Let $F=x^{3} y u^{3} v$. Then $F^{\perp}=\left(a^{4}, b^{2}, c^{4}, d^{2}\right)$. We show that multihomogeneous rank of F is 12 . Let $I \subseteq F^{\perp}$ be a B-saturated radical ideal of at most 11 points. But then $\operatorname{dim}(T / I)_{(3,3)} \leq 11$, so $\operatorname{dim} I_{(3,3)} \geq 5$. We know that

$$
\left(F^{\perp}\right)_{(3,3)}=a^{2} d^{2}\langle a, b\rangle\langle c, d\rangle+b^{2} c^{2}\langle a, b\rangle\langle c, d\rangle+b^{2} d^{2}\langle a, b\rangle\langle c, d\rangle .
$$

1. Since $\operatorname{dim} I_{(3,3)} \geq 5$, and $\operatorname{dim}\left(b^{2} c^{2}\langle a, b\rangle\langle c, d\rangle+b^{2} d^{2}\langle a, b\rangle\langle c, d\rangle\right)=8$, we get that there is a non-zero $\hat{g} \in I_{(3,3)} \cap\left(b^{2} c^{2}\langle a, b\rangle\langle c, d\rangle+b^{2} d^{2}\langle a, b\rangle\langle c, d\rangle\right)$. However, I is radical, so also $g=\hat{g} / b \in I$. But $I \subseteq F^{\perp}$, hence

$$
g \in\left\langle b^{2} c^{3}, b^{2} c^{2} d, a b c d^{2}, a b d^{3}, b^{2} c d^{2}, b^{2} d^{3}\right\rangle
$$

By exchanging the roles of a, b with c, d, we obtain that there exists a non-zero $f \in I$ such that

$$
f \in\left\langle a^{3} d^{2}, a^{2} b d^{2}, a b^{2} c d, b^{3} c d, a b^{2} d^{2}, b^{3} d^{2}\right\rangle
$$

2. Let

$$
\begin{aligned}
& g=p_{0} b^{2} c^{3}+p_{1} b^{2} c^{2} d+p_{2} a b c d^{2}+p_{3} a b d^{3}+p_{4} b^{2} c d^{2}+p_{5} b^{2} d^{3}, \\
& f=q_{0} a^{3} d^{2}+q_{1} a^{2} b d^{2}+q_{2} a b^{2} c d+q_{3} b^{3} c d+q_{4} a b^{2} d^{2}+q_{5} b^{3} d^{2}
\end{aligned}
$$

Assume that $q_{0} \neq 0$, and consider the polynomial $R=a^{2} g-b(B c+C d) f$, where $B, C \in \mathbb{C}$. We choose B, C so that R does not contain monomials $a^{3} b c d^{2}, a^{3} b d^{3}$ (this can be done because of the assumption $q_{0} \neq 0$). Then

$$
\begin{aligned}
R & =p_{0} a^{2} b^{2} c^{3}+p_{1} a^{2} b^{2} c^{2} d+p_{4} a^{2} b^{2} c d^{2}+p_{5} a^{2} b^{2} d^{3} \\
& -B\left(q_{1} a^{2} b^{2} c d^{2}+q_{2} a b^{3} c^{2} d+q_{3} b^{4} c^{2} d+q_{4} a b^{3} c d^{2}+q_{5} b^{4} c d^{2}\right) \\
& -C\left(q_{1} a^{2} b^{2} d^{3}+q_{2} a b^{3} c d^{2}+q_{3} b^{4} c d^{2}+q_{4} a b^{3} d^{3}+q_{5} b^{4} d^{3}\right) \\
& =p_{0} a^{2} b^{2} c^{3}+p_{1} a^{2} b^{2} c^{2} d+\left(p_{4}-B q_{1}\right) a^{2} b^{2} c d^{2}+\left(p_{5}-C q_{1}\right) a^{2} b^{2} d^{3} \\
& -B q_{2} a b^{3} c^{2} d-B q_{3} b^{4} c^{2} d-\left(B q_{4}+C q_{2}\right) a b^{3} c d^{2}-\left(B q_{5}+C q_{3}\right) b^{4} c d^{2} \\
& -C q_{4} a b^{3} d^{3}-C q_{5} b^{4} d^{3} .
\end{aligned}
$$

Thus we can divide R by b, and still get something from I. We get that $p_{0}=p_{1}=0$.
3. In this step, we assume that there is a non-zero element

$$
g=p_{1} b^{2} c^{2} d+p_{2} a b c d^{2}+p_{3} a b d^{3}+p_{4} b^{2} c d^{2}+p_{5} b^{2} d^{3} \in I
$$

Let $h \in I_{(3,3)}$, and let m_{0}, m_{1} be the coeffcients of h corresponding to monomials $a^{3} c d^{2}$, $a^{3} d^{3}$, respectively. We claim that either $p_{1}=0$, or $m_{0}=m_{1}=0$. We know that

$$
(g / b) \cdot h-g \cdot\left(h-m_{0} a^{3} c d^{2}-m_{1} a^{3} d^{3}\right) / b \in I,
$$

but this polynomial is equal to

$$
\begin{aligned}
& g / b \cdot\left(m_{0} a^{3} c d^{2}+m_{1} a^{3} d^{3}\right)= \\
& \\
& p_{1} m_{0} a^{3} b c^{3} d^{3}+p_{2} m_{0} a^{4} c^{2} d^{4}+\left(p_{4} m_{0}+p_{1} m_{1}\right) a^{3} b c^{2} d^{4}+d^{5} Q
\end{aligned}
$$

for some polynomial Q. We divide by d^{2}, and conclude that $p_{1} m_{0}=0$. Then we can divide by d again and obtain $p_{4} m_{0}+p_{1} m_{1}=0$. Thus if $p_{1} \neq 0$, then $m_{0}=0$, which implies $m_{1}=0$ from the second equation.
4. In this step, we assume that there is a non-zero element

$$
g^{\prime}=b d\left(k_{0} a d+k_{1} b c+k_{2} b d\right) \in I
$$

Let $h \in I_{(3,3)}$, and let m_{0}, m_{1} be the coeffcients of h corresponding to monomials $a^{3} c d^{2}$, $a^{3} d^{3}$, respectively. We claim that $m_{0}=m_{1}=0$. We know that

$$
\left(g^{\prime} / b\right) \cdot h-g^{\prime} \cdot\left(h-m_{0} a^{3} c d^{2}-m_{1} a^{3} d^{3}\right) / b \in I
$$

but this polynomial is equal to

$$
\begin{aligned}
& g^{\prime} / b \cdot\left(m_{0} a^{3} c d^{2}+m_{1} a^{3} d^{3}\right) \\
& \quad=k_{1} m_{0} a^{3} b c^{2} d^{3}+k_{0} m_{0} a^{4} c d^{4}+\left(k_{2} m_{0}+k_{1} m_{1}\right) a^{3} b c d^{4}+d^{5} Q^{\prime}
\end{aligned}
$$

for some polynomial Q^{\prime}. We divide by d^{2}, and conclude that $k_{1} m_{0}=0$. Then we can divide by d again and obtain $k_{4} m_{0}+k_{1} m_{1}=0$. Thus if $k_{1} \neq 0$, then $m_{0}=0$, which implies $m_{1}=0$ from the second equation. If $k_{1}=0$, we divide g^{\prime} by d and get a contradiction.
5. We claim that from Steps 3 and 4 it follows that for any $h \in I_{(3,3)}$, the coefficients of h corresponding to monomials $a^{3} c d^{2}, a^{3} d^{3}$ are zero. Indeed, from Step 3 we get that if those coeffcients are not zero, then $p_{1}=0$. But if $p_{1}=0$, we can divide g by d, and get that $p_{3} a b d^{2}+p_{4} b^{2} c d+p_{5} b^{2} d^{2} \in I$. Then we can use Step 4 to conclude.
From the fact that these two coefficients are zero, using that $\operatorname{dim} I_{(3,3)} \geq 5$, from Step 1 we obtain that

$$
\operatorname{dim}\left(I \cap\left\langle b^{2} c^{3}, b^{2} c^{2} d, a b c d^{2}, a b d^{3}, b^{2} c d^{2}, b^{2} d^{3}\right\rangle\right) \geq 3
$$

By Step 2, we have

$$
\operatorname{dim}\left(I \cap\left\langle b^{2} c^{2} d, a b c d^{2}, a b d^{3}, b^{2} c d^{2}, b^{2} d^{3}\right\rangle\right) \geq 3
$$

Therefore

$$
\operatorname{dim}\left(I \cap\left\langle a b c d^{2}, a b d^{3}, b^{2} c d^{2}, b^{2} d^{3}\right\rangle\right) \geq 2
$$

We can divide this two-dimensional space by d, and we get that

$$
\operatorname{dim} I_{(2,2)} \geq 2
$$

which is impossible by Gał20, Theorem 1.5(iii)].

References

[Gał20] Maciej Gałązka. Multigraded apolarity. arXiv:1601.06211 [math.AG], 2020.

