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Abstract

We generalize methods used to compute various kinds of rank (apolarity and the catalecticant
bound) to the case of a toric variety X embedded into projective space using a very ample
line bundle L. We use this to compute cactus rank, rank and border rank of monomials in
H0(X,L)∗ when X is the Hirzebruch surface F1 or a fake projective plane (a quotient of P2

by an action of Z/3).
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Introduction

Let C[y0, . . . , yn] be the polynomial ring in n+ 1 variables over the field of complex numbers
C. Let C[y0, . . . , yn]d denote its d-th graded piece. Suppose F ∈ C[y0, . . . , yn]d. One can
define the Waring rank (also known as the symmetric rank) of F by

r(F ) = min{r ∈ Z≥0 : F = fd1 + . . . fdr for some fi ∈ C[y0, . . . , yn]1}.

We may also think of this in a geometrical way. Let V be an (n + 1)-dimensional vector
space. Let PV denote the naive projectivization of V , i.e. the space of lines in V . Let Symd V
be the d-th graded piece of the symmetric algebra. This is canonically identified with the
subspace of symmetric tensors in V ⊗d, because we are over a field of characteristic zero. We
define the Veronese embedding

vd : PV → P Symd V

by vd(u) = ud. Now, choosing a basis y0, . . . yn of V gives rise to a graded isomorphism
Sym• V ∼= C[y0, . . . , yn]. In this language, the Veronese embedding is raising linear forms to
d-th power. Now we can reformulate the definition above. Define

σ0
r (PV ) = {[F ] ∈ P Symd V : [F ] ∈ 〈vd(p1), . . . , vd(pr)〉 for some pi ∈ PV }.

Here [F ] denotes the class in the projective space and 〈〉 denotes the (projective) linear span.
Then

r(F ) = min{r ∈ Z≥0 : [F ] ∈ σ0
r (PV )}.

We also define
σr(PV ) = σ0

r (PV ).

Here the bar denotes the Zariski closure of a set in P Symd V . This variety is called the r-th
secant variety of the d-th Veronese embedding. Similarly, we define

r(F ) = min{r ∈ Z≥0 : F ∈ σr(PV )},

which is called the (symmetric) border rank of F .
We may use the so-called apolarity action to help us to calculate rank. Let C[x0, . . . , xn]

be the coordinate ring of PV (so x0, . . . , xn is a basis of V ∗ dual to y0, . . . , yn). We will think
of xi as differential operators acting on C[y0, . . . , yn]. More precisely, let

xa0
0 · . . . · x

an
n ◦ y

b0
0 · . . . · y

bn
n =

{
b0!·...·bn!

(b0−a0)!·...·(bn−an)! · y
b0−a0
0 · . . . · ybn−ann if bi ≥ ai for all i,

0 otherwise.
(1)

We extend it by C-linearity to the rings C[x0, . . . , xn] and C[y0, . . . , yn]. This makes C[y0, . . . , yn]
into a C[x0, . . . , xn]-module.

For F ∈ C[y0, . . . , yn]d, let F⊥ denote its annihilator, which is a homogeneous ideal of
C[x0, . . . , xn].

This can help us to calculate rank by means of the following fact.
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Fact 0.1 (Classical Apolarity Lemma). Let F ∈ C[y0, . . . , yn]d. For any closed subset Y ⊆
P(C[y0, . . . yn]1) let I(Y ) denote its radical ideal in C[x0, . . . , xn]. Then for any set of one-
forms Z = {l1, . . . , lr} ⊆ C[y0, . . . , y0]1 we have

F ∈ 〈l1, . . . , lr〉 ⇐⇒ I(Z) ⊆ F⊥.

To see how this works, let us look at the following

Example 0.2. Look at the d-th Veronese embedding C[y0, y1]1 ↪→ C[y0, y1]d (where d ≥ 2),
and let F = yd−1

0 y1. Here F⊥ = (xd0, x
2
1). Then I = (xd0 − xd1) ⊂ F⊥ is radical ideal of d

points, so r(F ) ≤ d. For a proof that r(F ) = d, see [CCG12] (where the authors determine
the rank of any monomial).

This way of thinking about rank can be generalized. Let W be any finite-dimensional
vector space, and X any subvariety of PW . We define

σ0
r (X) = {F ∈ PW : F ∈ 〈p1, . . . , pr〉}

and σr(X) = σ0
r (X). Analogously, we define the X-rank and the X-border rank of F :

rX(F ) = min{r ∈ Z≥0 : F ∈ σ0
r (X)}

and
rX(F ) = min{r ∈ Z≥0 : F ∈ σr(X)}.

Often, if X is fixed, we omit the prefix and call them rank and border rank, respectively.
This generalization has important special cases. For instance, if X = PV1 × · · · × PVk ↪→
P(V1 ⊗ · · · ⊗ Vk) is the Segre embedding (given by [v1, . . . , vk] 7→ [v1 ⊗ · · · ⊗ vk]), then the
X-rank becomes the tensor rank.

For a zero-dimensional scheme R (of finite type over C), let lhR denote its length, i.e.
dimCH

0(R,OR). This is equal to the degree of R in any embedding into projective space.
Let us also define the cactus X-rank:

crX(F ) = min{lhR : R ↪→ X,dimR = 0, F ∈ 〈R〉}.

We have the following inequalities:

cr(F ) ≤ r(F ),
r(F ) ≤ r(F ).

Suppose we go back to the case of the Veronese embedding. Then we can make Fact 0.1
work for the cactus rank:

Fact 0.3. Let F ∈ C[y0, . . . , yn]d. For any closed subscheme R ⊆ P(C[y0, . . . yn]1) let I(R)
denote its saturated ideal in C[x0, . . . , xn]. Then for any zero-dimensional closed subscheme
R ⊆ P(C[y0, . . . , y0]1) we have

F ∈ 〈R〉 ⇐⇒ I(R) ⊆ F⊥.

Let us go back to Example 0.2. We can see that (x2
1) ⊆ F⊥, and the length of the

subscheme defined by x2
1 is two. This means that the cactus rank is at most two. In fact, it

is two, because yd−1
0 y1 is not a d-th power.
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0.1. Background

The topic goes back to works of Sylvester on apolarity in the 19th century. For introductions
to this subject, see [Lan12] and [IK99]. For a short introduction to the concept of rank for
many different subvarieties X ⊆ PN and many ways to give lower bounds for rank, see [Tei14]
(see also many references there). For a short review of the apolarity action in the case of the
Veronese embedding, see [BB14, Section 3].

In this paper, we see what happens when X is a toric variety. For an introduction to this
subject, see the newer [CLS11] and the older [Ful93]. For toric varieties, many invariants can
be computed quite easily. This can be used to study ranks and secant varieties. In [CS07], the
authors investigate the second secant variety σ2(X), where X is a toric variety embedded into
some projective space. As they write there, “Many classical varieties whose secant varieties
has been studied are toric”. Here we take a slightly different approach. We generalize apolarity
to toric varieties, and then, as an application, we compute the rank, cactus rank and border
rank of some polynomials.

0.2. Main result

We need to introduce some notions to state the main result. We revisit these ideas in a
different language in the following chapters. Suppose X is a smooth projective toric variety.
Then ClX = PicX is free of finite rank. Fix a basis L1, . . . ,Ll of ClX (Li are line bundles).
Define the Cox ring of X:

S =
⊕

m1,...,ml∈Z
H0(X,L⊗m1

1 ⊗ · · · ⊗ L⊗mrl ),

where the multiplication is the tensor product of sections. By definition, it is graded by ClX.
Since X is a toric variety, S is a polynomial ring with finitely many variables, so we may write
S ∼= C[x1, . . . , xr]. We look at the ring T = C[y1, . . . , yr]. We forget that it is a ring, and
treat it as an S-module with action ◦ defined as in Equation (1). We grade T in an analogous
way as S:

deg ya1
1 · . . . · y

ar
r = deg xa1

1 · . . . · x
ar
r .

Then we identify H0(X,L)∗ with the graded piece of T of degree L (this identification is
described in Proposition 2.3 in detail), and for a homogeneous F ∈ T we define F⊥ as its
annihilator in S (with respect to the action ◦).

Let R ↪→ X be any closed subscheme with ideal sheaf IR. Then we can define I(R), the
ideal of R in S, by

I(R) =
⊕

m1,...,ml∈Z
H0(X, IR ⊗ L⊗m1

1 ⊗ · · · ⊗ L⊗mrl ).

Recall that for any line bundle L the space H0(X, IR ⊗ L) ⊆ H0(X,L) is the subspace of
those sections which are zero when pulled back to R.

The main result of this paper is:

Theorem 0.4 (Multigraded Apolarity Lemma). Let L be a very ample line bundle on X and
consider the associated morphism ϕ : X ↪→ P(H0(X,L)∗). Take any F ∈ H0(X,L)∗ = TL.
Then for any subscheme R ↪→ X.

I(R) ⊆ F⊥ ⇐⇒ F ∈ 〈R〉.

Here 〈R〉 denotes the linear span of R in H0(X,L)∗.
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This allows us to give upper bounds for the cactus rank (when R is a zero-dimensional
subscheme) and rank (when R is a reduced zero-dimensional subscheme).

We prove Theorem 0.4 in Chapter 3 (Proposition 3.2) in a more general form: we allow
X to be a Q-factorial projective toric variety (so that PicX has finite index in ClX), in the
toric language the corresponding notion is a simplicial fan. Then it may happen that the class
group has torsion.

We may think of it from a different perspective: start with T = C[y1, . . . , yr], pick a
finitely generated abelian group G, and assign to each i (1 ≤ i ≤ r) an element gi ∈ G, and
then we define a grading on T in G by

deg yi := gi.

We define the grading on S in an analogous way. Then we choose a homogeneous polynomial
F ∈ Tg and look for a toric variety X such that G is the class group of X and g is a very
ample class.

To sum up, we look at the polynomial ring C[y1, . . . , yr] with a grading in a finitely
generated group G (such that monomials are homogeneous), and we generalize the apolarity
action to this multigraded setting.

Finally, we use this to compute the ranks of polynomials when X is a projective toric
surface. The first example is the Hirzebruch surface F1 (which can be defined as P2 blown
up in one point), and the second one is a fake projective plane — the quotient of P2 by the
action of Z/3 = {1, ε, ε2} (where ε3 = 1) given by ε · [λ0, λ1, λ2] = [λ0, ελ1, ε

2λ2].

0.3. Overview

In Chapter 1 we introduce the necessary facts on toric varieties, satisfying ourselves with
references on the main points. In Chapter 2 we generalize the notion of apolarity to toric
varieties. Chapter 3 contains the proof of the main result, in an even more general form,
but not involving the apolarity action, and also the statement and proof in the toric case
as a corollary of this. In Chapter 4 we give some examples of how apolarity can be used to
calculate ranks for toric varieties embedded into projective space.

0.4. Acknowledgments
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and constant support. I was supported by the project “Secant varieties, computational com-
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Chapter 1

Toric varieties

Let M and N be dual lattices (abelian groups isomorphic to Zk for some k ≥ 1) and 〈·, ·〉 :
M×N → Z be a duality between them. Let XΣ be the toric variety of a fan Σ ⊆ NR := N⊗R
with no torus factors. “No torus factors” means that the linear span of Σ in NR is the whole
space. Let Σ(1) denote the set of rays of the fan Σ (similarly σ(1) will denote the set of rays
in the cone σ). Then XΣ can be obtained as an almost geometric quotient of an action of
G := Hom(ClXΣ,C∗) on CΣ(1)\Z, where Z is a subvariety of CΣ(1). Let us go briefly through
the construction of this quotient. We follow [CLS11, Section 5.1].

Since XΣ has no torus factors, we have an exact sequence

0→M → ZΣ(1) → ClXΣ → 0.

After applying Hom(−,C∗), this gives

0→ Hom(ClXΣ,C∗)→ (C∗)Σ(1) → TN → 0,

where TN = C∗ ⊗N ⊆ XΣ is the torus of XΣ. So G = Hom(ClXΣ,C∗) is a subset of CΣ(1),
and the action is given by multiplication on coordinates. Let S = SpecC[xρ : ρ ∈ Σ(1)]. In
other words, S is the polynomial ring with variables indexed by the rays of the fan Σ. The
ring S is the coordinate ring of the affine space CΣ(1). For a cone σ ∈ Σ, define

xσ̂ :=
∏

ρ/∈σ(1)

xρ.

Then define an ideal in S:
B = B(Σ) = (xσ̂ : σ ∈ Σ) ⊆ S, (1.1)

and let Z = Z(Σ) ⊆ CΣ(1) be the vanishing set of B. For the definition of the quotient map π

CΣ(1) \ Z (CΣ(1) \ Z)//G = XΣ
π

see [CLS11, Proposition 5.1.9]. If (λ1, . . . , λr) ∈ Cr = CΣ(1), we will sometimes write
[λ1, . . . , λr] for π(λ1, . . . , λr).

Fix an ordering of all the rays of the fan, let Σ(1) = {ρ1, . . . , ρr}. Then S becomes
C[xρ1 , . . . , xρr ] =: C[x1, . . . , xr]. The ring S is the Cox ring of XΣ. For more details, see
[CLS11, 5.2], where S is called the total coordinate ring. This ring is graded by the class
group ClXΣ, where

deg xi := [Dρi ],
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and Dρi is the torus-invariant divisor corresponding to ρi, see [CLS11, Chapter 4]. For the
rest of the paper, if A is a graded ring, Aα will denote the graded piece of A of degree α.

Take any ideals I, J ⊆ S. Let (I :S J) be the set of all x ∈ S such that x · J ⊆ I; it is an
ideal of S. Then for any ideals I, J,K ⊆ S:

• I ⊆ (I :S J),

• if J ⊆ K, then (I :S J) ⊇ (I :S K),

• (I :S J ·K) = ((I :S J) :S K).

Recall the ideal B ⊆ S defined in Equation (1.1). This ideal is called the irrelevant ideal.
Take any ideal I ⊂ S. We define the B-saturation of I as

Isat :=
⋃
i≥1

(I :S B
i).

Note that this is an increasing union because Bi ⊇ Bj for i < j, so Isat is an ideal. Since S
is Noetherian, the union stabilizes in a finite number of steps. We always have I ⊆ Isat. If
this is an equality, we say that I is B-saturated. In order to show that I is B-saturated, it
suffices to find any i ≥ 1 such that I = (I :S B

i).
Moreover, if I and J are homogeneous, then so is (I :S J). It follows that for I homoge-

neous the ideal Isat is homogeneous.
As an example, let us look at the projective space PkC. See [CLS11, Example 5.1.7]. Here

S = C[x0, . . . , xk], B = (x0, . . . , xk) =
⊕

i≥1 Si and Z = {0}. In this case

Isat = {f ∈ S : for all i = 0, 1, . . . , k there is n such that xni · f ∈ I}.

Recall that in this case there is a 1-1 correspondence between closed subschemes of PkC and
homogeneous B-saturated ideals of S. Moreover, the ideal given by

⊕
i≥0H

0(X, IR ⊗O(i)),
where IR is the ideal sheaf of R in PkC, is B-saturated. For more on this, see [Har77, II,
Corollary 5.16 and Exercise 5.10].

For a toric variety the situation is more complicated. We will assume that the fan Σ is
simplicial for technical reasons. There can be many B-saturated ideals defining a subscheme
R. But they have to agree in the Pic part. See [Cox95, Theorem 3.7 and the following
discussion] for more details. Consider the map⊕

α∈ClXΣ

H0(X, IR ⊗O(α))→
⊕

α∈ClXΣ

H0(X,O(α)) (1.2)

induced by IR ↪→ OXΣ
. We may take I to be the image of this map. This is done in the proof

of [CLS11, Proposition 6.A.6]. Note that in this case for any α ∈ PicXΣ the vector space
H0(XΣ, IR ⊗O(α)) can be identified with those global sections of O(α) which vanish on R.
So let us make the following

Definition 1.1. Let XΣ be a simplicial toric variety. Let R ↪→ XΣ be a closed subscheme.
We define I(R) ⊆ S, the ideal of R, to be the image of homomorphism (1.2).

Fact 1.2. Suppose the fan Σ is simplicial. Let α ∈ PicXΣ be the class of a Cartier divisor.
Let R ↪→ XΣ be any closed subscheme. Then (I(R))α = (I(R) :S B)α (i.e. I(R) agrees with
I(R)sat in degree α).
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Proof. Take x ∈ Sα such that x · B ⊆ I(R). It is enough to show that x is zero on R. Take
any point p ∈ R. We will show that x is zero on R around that point. Since V (B) = ∅,
we know that some homogeneous element b ∈ B is non-zero at p. By taking a big enough
power, we may assume b ∈ Bβ for some β ∈ PicXΣ (here we are using that Σ is simplicial!).
Because b is non-zero at p, there is an open neighbourhood p ∈ U ⊆ XΣ such that OXΣ

(β) is
trivialized on U by b. But then x is zero when pulled back to R on U if and only if x · b is
zero when pulled back to R on U . But the latter thing is true as x · b ∈ I(R).

We will need the following

Fact 1.3. Let α ∈ PicXΣ ⊆ ClXΣ. Recall the isomorphism of H0(XΣ,O(α)) and C[x1, . . . , xr]α
given in [CLS11, Proposition 5.3.7]. Take any section s ∈ H0(XΣ,O(α)) and the correspond-
ing polynomial f ∈ Sα. Also let p be a point in XΣ and take any (λ1, . . . , λr) ∈ Cr such that
π(λ1, . . . , λr) = p. Then

s(p) = 0 ⇐⇒ f(λ1, . . . , λr) = 0.

Proof. Take any σ such that p ∈ Uσ. We will trivilize the line bundle O(α) on Uσ in order
to move the situation to regular functions on Uσ. We will do it by finding a section that is
nowhere zero both as a polynomial and as a section.

We know that Uσ = Spec(Sxσ̂)0, where xσ̂ =
∏
ρ/∈σ xρ, the inner subscript refers to

localization, and the outer one is taking degree 0. From the definition of O(α) we have
H0(Uσ,O(α)) = (Sxσ̂)α. Our goal is to find a monomial in (Sxσ̂)α which is nowhere zero
as a section. Take any torus-invariant representative

∑
ρ aρDρ of class α (here aρ ∈ Z).

From [CLS11, Theorem 4.2.8] there exists an mσ ∈M such that 〈mσ, uρ〉 = −aρ for ρ ∈ σ(1)
(here σ(1) is the set of rays of the cone σ, and uσ ∈ N is the generator of ray ρ). Then∑

ρ

〈mσ, uρ〉Dρ +
∑
ρ

aρDρ =
∑
ρ/∈σ(1)

(〈mσ, uρ〉+ aρ)Dρ

belongs to the class α as well. This is a direct consequence of the exact sequence [CLS11,
Theorem 4.2.1]. The outcome is that the monomial g :=

∏
ρ/∈σ(1) x

〈mσ ,uρ〉+aρ
ρ has degree α.

Notice that it belongs to (Sxσ̂)α.
We want to show that g is nowhere zero as a section of O(α). Polynomial g ∈ Sxσ̂ is

invertible, with inverse g−1 ∈ (Sxσ̂)−α. But then g−1 · g = 1 ∈ (Sxσ̂)0. If g were zero at some
point p ∈ XΣ, then we would have 0 = g−1(p) · g(p) = 1, a contradiction.

The fact that g ∈ Sxσ̂ is nowhere zero on SpecSxσ̂ (as a polynomial) is a consequence of
g being invertible in this ring. Now we can set f̄ := g−1f and then f̄ is a regular function
on Spec(Sxσ̂)0. We need to see if f̄(p) = 0 is equivalent to f̄(λ1, . . . , λr) = 0. In fact, even
more is true: f̄(p) = f̄(λ1, . . . , λr). That follows from the fact that f̄ is a function both on
SpecSxσ̂ and on Spec(Sxσ̂)0 and its evaluation at any point is the same as at its image.

Corollary 1.4. Suppose f1, f2 ∈ Sα are polynomials and s1, s2 are the corresponding sections
of O(α). Also fix, as above, p ∈ XΣ and (λ1, . . . , λr) ∈ Cr such that π(λ1, . . . , λr) = p. Then
if f2(λ1, . . . , λr) and s2(p) are non-zero, we get

f1(λ1, . . . , λr)

f2(λ1, . . . , λr)
=
s1(p)

s2(p)
.

Proof. Take µ ∈ C such that f1(λ1, . . . , λr) = µf2(λ1, . . . , λr). Then use the previous fact for
f1 − µf2 and the corresponding section s1 − µs2.
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Chapter 2

Apolarity

Introduce T := C[y1, . . . , yr]. We will think of T as an S-module, where the multiplication
(denoted by y ) is induced by

xi y y
b1
1 · . . . · y

br
r :=

{
yb11 · . . . · y

bi−1
i · . . . · ybrr if bi > 0,

0 otherwise.

This multiplication is called apolarity and when g y F = 0 we often say that g is apolar
to F . The grading on T is the same as on S:

deg yi := [Dρi ].

Remark 2.1. Notice that here we changed the notation from ◦ to y , and we gave up multi-
plying by the constant bi. So the multiplication is not the same as in the introduction. But
it would be the same if we somehow identified ybi from the introduction with b! · ybi from this
chapter. This can be done by taking T to be the ring of divided powers, see [IK99, Appendix
A], or [Eis95, Chapter A2.4] for a coordinate free version. For characteristic zero, this amounts
to setting y(b)

i =
ybi
b! . But here we do not need T to be a ring, we only need it to be a module.

So we might as well write ybi instead of y(b)
i . It will not matter, provided we do not multiply

yb1i by yb2i . This will make some calculations easier.

Remark 2.2. Notice that when we take g ∈ Sα and F ∈ Tβ , then g y F is of degree α− β for
any α, β ∈ ClXΣ. That follows from the fact that when we multiply by subsequent xi’s, the
degree of F decreases by [Dρi ]. This means that, although T is not a graded S-module, it
becomes a graded S-module if we define the grading by

deg yi := −[Dρi ].

Futhermore, if F ∈ T is homogeneous, we will denote by F⊥ its annihilator, which is a
homogeneous ideal in that case.

From now on assume XΣ is a proper variety. Then we have S0 = T0 = C and Sα, Tα are
finite-dimensional vector spaces for any α ∈ ClXΣ.

Proposition 2.3. The map Sα × Tα → S0 = C given by (g, F ) 7→ g y F is a duality for any
α ∈ ClXΣ.

Proof. We will show that the basis

{xa1
1 · . . . · x

ar
r : [a1Dρ1 + . . .+ arDρr ] = α}
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is dual to

{yb11 · . . . · y
br
r : [b1Dρ1 + . . .+ brDρr ] = α}.

We know that xa1
1 · . . . ·xarr y ya1

1 · . . . ·yarr = 1. Consider the value of xa1
1 · . . . ·xarr y yb11 · . . . ·ybrr

when (a1, . . . , ar) 6= (b1, . . . , br). We know that

xa1
1 · . . . · x

ar
r y yb11 · . . . · y

br
r =

{
yb1−a1

1 · . . . · ybr−arr if bi ≥ ai for all i.
0 otherwise.

(2.1)

We want to prove (2.1) is zero, so suppose otherwise. The degree of (2.1) is zero. But the
only monomial whose degree is the trivial class is the constant monomial 1 (we are using that
XΣ is proper). This implies that bi = ai for all i. But this cannot be true, since we assumed
(a1, . . . , ar) 6= (b1, . . . , br). This contradiction means that xa1

1 · . . . · xarr y yb11 · . . . · ybrr = 0, as
desired.

As a corollary, we see that T =
⊕

α∈ClXΣ
H0(X,O(α))∗.

Combining Proposition 2.3 and Corollary 1.4, we get

Fact 2.4. For any α ∈ PicXΣ such that O(α) is basepoint free, the map

ϕ : XΣ → P(H0(XΣ,O(α))∗)

is given by

ϕ([λ1, . . . , λr]) =


∑

b1,...,br∈Z≥0:

y
b1
1 ·...·y

br
r ∈Tα

λb11 · . . . · λ
br
r · y

b1
1 · . . . · y

br
r

 . (2.2)

Proof. In general, if {si : i ∈ I} is a basis of H0(X,O(α)) (I is some finite index set), and
{si : i ∈ I} ⊆ H0(X,O(α))∗ is the dual basis, then

ϕ(p) =

[∑
i∈I

si(p) · si
]
,

where si(p) means evaluating section si at point p. Note that it does not make sense to talk
about the value of a section, but the quotient si(p)/sj(p) makes sense, and the sum makes
sense as a class in the projectivization of H0(X,O(α))∗.

By the proof of Proposition 2.3, the monomials yb11 . . . ybrr ∈ Tα form a dual basis to
xb11 . . . xbrr . So from Corollary 1.4 we know that for any i = (b1, . . . , br), i′ = (b′1, . . . , b

′
r) such

that si′(p) is non-zero we have

si(p)

si′(p)
=

(xb11 · . . . · xbrr )(p)

(x
b′1
1 · . . . · x

b′r
r )(p)

=
λb11 · . . . · λbrr
λ
b′1
1 · . . . · λ

b′r
r

.

The formula (2.2) follows.
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2.1. Hilbert function

Fix F ∈ Tα. The ring S/F⊥ is called the apolar ring of F . It is graded by the class group of
XΣ. Let us denote it by AF . Consider its Hilbert function H : ClXΣ → Z≥0 given by

β 7→ dimC ((AF )β) .

The Hilbert function is symmetric. The proof for projective space also applies to toric varieties:

Fact 2.5. For any β ∈ ClXΣ:

dimC(AF )β = dimC(AF )α−β.

Proof. We will prove that the bilinear map (AF )β× (AF )α−β → C ∼= (AF )0 given by (g, h) 7→
(g · h) y F is a duality. Take any g ∈ Sβ such that g y F 6= 0. Then there is h ∈ Sα−β such
that h y (g y F ) 6= 0 (because y makes Sα−β and Tα−β dual by Proposition 2.3). But this
means that (h · g) y F 6= 0. We have proven that multiplying by any non-zero g ∈ (AF )β is
non-zero as a map (AF )α−β → C. Similarly, multiplying by any non-zero h ∈ (AF )α−β is
non-zero as a map (AF )β → C. We are done.

Remark 2.6. The values of the Hilbert function of S/F⊥ are the same as the ranks of the
catalecticant homomorphisms. More precisely, let

CβF : Sβ → Tα−β

be given by
g 7→ g y F .

This map is called the catalecticant homomorphism. We have

rankCβF = dimC(AF )β .

This is because the graded piece of F⊥ of degree β is the kernel of CβF . For more on catalec-
ticant homomorphisms, see [Tei14, Section 2] or [IK99, Chapter 1].
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Chapter 3

Apolarity Lemma

Let us work in a more general setting for a while.
Suppose X is a proper variety over C. Let L be a very ample line bundle on X, and

ϕ : X → P(H0(X,L)∗) the associated morphism. For a closed subscheme i : R ↪→ X, 〈R〉
denotes its linear span in P(H0(X,L)∗), and IR denotes its ideal sheaf on X. Recall that for
any line bundle on X, the vector subspace H0(X, IR⊗L) ⊆ H0(X,L) consists of the sections
which pull back to zero on R.

Let (· y ·) : H0(X,L) ⊗H0(X,L)∗ → C denote the natural pairing (this agrees with the
notation introduced in Chapter 2). Now we are ready to formulate the Apolarity Lemma:

Proposition 3.1 (Apolarity Lemma, general version). Let F ∈ H0(X,L)∗ be a non-zero
element. Then for any closed subscheme i : R ↪→ X we have

F ∈ 〈R〉 ⇐⇒ H0(X, IR ⊗ L) y F = 0.

Proof. Take any s ∈ H0(X,L), let Hs be the corresponding hyperplane in H0(X,L)∗. Then,

〈R〉 ⊆ Hs ⇐⇒ i∗(s) = 0 ⇐⇒ s ∈ H0(X, IR ⊗ L).

Below we identify sections s ∈ H0(X,L) with hyperplanes Hs in H0(X,L)∗. Then for any R

F ∈ 〈R〉 ⇐⇒ ∀s∈H0(X,L)(〈R〉 ⊆ Hs =⇒ F ∈ Hs)

⇐⇒ ∀s∈H0(X,L)(s ∈ H0(X, IR ⊗ L) =⇒ F ∈ Hs)

⇐⇒ ∀s∈H0(X,L)(s ∈ H0(X, IR ⊗ L) =⇒ s y F = 0)

⇐⇒ H0(X, IR ⊗ L) y F = 0.

Proposition 3.2 (Apolarity Lemma, toric version). Let Σ be a simplicial fan, and XΣ the
toric variety defined by it. Let α ∈ PicXΣ be a very ample class and ϕ : X ↪→ P(H0(XΣ,O(α))∗)
be the associated morphism. Fix a non-zero F ∈ H0(XΣ,O(α))∗. Then for any closed sub-
scheme R ↪→ XΣ we have

F ∈ 〈R〉 ⇐⇒ I(R) ⊆ F⊥.

Recall that here I(R) is the ideal of R from Definition 1.1.

Proof. From Proposition 3.1 we know that F ∈ 〈R〉 if and only if I(R)α ⊆ F⊥α . It remains
to prove that I(R)α ⊆ F⊥α implies I(R) ⊆ F⊥. Suppose I(R)α ⊆ F⊥α . Take any x ∈ I(R)β
for some β ∈ ClXΣ. We want to show that x y F = 0. We have Sα−β · x ⊆ Iα, because g
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is in the ideal. This means that (Sα−β · x) y F = 0, i.e. Sα−β y (x y F ) = 0. Now, x y F is
an element of Tα−β , which is zero when multiplied by anything from Sα−β , which is equal to
T ∗α−β by Proposition 2.3. It follows that x y F is zero.

Remark 3.3. By Fact 1.2, we might have taken I(R)sat instead of I(R) in the proposition
above. By [Cox95, Theorem 3.7], we might have taken any B-saturated ideal defining R.
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Chapter 4

Examples

We use what we proved to look at some examples. Before that, we need some auxiliary
propositions:

Proposition 4.1. Let X be a proper variety and R be a zero-dimensional subscheme of X
with ideal sheaf IR. Then for any line bundle L

lhR ≥ h0(X,L)− h0(X, IR ⊗ L).

Proof. We have an exact sequence

0→ IR → OX → OR → 0.

We tensor it with L:
0→ IR ⊗ L → L → L|R → 0.

After taking global sections (which are left-exact), we get an exact sequence

0→ H0(X, IR ⊗ L)→ H0(X,L)→ H0(R,L|R).

It follows that
h0(R,L|R) ≥ h0(X,L)− h0(X, IR ⊗ L).

But on a zero-dimensional scheme, every line bundle trivializes. This means h0(R,L|R) =
h0(R,OR), which is the length of R.

From now on, assume again that X = XΣ is a projective simplicial toric variety. Moreover,
let us fix a very ample class α ∈ PicXΣ.

Suppose β ∈ PicXΣ. The linear map y : Sβ ⊗ Tα → Tα−β can be seen as coming from
the isomorphism

O(β)⊗O(α− β)→ O(α)

by taking multiplication of global sections:

H0(XΣ,O(β))⊗H0(XΣ,O(α− β))→ H0(XΣ,O(α))

and rearranging the terms:

H0(XΣ,O(β))⊗H0(XΣ,O(α))∗ → H0(XΣ,O(α− β))∗.

Remember that for any γ ∈ PicXΣ the space H0(XΣ,O(γ)) is Sγ and we identify Tγ with
H0(XΣ,O(γ))∗ by Proposition 2.3. Notice that if we fix F ∈ H0(XΣ,O(α))∗, then the map
above becomes the catalecticant homomorphism CβF from Remark 2.6.

As a corollary of Proposition 4.1 and the Apolarity Lemma (Proposition 3.2), we get the
catalecticant bound in the special case of line bundles.
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Corollary 4.2. For any F ∈ H0(XΣ,O(α))∗, and any β ∈ PicXΣ we have

cr(F ) ≥ rankCβF .

Proof. Take any zero-dimensional scheme R ↪→ XΣ such that F ∈ 〈R〉. Let I be any B-
saturated ideal defining R. We have

lhR ≥ h0(XΣ,O(β))− h0(XΣ, IR ⊗O(β)) = dimC(S/I)β

≥ dimC(S/F⊥)β = dimC imCβF ,

where the first inequality follows from Proposition 4.1, and the second from Proposition 3.2.
We also used that I(R) agrees with any saturated ideal defining R, see Remark 3.3, and the
fact that values of the Hilbert function are ranks of catalecticant homomorphisms (Remark
2.6).

Proposition 4.3. Fix β ∈ PicXΣ. Then for any l ∈ Z+ the set of points F ∈ P(H0(XΣ,O(α))∗)

such that rank(CβF ) ≤ l is Zariski-closed.

Proof. Pick a basis of H0(XΣ,O(β)) and a basis of H0(XΣ,O(α − β)). Then y becomes a
matrix with entries in H0(XΣ,O(α)). In order to get the rank of the map CβF = · y F , we
evaluate the matrix at F ∈ H0(XΣ,O(α))∗. Hence the set of those F ’s such that the rank
of · y F is at most l is given by the vanishing of the (l + 1)-th minors of the matrix. These
minors are polynomials from Sym•H0(XΣ,O(α)). We are done.

Corollary 4.4. For any β ∈ PicXΣ and any F ∈ H0(XΣ,O(α))∗ we have

r(F ) ≥ rankCβF .

Proof. From Proposition 4.3 we know that for l := rankCβF the set of F ′ ∈ P(H0(XΣ,O(α))∗)

such that rankCβF ′ ≥ rankCβF is Zariski-open. But from Corollary 4.2 we know that r(F ′) ≥
rankCβF ′ . Hence for any F ′ in some Zariski-open neighbourhood of F

r(F ′) ≥ rankCβF ′ ≥ rankCβF .

It follows that r(F ) ≥ rankCβF .

In the rest of the paper, we will denote the coordinates of the ring S by Greek letters
α, β, . . . and the corresponding coordinates in T by x, y, . . . (possibly with subscripts).

4.1. Hirzebruch surface F1

Consider the set {ρα,0 = (1, 0), ρα,1 = (−1,−1), ρβ,0 = (0, 1), ρβ,1 = (0,−1)}. Let Σ be the
only complete fan such that this set is the set of rays of Σ. The example in [CLS11, Example
3.1.16] is the same, only with a different ray arrangement. Then XΣ is called the Hirzebruch
surface F1.
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Its class group is the free abelian group on two generators Dρα,0 ∼ Dρα,1 and Dρβ,1 . Moreover,
Dρβ,0 ∼ Dρβ,1 +Dρα,0 . Here ∼ means the linear equivalence. Let α0, α1, β0, β1 be the variables
corresponding to ρα,0, ρα,1, ρβ,0, ρβ,1. As a result, we may think of S as the polynomial ring
C[α0, α1, β0, β1] graded by Z2, where the grading is given by

f α0 α1 β0 β1

deg f
1 1 1 0
0 0 1 1

The nef cone in (ClXΣ)R is generated by Dρα,0 and Dρβ,0 ∼ Dρα,0 + Dρβ,0 . In this chapter,
we will denote the value of π : C4 \ Z → XΣ by [λ0, λ1;µ0, µ1].

Example 4.5. Consider the monomial F := x0x1y0y1, where x0, x1, y0, y1 is the basis dual to
α0, α1, β0, β1. It has degree (3, 2), so it is in the interior of the nef cone, so the corresponding
line bundle is very ample. We claim that the rank and cactus rank are four, and the border
rank is three.

Let us compute the Hilbert function of the apolar algebra of F .

1 2 1 0

1 3 3 1

0 1 2 1

Notice that it can only be non-zero in the first quadrant. Hence, the symmetry implies it can
only be non-zero in the rectangle with vertices (0, 0), (3, 0), (3, 2), (0, 2). Computing each
value of the Hilbert function is just computing the kernel of a linear map. For instance, for
degree (1, 0), we have

(a0α0 + a1α1) y x0x1y0y1 = a0x1y0y1 + a1x0y0y1,

which is zero if and only if a0 = 0 and a1 = 0. Hence, the Hilbert function is

dimC(S/F⊥)(1,0) = dimCS(1,0) − dimCF
⊥
(1,0) = 2− 0 = 2.
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For degree (2, 1), we get

(aα2
0β1 + bα0α1β1 + cα2

1β1 + dα0β0 + eα1β0) y x0x1y0y1 = by0 + dx1y1 + ex0y1.

So the result is zero precisely for vectors of the form (a, 0, c, 0, 0), where a, c ∈ C. Then

dimC(S/F⊥)(2,1) = 5− 2 = 3.

The apolar ideal F⊥ is (α2
0, α

2
1, β

2
0 , β

2
1). (It is independent of the grading, so we can just

copy the result from the Waring rank case, see [RS11].)
Firstly, we will show that the rank is at most four. By the Apolarity Lemma, toric version

(Proposition 3.2), it is enough to find a reduced zero-dimensional subscheme of length four R
of XΣ (i.e. a set of finitely many points in XΣ) such that I(R) ⊆ F⊥. The subscheme defined
by I = (α2

0 − α2
1, β

2
0 − α2

1β
2
1) ⊆ F⊥ satisfies these requirements. This scheme is a reduced

union of four points: [1, 1; 1, 1], [1, 1; 1,−1], [1,−1; 1, 1], [1,−1; 1,−1]. As a consequence, we
may write

x0x1y0y1 =
1

4
(ϕ(1, 1; 1, 1)− ϕ(1, 1; 1,−1)− ϕ(1,−1; 1, 1) + ϕ(1,−1; 1,−1)) .

We will show that the cactus rank is at least four. Suppose it is at most three. Then there
is a B-saturated homogeneous ideal I ⊆ F⊥ defining a zero-dimensional subscheme R of length
at most three. From the calculation of the Hilbert function, we know that dimC F

⊥
(2,1) = 2. Let

us calculate dimC I(2,1). Since I is B-saturated, by Fact 1.2, the vector subspace I(2,1) ⊆ S(2,1)

are the sections which are zero on R. But from Proposition 4.1

3 ≥ length ofR ≥ dimC S(2,1) − dimC I(2,1) = 5− dimC I(2,1),

so
dimC I(2,1) ≥ 2.

By the Apolarity Lemma (Proposition 3.2), we have I(2,1) ⊆ (F⊥)(2,1). As the dimensions are
equal, it follows that I(2,1) = (F⊥)(2,1). But this means α2

0β1, α
2
1β1 ∈ I. But I is B-saturated,

so α0α1β1 ∈ I. But α0α1β1 y x0x1y0y1 6= 0, a contradiction.
Let us show that border rank of F is at most three. Take p = [λ, 1; 1, µ] ∈ F1. Then from

Fact 2.4, we know that

[λ, 1; 1, µ] 7→ λµ ·
(
λ2µx3

0y
2
1 + λµx2

0x1y
2
1 + µx0x

2
1y

2
1 +

µ

λ
x3

1y
2
1

+λx2
0y0y1 + x0x1y0y1 +

1

λ
x2

1y0y1

+
1

µ
x0y

2
0 +

1

µλ
x1y

2
0

)
.

But
[0, 1; 1, µ] 7→ µ ·

(
µx3

1y
2
1 + x2

1y0y1 +
1

µ
x1y

2
0

)
,

and
[1, 0; 1, 0] 7→ x0y

2
0.

Hence,

− x0x1y0y1 +
1

λµ
ϕ([λ, 1; 1, µ])− 1

λµ
ϕ([0, 1; 1, µ])− 1

µ
ϕ([1, 0; 1, 0])

= λ2µx3
0y

2
1 + λµx2

0x1y
2
1 + µx0x

2
1y

2
1 + λx0y

2
0
λ,µ→0−−−−→ 0.
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It follows that x0x1y0y1 is expressible as a limit of linear combinations of three points on XΣ,
so the border rank is at most three.

But there is another proof that the border rank of F is at most three. We will show
that the third secact variety σ3(X) = P8. It suffices to show that dimσ3(XΣ) is eight. The
expected dimension is eight, so we may use Terracini’s Lemma. Let us recall it.

Fact 4.6 (Terracini’s Lemma). Suppose ϕ : X ↪→ PN is a subvariety. Let r be a positive
integer. Then for r general points p1, . . . , pr ∈ X and a general point q ∈ 〈p1, . . . , pr〉 we have

Tqσr(X) = 〈Tp1X, . . . , TprX〉.

Here TqX denotes the tangent space of X embedded in the projective space at point q.

For a proof, see [Lan12, Section 5.3].
SinceXΣ → P(H0(XΣ,O(α))∗) is given by a parametrization, we can calculate the tangent

space. Take points of the form [1, λ;µ, 1], where λ, µ ∈ C \ {0}. Then

ϕ([1, λ;µ, 1]) = [1, λ, λ2, λ3, µ, µλ, µλ2, µ2, µ2λ].

The affine tangent space at ϕ([1, λ;µ, 1]) is spanned by the vector

v = [1, λ, λ2, λ3, µ, µλ, µλ2, µ2, µ2λ]

and its two derivatives with respect to λ and µ:

∂v

∂λ
= [0, 1, 2λ, 3λ2, 0, µ, 2µλ, 0, µ2],

∂v

∂µ
= [0, 0, 0, 0, 1, λ, λ2, 2µ, 2µλ],

If we take three general points, say [1, x, y, 1], [1, s, t, 1], [1, u, v, 1], we can take a look at the
space spanned by the three tangent spaces. This will be the space spanned by the rows of the
following matrix:

M =



1 x x2 x3 y yx yx2 y2 y2x
0 1 2x 3x2 0 y 2yx 0 y2

0 0 0 0 1 x x2 2y 2yx
1 s s2 s3 t ts ts2 t2 t2s
0 1 2s 3s2 0 t 2ts 0 t2

0 0 0 0 1 s s2 2t 2ts
1 u u2 u3 v vu vu2 v2 v2u
0 1 2u 3u2 0 v 2vu 0 v2

0 0 0 0 1 u u2 2v 2vu


We can calculate the determinant using for instance Macaulay2

detM = (s− u)(u− x)(s− x)(ys− xt− yu+ tu+ xv − sv)4.

This is non-zero for general points on the variety. This means that the tangent space of the
third secant variety at a general point has affine dimension nine, so dimσ3(XΣ) = 8, hence
σ3(X) fills the whole space.

Finally, the border rank is at least three by Corollary 4.4. We are using it for the class
(2, 1), recall that dimC(S/F⊥)β = CβF .
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Remark 4.7. We could also define the smoothable X-rank:

srX(F ) = min{lhR : R ↪→ X,dimR = 0, F ∈ 〈R〉, R smoothable}.

For the definition of a smoothable scheme, see [IK99, Definition 5.16]. For more on the
smoothable rank, see [BB13]. We always have cr(F ) ≤ sr(F ) ≤ r(F ), so in the case of F1 and
F = x0x1y0y1 we get sr(F ) = 4. In particular, we obtain what the authors in [BB13] call a
“wild” case, i.e. the border rank is strictly less than the smoothable rank.

Example 4.8. For a similar case on the same variety, let F = x2
0x

2
1y0y1, then degF = (5, 2).

Here the line bundle O(5, 2) gives an embedding of XΣ into P14. We will show that here the
rank and the cactus rank are six, and that the border rank is five.

The apolar ideal is F⊥ = (α3
0, α

3
0, β

2
0 , β

2
1). The Hilbert function of S/F⊥ is the following:

1 2 3 2 1 0

1 3 5 5 3 1

0 1 2 3 2 1

The ideal I = (α3
0−α3

1, β
2
0 −β2

1α
2
1) ⊆ F⊥ is a B-saturated radical homogeneous ideal defining

a subscheme of length six, so the rank is at most six.
Suppose there is a homogeneous B-saturated ideal I ⊆ F⊥ defining a subscheme of length

five. We have

S(3,1) = 〈α2
0β0, α0α1β0, α

2
1β0, α

3
0β1, α

2
0α1β1, α0α

2
1β1, α

3
1β1〉, and

(F⊥)(3,1) = 〈α3
0β1, α

3
1β1〉.

From Propostion 4.1 we have dimC(S/I)(3,1) ≤ 5, so dimC I(3,1) ≥ 7 − 5 = 2. But I(3,1) ⊆
(F⊥)(3,1) from the Apolarity Lemma (Proposition 3.2), and also dimC(F⊥)(3,1) = 2. This
means that I(3,1) = (F⊥)(3,1).

Hence, α3
0β1, α

3
1β1 ∈ I. As I is B-saturated, we get α2

0α
2
1β1 ∈ I ⊆ F⊥, but this is a

contradiction since α2
0α

2
1β1 y F 6= 0.

The border rank is at least five because of Corollary 4.4. Similarly to what we did before,
we show that fifth secant variety fills the whole space, so the border rank of any polynomial
is at most five. Here ϕ = ϕ|O(5,2)| is given by

[1, λ;µ, 1] 7→ [1, λ, λ2, λ3, λ4, λ5, µ, λµ, λ2µ, λ3µ, λ4µ, µ2, λµ2, λ2µ2, λ3µ2].

The tangent space is spanned by v = ϕ(1, λ;µ, 1) and the two derivatives
∂v

∂λ
= [0, 1, 2λ, 3λ2, 4λ3, 5λ4, 0, µ, 2λµ, 3λ2µ, 4λ3µ, 0, µ2, 2λµ2, 3λ2µ2],

∂v

∂µ
= [0, 0, 0, 0, 0, 0, 1, λ, λ2, λ3, λ4, 2µ, 2λµ, 2λ2µ, 2λ3µ].
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If we take five points, say [1, x; y, 1], [1, u; v, 1], [1, s; t, 1], [1, a, b, 1], [1, c, d, 1], we get that the
tangent space of σ5(X) is spanned by the rows of the following matrix:



1 x x2 x3 x4 x5 y xy x2y x3y x4y y2 xy2 x2y2 x3y2

0 1 2x 3x2 4x3 5x4 0 y 2xy 3x2y 4x3y 0 y2 2xy2 3x2y2

0 0 0 0 0 0 1 x x2 x3 x4 2y 2xy 2x2y 2x3y
1 s s2 s3 s4 s5 t st s2t s3t s4t t2 st2 s2t2 s3t2

0 1 2s 3s2 4s3 5s4 0 t 2st 3s2t 4s3t 0 t2 2st2 3s2t2

0 0 0 0 0 0 1 s s2 s3 s4 2t 2st 2s2t 2s3t
1 u u2 u3 u4 u5 v uv u2v u3v u4v v2 uv2 u2v2 u3v2

0 1 2u 3u2 4u3 5u4 0 v 2uv 3u2v 4u3v 0 v2 2uv2 3u2v2

0 0 0 0 0 0 1 u u2 u3 u4 2v 2uv 2u2v 2u3v
1 a a2 a3 a4 a5 b ab a2b a3b a4b b2 ab2 a2b2 a3b2

0 1 2a 3a2 4a3 5a4 0 b 2ab 3a2b 4a3b 0 b2 2ab2 3a2b2

0 0 0 0 0 0 1 a a2 a3 a4 2b 2ab 2a2b 2a3b
1 c c2 c3 c4 c5 d cd c2d c3d c4d d2 cd2 c2d2 c3d2

0 1 2c 3c2 4c3 5c4 0 d 2cd 3c2d 4c3d 0 d2 2cd2 3c2d2

0 0 0 0 0 0 1 c c2 c3 c4 2d 2cd 2c2d 2c3d


If we set (x, y, s, t, u, v, a, b, c, d) = (1, 2, 3, 4, 5, 6, 7, 9, 0, 2) and calculate the determinant in
the field Z/101, we get 34, something non-zero. This means that the determinant calculated in
C is also non-zero at this point, so it is non-zero on a dense open subset. Hence by Terracini’s
lemma (Fact 4.6) the affine dimension of σ5(X) is fifteen. It follows that σ5(X) = P14, so the
border rank of F is five.

4.2. Fake projective plane

Consider a set of rays {ρ0 = (−1,−1), ρ1 = (2,−1), ρ2 = (−1, 2)}. Let Σ be the only complete
fan uniquely determined by these rays. Then XΣ is is an example of a fake weighted projective
space, see [Buc08, 6.2].

Let α0, α1, α2 be the corresponding coordinates in S. The class group is generated by
Dρ0 , Dρ1 , Dρ2 with relations Dρ0 ∼ 2Dρ1 −Dρ2 ∼ 2Dρ2 −Dρ1 . This is the same as a group
with two generators Dρ0 and Dρ2 −Dρ1 with the relation 3(Dρ2 −Dρ1). This choice gives an
isomorphism with Z × Z/3 sending Dρ0 to (1, 0) and Dρ2 −Dρ1 to (0, 1). The Picard group
is the subgroup generated by 3Dρ0 . It is free.
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As a result, S = C[α0, α1, α2] is graded by ClXΣ = Z× Z/3, where

degα0 = (1, 0),
degα1 = (1, 1),
degα2 = (1,−1) = (1, 2),

and PicXΣ is generated by (3, 0).

Example 4.9. Consider the line bundle O(6, 0). It is ample, because by [CLS11, Proposition
6.3.25] every proper toric surface is projective, and the line bundles O(−3m, 0) for m < 0
have no non-zero sections. By [CLS11, Proposition 6.1.19, (b)] it is very ample. It gives an
embedding ϕ : XΣ ↪→ P9. We denote the dual coordinates by x0, x1, x2. Let F = x4

0x1x2.
The apolar ideal is (α5

0, α
2
1, α

2
2). We claim that the cactus rank is two, and the rank is at most

five. Note that F is not in the image of ϕ, so the cactus rank and rank are at least two.
We will show that the cactus rank is two. Consider the ideal I = (α2

1, α
2
2) ⊆ F⊥. It is

saturated, since B in this case is (α0, α1, α2), so it is the same as in the case of P2. We will
show that the length of the subscheme given by I is two. Since the support of the scheme is
the point [1, 0, 0], we check it on the set Uσ, where σ = Cone(ρ1, ρ2). We localize with respect
to α0, take degree zero, and get the ring

C
[
α3

1

α3
0

,
α3

2

α3
0

,
α1α2

α2
0

]
∼= C[u, v, w]/(w3 − uv). (4.1)

If we factor out by the ideal generated by α2
1 and α2

2, we get

C[u, v, w]/(w3 − uv, u, v, w2) ∼= C[w]/(w2),

so the length of the scheme defined by I is two.
Now we show that the rank is at most five. Take a homogeneous ideal I = (α5

0−α4
1α2, α

3
1−

α3
2) ⊆ F⊥. We show that the length of the subscheme defined by I is five. From these

equations we know that no coordinate can be zero, so we can check the length on the open
subset Uσ, where σ = Cone(ρ1, ρ2). We get the same ring as in Equation 4.1, and we want to
factor it out by the ideal generated by α5

0 − α4
1α2 and α3

1 − α3
2. The second generator gives

the relation u− v, and the first one the relation 1− vw. So we get the ring

C[v, w]/(w3 − v2, 1− vw).

But notice that 1 = vw implies that w is non-zero. Hence

C[v, w]/(w3 − v2, 1− vw) ∼= C[v, w,w−1]/(w3 − v2, 1− vw)

∼= C[v, w,w−1]/(w5 − 1, w−1 − v) ∼= C[w,w−1]/(w5 − 1).

We get a reduced scheme of length five, so the rank is at most five.

Example 4.10. Now take F = x2
0x

2
1x

2
2. Here the apolar ideal is F⊥ = (α3

0, α
3
1, α

3
2). The

cactus rank is at least two (because F is not in the image of ϕ). Let I = (α3
0 − α3

1, α
3
1 − α3

2).
In this case also no coordinate can be zero, so we may calculate the length on Uσ (where σ
is as before). We get the ring as in Equation 4.1 and the two generators become 1 − u and
u− v. So here the quotient ring is

C[w]/(w3 − 1).

This means that the rank is at most three (notice that we get a reduced scheme).
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Remark 4.11. We can calculate the Hilbert function of AF = S/F⊥ (where F = x2
0x

2
1x

2
2):

0 1 2 3 4 5 6

1 mod 3 0 1 2 3 2 1 0
0 mod 3 1 1 2 1 2 1 1
−1 mod 3 0 1 2 3 2 1 0

We have dimC(AF )(3,1) = 3, so this would give that the cactus rank and rank of F are
three, if the catalecticant bound worked for classes that are not in PicXΣ (i.e. reflexive
sheaves of rank one that are not line bundles). But the proof of Proposition 4.1 does not work
in this case (or at least we would have to divide by the supremum of the ranks of fibres of the
sheaf, which would make the bound weaker).
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