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Milnor fibration

Let f: (C"*',0) — (C,0) be a polynomial map with 0 € C"*" an
isolated critical point.

Theorem (Milnor)

For = > 0 sufficiently small, the map V: S2"1\ f~1(0) — S!
given by V(z) = f(z)/|f(z)| is a locally trivial fibration. The fiber
W~1(1) has homotopy type of a wedge sum of some finite
number (1.) of spheres S".

Definition

Let F; be the fiber W= (1). The geometric monodromy h; (for
t € S) is a diffeomorphism h;: F; — F;, smoothly depending
on t.

Remark

We sometimes consider V on S2"+'\ N(f~'(0)) — S'. Then F;
are manifolds with boundary.We have hy|sr, = id.
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Homological invariants

Definition
The homological monodromy is the map
h: Hn(Fy; Z) — Hp(F1; Z) induced by the monodromy.

Take a cycle o € Hy(Fq,0F1;Z). The image hy(«) has the
same boundary. Hence hy(«) — « is an absolute cycle.

Definition
The map defined just above is called the variation map and
denoted var: Hy(Fy,0F1;Z) — Hn(F1; Z).
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Seifert form

Definition
The Seifert formis the map Hu(Fy;Z) x Hn(Fq;7Z) — 7 given by
L(c, B) = Ik(cv, hy j23).

Theorem (Picard—Lefschetz package)

We have L(var o, ) = (o, B), where (-, ) is the
Poincaré—Lefschetz duality pairing.
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We gather these objects (variation, intersection form,
monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
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Hermitian Variation Structure. Remarks

Exercise
Deduce the axioms of V from the properties on previous slides.

Lemma

If b is an isomorphism (such a structure is called
non-degenerate), then V = (h — )b~'. The HVS is determined
by the triple (U; h, b).

Lemma

If V is an isomorphism (such a structure is called simple), then
h=—eV(@ToV*)Tandb= -V —¢01oV*)"1,s0V
determines the HVS.

Remark

Complexity of formulas gives us sometimes possibility to deal
with degenerate/non-simple cases.
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» Each simple structure is a direct sum of structures
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Definition
Given a simple HVS, Hodge numbers p§(i1) (for A € S') and

q§ indicate how many times the given basic structure enters the
HVS as a summand.
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» They determine monodromy over C;

» Good way to state theorems, like monodromy theorems.
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HVS for knots

» Let S be a Seifert form for a knot K;

» Make it invertible by S-equivalence (possible by Kawauchi);

» Associate a HVS with V = S~ ';

» If K is a link of singularity, then the HVS is the same as the
one given by Picard-Lefschetz package;

» We obtain Hodge numbers for knots (and more generally
for links).
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Classical invariants for links

Theorem (—, Némethi, 2011)

Let K be a knot and pk(¢), gf the Hodge numbers.

» The Alexander polynomial and higher Alexander
polynomials are determined from the Hodge numbers.

» For example, A is the characteristic polynomial of
h=8715T.

> The Tristram—Levine signature of K is determined by p%(z).
More precisely pk (=) for odd k determine the jumps at \
and for k even determine the peek at .
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Example

Consider a slice knot 8.
> It has Alexander polynomial (t — \)?(t — \)? with
A= 1(1+iV3).
> Hence either pl(+1) + pl(—1) = 2 or p2(c) = 1 for some «.
» In the first case the Alexander module is not cyclic, but we
know that 8, has cyclic Alexander module (Nakanishi
index is 1

).
> Hence pﬁ&s) = 1. The signature function is constantly zero
for t # X\, A and equal to e for t = A\, \.
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Applications

Theorem (Murasugi’s inequality)

Let K ¢ S° be a knot bounding a surface S ¢ B*. Then
lo¢(K)| < 29(S) for almost all t € S'.

>

>

| 4

Hodge numbers relate signature to the spectrum of a
singular point (if K is algebraic).

Murasugi’s inequality translates into semicontinuity of
spectrum.

We (—, Némethi 2013) obtain not only another proof of
spectrum semicontinuity, but various other statements on
semicontinuity.

In particular, semicontinuity of spectrum of a plane curve
singularity depends on topological data only.

... unlike semigroup semicontinuity established by Gorsky
and Némethi in 2013, which depends on the smooth data.
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Blanchfield pairings

A more popular point of view is via Blanchfield pairings.
Theorem (Blanchfield 1959)

Let K be a knot and X the knot exterior. Consider the universal
abelian cover m: X — X. Let H = H{(X;Z) regarded as a

Z[t, t=1] module. Then there exists a non-degenerate
sesquilinear pairing H x H — Q(t)/7Z[t, t~'], which is a knot
invariant. The pairing is determined by the Seifert form of K
and it determines the S-equivalence class of Seifert forms.

Remark
The pairing is a more sophisticated version of the linking
pairing on a rational homology 3-sphere.

Remark

If S is a Seifert matrix, then H = Z[t, t~'1"/(tS — ST)Z[t, t~]"
and the pairing is given by (a, b) — a' (tS— ST)~'(t — 1)b.
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Let A = R[t, t']. Consider a A-module H and a pairing
H x H — R(t)/A.

Assume there are no (t + 1) torsion parts of H. (This
means that { + 1 does not divide the Alexander polynomial,
or h has no eigenvalues +1.)

Then H decomposes as an orthogonal sum of modules of
form A/bEN, A/ cN, where

Foré € 8", Im¢ >0, b = (t—&)(t— &t

For¢ ¢ (STUR), |¢] < 1,
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Blanchfield pairings over R

» Let A = R[t,t~']. Consider a A-module H and a pairing
H x H— R(t)/A.

» Assume there are no (t + 1) torsion parts of H. (This
means that { + 1 does not divide the Alexander polynomial,
or h has no eigenvalues +1.)

» Then H decomposes as an orthogonal sum of modules of
form A/bEA, N/cEA, where

> Foré e S, Imé>0,b: = (t—&)(t -t Y

> For¢ ¢ (STUR), [¢] <1,

Ce=(t-- " - -¢);
> For¢ e R\ {0}, ¢ <1, e = (t—&)(t" =)
Remark

This decomposition corresponds to the Jordan block
decomposition of the monodromy operator.
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Pairings over cyclic modules

Theorem

Every non-degenerate sesquilinear pairing over \/ bg/\ is
equivalent to a pairing

eab
(a7 b) = Fa
13
where ¢ = +1 and the pairings with different sign are not
isometric.
Theorem

All non-degenerate sesquilinear pairings over \/ Cg N\ are
isometric.

This reminds of classification of HVS.



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold and
¢: m(N) — GL(C"[t, t~']) be a unitary representation.

> Let N be the universal cover.



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold and
¢: m(N) — GL(C"[t, t~']) be a unitary representation.
> Let N be the universal cover.

> The chain complex C.(N:Z) has a structure of a Z[r;(N)]
module.



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold and
¢: m(N) — GL(C"[t, t~']) be a unitary representation.

> Let N be the universal cover.

> The chain complex C. (N Z) has a structure of a Z[r(N)]
module.

> Via ¢, C[t,t~']" @ C.(N;Z) has a structure of a
C[t, t~']-module.



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold and
¢: m(N) — GL(C"[t, t~']) be a unitary representation.
> Let N be the universal cover.
> The chain complex C. (N Z) has a structure of a Z[r(N)]
module.
> Via ¢, C[t,t~']" @ C.(N;Z) has a structure of a
C[t, t~']-module.
» The homology of this complex is denoted by
H.(N;Cl[t, t*1]g)) and it is called the twisted homology.



A step further. Twisted Alexander polynomials

» Let N be a 3-dimensional manifold and
¢: m(N) — GL(C"[t, t~']) be a unitary representation.
> Let N be the universal cover.
> The chain complex C. (N Z) has a structure of a Z[r(N)]
module.
> Via ¢, C[t,t~']" @ C.(N;Z) has a structure of a
C[t, t~']-module.
» The homology of this complex is denoted by
H.(N;Cl[t, t*1](’Z) and it is called the twisted homology.
» For a knot K, if N = M(K), the zero-surgery, the order of

H.(N;C[t,t']]) is called the twisted Alexander
polynomial, see Kirk—Livingston.



Twisted Blanchfield pairing

» Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~']7).



Twisted Blanchfield pairing

» Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~']7).

» We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.



Twisted Blanchfield pairing

» Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~']7).

» We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.

» We work over C[t,t~'] and not R[t, 1] (it is harder!).



Twisted Blanchfield pairing

>

Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~']7).

We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.

We work over C[t,t~'] and not R[t, 1] (it is harder!).

From the ‘Hodge numbers’ we can recover ‘twisted
signatures’.



Twisted Blanchfield pairing

>

Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~']7).

We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.

We work over C[t,t~'] and not R[t, 1] (it is harder!).

From the ‘Hodge numbers’ we can recover ‘twisted
signatures’.



Twisted Blanchfield pairing

» Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~']7).

» We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.

» We work over C[t,t~'] and not R[t, 1] (it is harder!).

» From the ‘Hodge numbers’ we can recover ‘twisted
signatures’.

Example (—, Conway, Politarczyk 2018)

Using a specific representation of 71 (M(K)) we can recover
Casson—-Gordon signatures.



Twisted Blanchfield pairing

» Miller and Powell defined rigorously twisted Blanchfield
pairing for H.(N; C[t, t~"]7).

» We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.

» We work over C[t, t~'] and not R[t, 1] (it is harder!).

» From the ‘Hodge numbers’ we can recover ‘twisted
signatures’.

Example (—, Conway, Politarczyk 2018)

Using a specific representation of 71 (M(K)) we can recover
Casson—-Gordon signatures.

Remark

Using the abstract algebraic approach we obtain a very general
cabling formula for twisted Blanchfield pairings, which specifies
to the cabling formula of Litherland.
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>

Let

K = T(2;15)#T(2,3;2,13)# — T(2;13)# — T(2,3;2,15);
K is algebraically slice, i.e., in particular Tristram—Levine
signature is zero a.e.;

No known invariant from HF or HFI or Kh can detect
non-sliceness of K;

Hedden, Kirk and Livingston used Casson-Gordon
invariants to show non-sliceness. The proof is rather
specific;

We can algorithmically compute the ‘Hodge numbers’
related to the Casson-Gordon invariants and show
non-sliceness in a simple way.
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Remarks

» We do not know if all algebraic knots are linearly
independent in the concordance group;

» We expect that there are non-trivial combinations for which
Casson-Gordon obstruction vanishes;

» Can we use more general [*-invariants?

» Another question: the spectrum of a plane curve singularity
is topological. Can we recover the spectrum of a general
hypersurface singularity from some topological data?



