreover,
since W▼d ⊆ C[z1, . . . , zn]≤2, and d ≥ 5, we obtain ((Ann(W▼d)hom)≤d−2) =
Ann(W▼d)hom. Therefore we have

a =
√

(Ann(V )≤d−2) =
√

Ann(W▼d)hom = (γ1, . . . , γn),

where γ1, . . . , γn ∈ T1 are dual to z1, . . . , zn ∈ T ∗
1 . This shows that if the C-

linear space
(√

(Ann(V )≤d−2)
)
1
is not n-dimensional then [V ] ∈ σ8,3(vd(Pn)).

Therefore, in that case, the algorithm stops correctly at Step 2.
Assume that the algorithm did not stop at Step 2. Then if V is of the

form as in Lemma 6.22, then z0 divides V exactly (d− 2)-times. Otherwise
[V ] ∈ σ8,3(vd(Pn)) and the algorithm stops correctly at Step 3.

Assume that the algorithm did not stop at Step 3. Then the Hilbert
function of R/I computed in Step 4 is (1, 4, 3) if and only if Condition (a) of
Lemma 6.22 is fulfilled. Therefore, if it is not (1, 4, 3), the algorithm stops
correctly at Step 4.

Assume that the algorithm did not stop at Step 4. Then V satisfies
Condition (a) from Lemma 6.22. Hence [V ] is in σ8,3(vd(Pn)) if and only if
V does not satisfy Condition (b). Using Lemma 4.6, this is equivalent to

dimC HomR(I, R/I) > 8n− 7.

The left term is the dimension of the tangent space to the Hilbert scheme
Hilb8(An) at the point [SpecR/I] (see [53, Prop. 2.3.] or [68, Theorem 18.29]).
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