
Let F = x3yu3v. Then F⊥ = (a4, b2, c4, d2). We show that multihomogeneous rank
of F is 12. Let I ⊆ F⊥ be a B-saturated radical ideal of at most 11 points. But then
dim(T/I)(3,3) ≤ 11, so dim I(3,3) ≥ 5. We know that

(F⊥)(3,3) = a2d2〈a, b〉〈c, d〉+ b2c2〈a, b〉〈c, d〉+ b2d2〈a, b〉〈c, d〉.

1. Since dim I(3,3) ≥ 5, and dim(b2c2〈a, b〉〈c, d〉+ b2d2〈a, b〉〈c, d〉) = 8, we get that there is
a non-zero ĝ ∈ I(3,3) ∩ (b2c2〈a, b〉〈c, d〉 + b2d2〈a, b〉〈c, d〉). However, I is radical, so also
g = ĝ/b ∈ I. But I ⊆ F⊥, hence

g ∈ 〈b2c3, b2c2d, abcd2, abd3, b2cd2, b2d3〉.

By exchanging the roles of a, b with c, d, we obtain that there exists a non-zero f ∈ I

such that
f ∈ 〈a3d2, a2bd2, ab2cd, b3cd, ab2d2, b3d2〉.

2. Let

g = p0b
2c3 + p1b

2c2d+ p2abcd
2 + p3abd

3 + p4b
2cd2 + p5b

2d3,
f = q0a

3d2 + q1a
2bd2 + q2ab

2cd+ q3b
3cd+ q4ab

2d2 + q5b
3d2.

Assume that q0 6= 0, and consider the polynomial R = a2g − b(Bc + Cd)f , where
B,C ∈ C. We choose B,C so that R does not contain monomials a3bcd2, a3bd3 (this
can be done because of the assumption q0 6= 0). Then

R = p0a
2b2c3 + p1a

2b2c2d+ p4a
2b2cd2 + p5a

2b2d3

−B(q1a
2b2cd2 + q2ab

3c2d+ q3b
4c2d+ q4ab

3cd2 + q5b
4cd2)

− C(q1a
2b2d3 + q2ab

3cd2 + q3b
4cd2 + q4ab

3d3 + q5b
4d3)

= p0a
2b2c3 + p1a

2b2c2d+ (p4 −Bq1)a
2b2cd2 + (p5 − Cq1)a

2b2d3

−Bq2ab
3c2d−Bq3b

4c2d− (Bq4 + Cq2)ab
3cd2 − (Bq5 + Cq3)b

4cd2

− Cq4ab
3d3 − Cq5b

4d3.

Thus we can divide R by b, and still get something from I. We get that p0 = p1 = 0.

3. In this step, we assume that there is a non-zero element

g = p1b
2c2d+ p2abcd

2 + p3abd
3 + p4b

2cd2 + p5b
2d3 ∈ I,

Let h ∈ I(3,3), and let m0,m1 be the coeffcients of h corresponding to monomials a3cd2,
a3d3, respectively. We claim that either p1 = 0, or m0 = m1 = 0. We know that

(g/b) · h− g · (h−m0a
3cd2 −m1a

3d3)/b ∈ I,

but this polynomial is equal to

g/b · (m0a
3cd2 +m1a

3d3) =

p1m0a
3bc3d3 + p2m0a

4c2d4 + (p4m0 + p1m1)a
3bc2d4 + d5Q
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for some polynomial Q. We divide by d2, and conclude that p1m0 = 0. Then we can
divide by d again and obtain p4m0 + p1m1 = 0. Thus if p1 6= 0, then m0 = 0, which
implies m1 = 0 from the second equation.

4. In this step, we assume that there is a non-zero element

g′ = bd(k0ad+ k1bc+ k2bd) ∈ I,

Let h ∈ I(3,3), and let m0,m1 be the coeffcients of h corresponding to monomials a3cd2,
a3d3, respectively. We claim that m0 = m1 = 0. We know that

(g′/b) · h− g′ · (h−m0a
3cd2 −m1a

3d3)/b ∈ I,

but this polynomial is equal to

g′/b · (m0a
3cd2 +m1a

3d3)

= k1m0a
3bc2d3 + k0m0a

4cd4 + (k2m0 + k1m1)a
3bcd4 + d5Q′

for some polynomial Q′. We divide by d2, and conclude that k1m0 = 0. Then we can
divide by d again and obtain k4m0 + k1m1 = 0. Thus if k1 6= 0, then m0 = 0, which
implies m1 = 0 from the second equation. If k1 = 0, we divide g′ by d and get a
contradiction.

5. We claim that from Steps 3 and 4 it follows that for any h ∈ I(3,3), the coefficients of
h corresponding to monomials a3cd2, a3d3 are zero. Indeed, from Step 3 we get that if
those coeffcients are not zero, then p1 = 0. But if p1 = 0, we can divide g by d, and
get that p3abd2 + p4b

2cd+ p5b
2d2 ∈ I. Then we can use Step 4 to conclude.

From the fact that these two coefficients are zero, using that dim I(3,3) ≥ 5, from Step
1 we obtain that

dim(I ∩ 〈b2c3, b2c2d, abcd2, abd3, b2cd2, b2d3〉) ≥ 3.

By Step 2, we have

dim(I ∩ 〈b2c2d, abcd2, abd3, b2cd2, b2d3〉) ≥ 3.

Therefore
dim(I ∩ 〈abcd2, abd3, b2cd2, b2d3〉) ≥ 2.

We can divide this two-dimensional space by d, and we get that

dim I(2,2) ≥ 2,

which is impossible by [Gał20, Theorem 1.5(iii)].
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