Real Seifert forms 20 years after

Maciej Borodzik
www.mimuw.edu.pl/~mcboro
Institute of Mathematics, University of Warsaw

Budapest, May 2019

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an isolated critical point.

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an
isolated critical point. Theorem (Milnor)
For $\varepsilon>0$ sufficiently small, the map $\psi: S_{\varepsilon}^{2 n+1} \backslash f^{-1}(0) \rightarrow S^{1}$ given by $\Psi(z)=f(z) /|f(z)|$ is a locally trivial fibration.

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an isolated critical point.
Theorem (Milnor)
For $\varepsilon>0$ sufficiently small, the map $\psi: S_{\varepsilon}^{2 n+1} \backslash f^{-1}(0) \rightarrow S^{1}$ given by $\Psi(z)=f(z) /|f(z)|$ is a locally trivial fibration. The fiber $\psi^{-1}(1)$ has homotopy type of a wedge sum of some finite number (μ) of spheres S^{n}.

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an isolated critical point.

Theorem (Milnor)

For $\varepsilon>0$ sufficiently small, the map $\psi: S_{\varepsilon}^{2 n+1} \backslash f^{-1}(0) \rightarrow S^{1}$ given by $\Psi(z)=f(z) /|f(z)|$ is a locally trivial fibration. The fiber $\Psi^{-1}(1)$ has homotopy type of a wedge sum of some finite number (μ) of spheres S^{n}.

Definition

Let F_{t} be the fiber $\psi^{-1}(t)$. The geometric monodromy h_{t} (for $\left.t \in S^{1}\right)$ is a diffeomorphism $h_{t}: F_{1} \rightarrow F_{t}$, smoothly depending on t.

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an isolated critical point.

Theorem (Milnor)

For $\varepsilon>0$ sufficiently small, the map $\psi: S_{\varepsilon}^{2 n+1} \backslash f^{-1}(0) \rightarrow S^{1}$ given by $\Psi(z)=f(z) /|f(z)|$ is a locally trivial fibration. The fiber $\Psi^{-1}(1)$ has homotopy type of a wedge sum of some finite number (μ) of spheres S^{n}.

Definition

Let F_{t} be the fiber $\psi^{-1}(t)$. The geometric monodromy h_{t} (for $\left.t \in S^{1}\right)$ is a diffeomorphism $h_{t}: F_{1} \rightarrow F_{t}$, smoothly depending on t.

Remark
We sometimes consider ψ on $S^{2 n+1} \backslash N\left(f^{-1}(0)\right) \rightarrow S^{1}$.

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an isolated critical point.

Theorem (Milnor)

For $\varepsilon>0$ sufficiently small, the map $\psi: S_{\varepsilon}^{2 n+1} \backslash f^{-1}(0) \rightarrow S^{1}$ given by $\Psi(z)=f(z) /|f(z)|$ is a locally trivial fibration. The fiber $\Psi^{-1}(1)$ has homotopy type of a wedge sum of some finite number (μ) of spheres S^{n}.

Definition

Let F_{t} be the fiber $\psi^{-1}(t)$. The geometric monodromy h_{t} (for $\left.t \in S^{1}\right)$ is a diffeomorphism $h_{t}: F_{1} \rightarrow F_{t}$, smoothly depending on t.

Remark

We sometimes consider ψ on $S^{2 n+1} \backslash N\left(f^{-1}(0)\right) \rightarrow S^{1}$. Then F_{t} are manifolds with boundary.

Milnor fibration

Let $f:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a polynomial map with $0 \in \mathbb{C}^{n+1}$ an isolated critical point.

Theorem (Milnor)

For $\varepsilon>0$ sufficiently small, the map $\psi: S_{\varepsilon}^{2 n+1} \backslash f^{-1}(0) \rightarrow S^{1}$ given by $\Psi(z)=f(z) /|f(z)|$ is a locally trivial fibration. The fiber $\Psi^{-1}(1)$ has homotopy type of a wedge sum of some finite number (μ) of spheres S^{n}.

Definition

Let F_{t} be the fiber $\psi^{-1}(t)$. The geometric monodromy h_{t} (for $t \in S^{1}$) is a diffeomorphism $h_{t}: F_{1} \rightarrow F_{t}$, smoothly depending on t.

Remark

We sometimes consider ψ on $S^{2 n+1} \backslash N\left(f^{-1}(0)\right) \rightarrow S^{1}$. Then F_{t} are manifolds with boundary. We have $\left.h_{1}\right|_{\partial F_{t}}=i d$.

Homological invariants

Definition

The homological monodromy is the map
$h: H_{n}\left(F_{1} ; \mathbb{Z}\right) \rightarrow H_{n}\left(F_{1} ; \mathbb{Z}\right)$ induced by the monodromy.

Homological invariants

Definition

The homological monodromy is the map
$h: H_{n}\left(F_{1} ; \mathbb{Z}\right) \rightarrow H_{n}\left(F_{1} ; \mathbb{Z}\right)$ induced by the monodromy.
Take a cycle $\alpha \in H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{Z}\right)$. The image $h_{1}(\alpha)$ has the same boundary. Hence $h_{1}(\alpha)-\alpha$ is an absolute cycle.

Homological invariants

Definition

The homological monodromy is the map
$h: H_{n}\left(F_{1} ; \mathbb{Z}\right) \rightarrow H_{n}\left(F_{1} ; \mathbb{Z}\right)$ induced by the monodromy.
Take a cycle $\alpha \in H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{Z}\right)$. The image $h_{1}(\alpha)$ has the same boundary. Hence $h_{1}(\alpha)-\alpha$ is an absolute cycle.

Definition

The map defined just above is called the variation map and denoted var: $H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{Z}\right) \rightarrow H_{n}\left(F_{1} ; \mathbb{Z}\right)$.

Seifert form

Definition

The Seifert form is the map $H_{n}\left(F_{1} ; \mathbb{Z}\right) \times H_{n}\left(F_{1} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}$ given by $L(\alpha, \beta) \mapsto \operatorname{lk}\left(\alpha, h_{1 / 2} \beta\right)$.

Seifert form

Definition

The Seifert form is the map $H_{n}\left(F_{1} ; \mathbb{Z}\right) \times H_{n}\left(F_{1} ; \mathbb{Z}\right) \rightarrow \mathbb{Z}$ given by $L(\alpha, \beta) \mapsto \operatorname{lk}\left(\alpha, h_{1 / 2} \beta\right)$.

Theorem (Picard-Lefschetz package)
We have $L(\operatorname{var} \alpha, \beta)=\langle\alpha, \beta\rangle$, where $\langle\cdot, \cdot\rangle$ is the
Poincaré-Lefschetz duality pairing.

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple
($U ; b, h, V$), where

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple
($U ; b, h, V$), where

- U is a finite dimensional vector space

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right)$;

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right)$;
- $b: U \rightarrow U^{*}$ is a \mathbb{C}-linear endomorphism with $\overline{b^{*} \circ \theta}=\varepsilon b$, where $\theta: U \rightarrow U^{* *}$ is a natural isomorphism

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right)$;
- $b: U \rightarrow U^{*}$ is a \mathbb{C}-linear endomorphism with $\overline{b^{*} \circ \theta}=\varepsilon b$, where $\theta: U \rightarrow U^{* *}$ is a natural isomorphism $\left(b: H_{n}\left(F_{1} ; \mathbb{C}\right) \rightarrow H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{C}\right)\right)$;

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right.$);
- b: $U \rightarrow U^{*}$ is a \mathbb{C}-linear endomorphism with $\overline{b^{*} \circ \theta}=\varepsilon b$, where $\theta: U \rightarrow U^{* *}$ is a natural isomorphism (b: $H_{n}\left(F_{1} ; \mathbb{C}\right) \rightarrow H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{C}\right)$);
- $h: U \rightarrow U$ is b-orthogonal, that is $\bar{h}^{*} \circ b \circ h=b$

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right.$);
- b: $U \rightarrow U^{*}$ is a \mathbb{C}-linear endomorphism with $\overline{b^{*} \circ \theta}=\varepsilon b$, where $\theta: U \rightarrow U^{* *}$ is a natural isomorphism (b: $H_{n}\left(F_{1} ; \mathbb{C}\right) \rightarrow H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{C}\right)$);
- $h: U \rightarrow U$ is b-orthogonal, that is $\hbar^{*} \circ b \circ h=b$ (h is the homological monodromy).

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right.$);
- b: $U \rightarrow U^{*}$ is a \mathbb{C}-linear endomorphism with $\overline{b^{*} \circ \theta}=\varepsilon b$, where $\theta: U \rightarrow U^{* *}$ is a natural isomorphism (b: $H_{n}\left(F_{1} ; \mathbb{C}\right) \rightarrow H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{C}\right)$);
- $h: U \rightarrow U$ is b-orthogonal, that is $\hbar^{*} \circ b \circ h=b$ (h is the homological monodromy).
- $V: U^{*} \rightarrow U$ is a \mathbb{C}-linear endomorphism with
$\overrightarrow{\theta^{-1} \circ V^{*}}=-\varepsilon V \circ \widehat{h^{*}}$ and $V \circ b=h-I$

Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form, monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)
An $\varepsilon= \pm 1$ hermitian variation structure is a quadruple ($U ; b, h, V$), where

- U is a finite dimensional vector space $\left(U=H_{n}\left(F_{1} ; \mathbb{C}\right)\right)$;
- b: U $\rightarrow U^{*}$ is a \mathbb{C}-linear endomorphism with $b^{*} \circ \theta=\varepsilon b$, where $\theta: U \rightarrow U^{* *}$ is a natural isomorphism (b: $H_{n}\left(F_{1} ; \mathbb{C}\right) \rightarrow H_{n}\left(F_{1}, \partial F_{1} ; \mathbb{C}\right)$);
- $h: U \rightarrow U$ is b-orthogonal, that is $\hbar^{*} \circ b \circ h=b$ (h is the homological monodromy).
- $V: U^{*} \rightarrow U$ is a \mathbb{C}-linear endomorphism with $\overrightarrow{\theta^{-1} \circ V^{*}}=-\varepsilon V \circ \widehat{h^{*}}$ and $V \circ b=h-I(V$ is the variation map.)

Hermitian Variation Structure. Remarks

Hermitian Variation Structure. Remarks

Exercise

Deduce the axioms of V from the properties on previous slides.

Hermitian Variation Structure. Remarks

Exercise

Deduce the axioms of V from the properties on previous slides.

Lemma

If b is an isomorphism (such a structure is called non-degenerate), then $V=(h-l) b^{-1}$. The HVS is determined by the triple ($U ; h, b$).

Hermitian Variation Structure. Remarks

Exercise

Deduce the axioms of V from the properties on previous slides.
Lemma
If b is an isomorphism (such a structure is called non-degenerate), then $V=(h-I) b^{-1}$. The HVS is determined by the triple $(U ; h, b)$.

Lemma

If V is an isomorphism (such a structure is called simple), then $h=-\varepsilon V \overline{\left(\theta^{-1} \circ V^{*}\right)^{-1}}$ and $b=-V^{-1}-\varepsilon \overline{\left(\theta^{-1} \circ V^{*}\right)^{-1}}$, so V determines the HVS.

Hermitian Variation Structure. Remarks

Exercise

Deduce the axioms of V from the properties on previous slides.
Lemma
If b is an isomorphism (such a structure is called non-degenerate), then $V=(h-l) b^{-1}$. The HVS is determined by the triple ($U ; h, b$).

Lemma

If V is an isomorphism (such a structure is called simple), then $h=-\varepsilon V \overline{\left(\theta^{-1} \circ V^{*}\right)^{-1}}$ and $b=-V^{-1}-\varepsilon \overline{\left(\theta^{-1} \circ V^{*}\right)^{-1}}$, so V determines the HVS.

Remark

Complexity of formulas gives us sometimes possibility to deal with degenerate/non-simple cases.

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;
- The starting point is the Jordan block decomposition for h;

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;
- The starting point is the Jordan block decomposition for h;
- For $\lambda \in S^{1}$: two structures $V(\lambda, k, \pm 1)$ for each Jordan block;

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;
- The starting point is the Jordan block decomposition for h;
- For $\lambda \in S^{1}$: two structures $V(\lambda, k, \pm 1)$ for each Jordan block;
- For $|\lambda|<1$: one structure $V(\lambda, k)$ corresponding to a Jordan block with e.v. λ and $1 / \lambda$.

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;
- The starting point is the Jordan block decomposition for h;
- For $\lambda \in S^{1}$: two structures $V(\lambda, k, \pm 1)$ for each Jordan block;
- For $|\lambda|<1$: one structure $V(\lambda, k)$ corresponding to a Jordan block with e.v. λ and $1 / \lambda$.
- Each simple structure is a direct sum of structures corresponding to Jordan blocks.

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;
- The starting point is the Jordan block decomposition for h;
- For $\lambda \in S^{1}$: two structures $V(\lambda, k, \pm 1)$ for each Jordan block;
- For $|\lambda|<1$: one structure $V(\lambda, k)$ corresponding to a Jordan block with e.v. λ and $1 / \lambda$.
- Each simple structure is a direct sum of structures corresponding to Jordan blocks.

Hermitian Variation Structure. Classification

- Classification exists essentially for simple HVS;
- The starting point is the Jordan block decomposition for h;
- For $\lambda \in S^{1}$: two structures $V(\lambda, k, \pm 1)$ for each Jordan block;
- For $|\lambda|<1$: one structure $V(\lambda, k)$ corresponding to a Jordan block with e.v. λ and $1 / \lambda$.
- Each simple structure is a direct sum of structures corresponding to Jordan blocks.

Definition

Given a simple HVS, Hodge numbers $p_{\lambda}^{k}(\pm 1)$ (for $\lambda \in S^{1}$) and q_{λ}^{k} indicate how many times the given basic structure enters the HVS as a summand.

Hermitian Variation Structure. Properties

- Hodge numbers determine the mod-2 spectrum of singularity;

Hermitian Variation Structure. Properties

- Hodge numbers determine the mod-2 spectrum of singularity;
- They determine monodromy over \mathbb{C};

Hermitian Variation Structure. Properties

- Hodge numbers determine the mod-2 spectrum of singularity;
- They determine monodromy over \mathbb{C};
- Good way to state theorems, like monodromy theorems.

HVS for knots

- Let S be a Seifert form for a knot K;

HVS for knots

- Let S be a Seifert form for a knot K;
- Make it invertible by S-equivalence (possible by Kawauchi);

HVS for knots

- Let S be a Seifert form for a knot K;
- Make it invertible by S-equivalence (possible by Kawauchi);
- Associate a HVS with $V=S^{-1}$;

HVS for knots

- Let S be a Seifert form for a knot K;
- Make it invertible by S-equivalence (possible by Kawauchi);
- Associate a HVS with $V=S^{-1}$;
- If K is a link of singularity, then the HVS is the same as the one given by Picard-Lefschetz package;

HVS for knots

- Let S be a Seifert form for a knot K;
- Make it invertible by S-equivalence (possible by Kawauchi);
- Associate a HVS with $V=S^{-1}$;
- If K is a link of singularity, then the HVS is the same as the one given by Picard-Lefschetz package;
- We obtain Hodge numbers for knots (and more generally for links).

Classical invariants for links

Theorem (—, Némethi, 2011)
Let K be a knot and $p_{\lambda}^{k}(\epsilon), q_{\lambda}^{k}$ the Hodge numbers.

- The Alexander polynomial and higher Alexander polynomials are determined from the Hodge numbers.

Classical invariants for links

Theorem (—, Némethi, 2011)
Let K be a knot and $p_{\lambda}^{k}(\epsilon), q_{\lambda}^{k}$ the Hodge numbers.

- The Alexander polynomial and higher Alexander polynomials are determined from the Hodge numbers.
- For example, Δ is the characteristic polynomial of $h=S^{-1} S^{\top}$.

Classical invariants for links

Theorem (—, Némethi, 2011)
Let K be a knot and $p_{\lambda}^{k}(\epsilon), q_{\lambda}^{k}$ the Hodge numbers.

- The Alexander polynomial and higher Alexander polynomials are determined from the Hodge numbers.
- For example, Δ is the characteristic polynomial of $h=S^{-1} S^{\top}$.
- The Tristram-Levine signature of K is determined by $p_{\lambda}^{k}(\varepsilon)$. More precisely $p_{\lambda}^{k}(\varepsilon)$ for odd k determine the jumps at λ and for k even determine the peek at λ.

Example

Consider a slice knot 8_{20}.

- It has Alexander polynomial $(t-\lambda)^{2}(t-\bar{\lambda})^{2}$ with

$$
\lambda=\frac{1}{2}(1+i \sqrt{3})
$$

Example

Consider a slice knot 8_{20}.

- It has Alexander polynomial $(t-\lambda)^{2}(t-\bar{\lambda})^{2}$ with $\lambda=\frac{1}{2}(1+i \sqrt{3})$.
- Hence either $p_{\lambda}^{1}(+1)+p_{\lambda}^{1}(-1)=2$ or $p_{\lambda}^{2}(\varepsilon)=1$ for some ε.

Example

Consider a slice knot 8_{20}.

- It has Alexander polynomial $(t-\lambda)^{2}(t-\bar{\lambda})^{2}$ with $\lambda=\frac{1}{2}(1+i \sqrt{3})$.
- Hence either $p_{\lambda}^{1}(+1)+p_{\lambda}^{1}(-1)=2$ or $p_{\lambda}^{2}(\varepsilon)=1$ for some ε.
- In the first case the Alexander module is not cyclic, but we know that 8_{20} has cyclic Alexander module (Nakanishi index is 1).

Example

Consider a slice knot 8_{20}.

- It has Alexander polynomial $(t-\lambda)^{2}(t-\bar{\lambda})^{2}$ with $\lambda=\frac{1}{2}(1+i \sqrt{3})$.
- Hence either $p_{\lambda}^{1}(+1)+p_{\lambda}^{1}(-1)=2$ or $p_{\lambda}^{2}(\varepsilon)=1$ for some ε.
- In the first case the Alexander module is not cyclic, but we know that 8_{20} has cyclic Alexander module (Nakanishi index is 1).
- Hence $p_{\lambda}^{2}(\varepsilon)=1$. The signature function is constantly zero for $t \neq \lambda, \bar{\lambda}$ and equal to ε for $t=\lambda, \bar{\lambda}$.

Applications

Theorem (Murasugi's inequality)
Let $K \subset S^{3}$ be a knot bounding a surface $S \subset B^{4}$. Then $\left|\sigma_{t}(K)\right| \leq 2 g(S)$ for almost all $t \in S^{1}$.

- Hodge numbers relate signature to the spectrum of a singular point (if K is algebraic).

Applications

Theorem (Murasugi's inequality)
Let $K \subset S^{3}$ be a knot bounding a surface $S \subset B^{4}$. Then
$\left|\sigma_{t}(K)\right| \leq 2 g(S)$ for almost all $t \in S^{1}$.

- Hodge numbers relate signature to the spectrum of a singular point (if K is algebraic).
- Murasugi's inequality translates into semicontinuity of spectrum.

Applications

Theorem (Murasugi's inequality)
Let $K \subset S^{3}$ be a knot bounding a surface $S \subset B^{4}$. Then
$\left|\sigma_{t}(K)\right| \leq 2 g(S)$ for almost all $t \in S^{1}$.

- Hodge numbers relate signature to the spectrum of a singular point (if K is algebraic).
- Murasugi's inequality translates into semicontinuity of spectrum.
- We (一, Némethi 2013) obtain not only another proof of spectrum semicontinuity, but various other statements on semicontinuity.

Applications

Theorem (Murasugi's inequality)
Let $K \subset S^{3}$ be a knot bounding a surface $S \subset B^{4}$. Then
$\left|\sigma_{t}(K)\right| \leq 2 g(S)$ for almost all $t \in S^{1}$.

- Hodge numbers relate signature to the spectrum of a singular point (if K is algebraic).
- Murasugi's inequality translates into semicontinuity of spectrum.
- We (一, Némethi 2013) obtain not only another proof of spectrum semicontinuity, but various other statements on semicontinuity.
- In particular, semicontinuity of spectrum of a plane curve singularity depends on topological data only.

Applications

Theorem (Murasugi's inequality)
Let $K \subset S^{3}$ be a knot bounding a surface $S \subset B^{4}$. Then
$\left|\sigma_{t}(K)\right| \leq 2 g(S)$ for almost all $t \in S^{1}$.

- Hodge numbers relate signature to the spectrum of a singular point (if K is algebraic).
- Murasugi's inequality translates into semicontinuity of spectrum.
- We (一, Némethi 2013) obtain not only another proof of spectrum semicontinuity, but various other statements on semicontinuity.
- In particular, semicontinuity of spectrum of a plane curve singularity depends on topological data only.
- ... unlike semigroup semicontinuity established by Gorsky and Némethi in 2013, which depends on the smooth data.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.
Theorem (Blanchfield 1959)
Let K be a knot and X the knot exterior.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.
Theorem (Blanchfield 1959)
Let K be a knot and X the knot exterior. Consider the universal abelian cover $\pi: \widetilde{X} \rightarrow X$.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.
Theorem (Blanchfield 1959)
Let K be a knot and X the knot exterior. Consider the universal abelian cover $\pi: \widetilde{X} \rightarrow X$. Let $H=H_{1}(\widetilde{X} ; \mathbb{Z})$ regarded as a $\mathbb{Z}\left[t, t^{-1}\right]$ module.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.

Theorem (Blanchfield 1959)

Let K be a knot and X the knot exterior. Consider the universal abelian cover $\pi: \widetilde{X} \rightarrow X$. Let $H=H_{1}(\widetilde{X} ; \mathbb{Z})$ regarded as a $\mathbb{Z}\left[t, t^{-1}\right]$ module. Then there exists a non-degenerate sesquilinear pairing $H \times H \rightarrow \mathbb{Q}(t) / \mathbb{Z}\left[t, t^{-1}\right]$, which is a knot invariant. The pairing is determined by the Seifert form of K and it determines the S-equivalence class of Seifert forms.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.

Theorem (Blanchfield 1959)

Let K be a knot and X the knot exterior. Consider the universal abelian cover $\pi: \widetilde{X} \rightarrow X$. Let $H=H_{1}(\widetilde{X} ; \mathbb{Z})$ regarded as a $\mathbb{Z}\left[t, t^{-1}\right]$ module. Then there exists a non-degenerate sesquilinear pairing $H \times H \rightarrow \mathbb{Q}(t) / \mathbb{Z}\left[t, t^{-1}\right]$, which is a knot invariant. The pairing is determined by the Seifert form of K and it determines the S-equivalence class of Seifert forms.

Remark

The pairing is a more sophisticated version of the linking pairing on a rational homology 3-sphere.

Blanchfield pairings

A more popular point of view is via Blanchfield pairings.

Theorem (Blanchfield 1959)

Let K be a knot and X the knot exterior. Consider the universal abelian cover $\pi: \widetilde{X} \rightarrow X$. Let $H=H_{1}(\widetilde{X} ; \mathbb{Z})$ regarded as a $\mathbb{Z}\left[t, t^{-1}\right]$ module. Then there exists a non-degenerate sesquilinear pairing $H \times H \rightarrow \mathbb{Q}(t) / \mathbb{Z}\left[t, t^{-1}\right]$, which is a knot invariant. The pairing is determined by the Seifert form of K and it determines the S-equivalence class of Seifert forms.

Remark

The pairing is a more sophisticated version of the linking pairing on a rational homology 3-sphere.

Remark

If S is a Seifert matrix, then $H=\mathbb{Z}\left[t, t^{-1}\right]^{n} /\left(t S-S^{T}\right) \mathbb{Z}\left[t, t^{-1}\right]^{n}$ and the pairing is given by $(a, b) \mapsto \bar{a}^{T}\left(t S-S^{T}\right)^{-1}(t-1) b$.

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a \wedge-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H.

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H.

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial,

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial, or h has no eigenvalues ± 1.)
- Then H decomposes as an orthogonal sum of modules of form $\Lambda / b_{\xi}^{k} \wedge, \Lambda / c_{\xi}^{\ell} \Lambda$, where

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial, or h has no eigenvalues ± 1.)
- Then H decomposes as an orthogonal sum of modules of form $\Lambda / b_{\xi}^{k} \wedge, \Lambda / c_{\xi}^{\ell} \Lambda$, where
- For $\xi \in S^{1}, \operatorname{Im} \xi>0, b_{\xi}=(t-\xi)(t-\bar{\xi}) t^{-1}$;

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial, or h has no eigenvalues ± 1.)
- Then H decomposes as an orthogonal sum of modules of form $\Lambda / b_{\xi}^{k} \wedge, \Lambda / c_{\xi}^{\ell} \Lambda$, where
- For $\xi \in S^{1}, \operatorname{Im} \xi>0, b_{\xi}=(t-\xi)(t-\bar{\xi}) t^{-1}$;
- For $\xi \notin\left(S^{1} \cup \mathbb{R}\right),|\xi|<1$, $c_{\xi}=(t-\xi)(t-\bar{\xi})\left(t^{-1}-\xi\right)\left(t^{-1}-\bar{\xi}\right) ;$

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial, or h has no eigenvalues ± 1.)
- Then H decomposes as an orthogonal sum of modules of form $\Lambda / b_{\xi}^{k} \wedge, \Lambda / c_{\xi}^{\ell} \Lambda$, where
- For $\xi \in S^{1}, \operatorname{Im} \xi>0, b_{\xi}=(t-\xi)(t-\bar{\xi}) t^{-1}$;
- For $\xi \notin\left(S^{1} \cup \mathbb{R}\right),|\xi|<1$, $c_{\xi}=(t-\xi)(t-\bar{\xi})\left(t^{-1}-\xi\right)\left(t^{-1}-\bar{\xi}\right) ;$
- For $\xi \in \mathbb{R} \backslash\{0\},|\xi|<1, c_{\xi}=(t-\xi)\left(t^{-1}-\xi\right)$.

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial, or h has no eigenvalues ± 1.)
- Then H decomposes as an orthogonal sum of modules of form $\Lambda / b_{\xi}^{k} \wedge, \Lambda / c_{\xi}^{\ell} \Lambda$, where
- For $\xi \in S^{1}, \operatorname{Im} \xi>0, b_{\xi}=(t-\xi)(t-\bar{\xi}) t^{-1}$;
- For $\xi \notin\left(S^{1} \cup \mathbb{R}\right),|\xi|<1$, $c_{\xi}=(t-\xi)(t-\bar{\xi})\left(t^{-1}-\xi\right)\left(t^{-1}-\bar{\xi}\right) ;$
- For $\xi \in \mathbb{R} \backslash\{0\},|\xi|<1, c_{\xi}=(t-\xi)\left(t^{-1}-\xi\right)$.

Blanchfield pairings over \mathbb{R}

- Let $\Lambda=\mathbb{R}\left[t, t^{-1}\right]$. Consider a Λ-module H and a pairing $H \times H \rightarrow \mathbb{R}(t) / \Lambda$.
- Assume there are no $(t \pm 1)$ torsion parts of H. (This means that $t \pm 1$ does not divide the Alexander polynomial, or h has no eigenvalues ± 1.)
- Then H decomposes as an orthogonal sum of modules of form $\Lambda / b_{\xi}^{k} \wedge, \Lambda / c_{\xi}^{\ell} \Lambda$, where
- For $\xi \in S^{1}, \operatorname{Im} \xi>0, b_{\xi}=(t-\xi)(t-\bar{\xi}) t^{-1}$;
- For $\xi \notin\left(S^{1} \cup \mathbb{R}\right),|\xi|<1$, $c_{\xi}=(t-\xi)(t-\bar{\xi})\left(t^{-1}-\xi\right)\left(t^{-1}-\bar{\xi}\right) ;$
- For $\xi \in \mathbb{R} \backslash\{0\},|\xi|<1, c_{\xi}=(t-\xi)\left(t^{-1}-\xi\right)$.

Remark

This decomposition corresponds to the Jordan block decomposition of the monodromy operator.

Pairings over cyclic modules

Theorem
Every non-degenerate sesquilinear pairing over $\wedge / b_{\xi}^{k} \wedge$ is equivalent to a pairing

$$
(a, b) \mapsto \frac{\epsilon \bar{a} b}{b_{\xi}^{k}},
$$

where $\epsilon= \pm 1$ and the pairings with different sign are not isometric.

Pairings over cyclic modules

Theorem
Every non-degenerate sesquilinear pairing over $\wedge / b_{\xi}^{k} \wedge$ is equivalent to a pairing

$$
(a, b) \mapsto \frac{\epsilon \bar{a} b}{b_{\xi}^{k}},
$$

where $\epsilon= \pm 1$ and the pairings with different sign are not isometric.

Theorem

All non-degenerate sesquilinear pairings over $\wedge / c_{\xi}^{\kappa} \wedge$ are isometric.

Pairings over cyclic modules

Theorem
Every non-degenerate sesquilinear pairing over $\wedge / b_{\xi}^{k} \wedge$ is equivalent to a pairing

$$
(a, b) \mapsto \frac{\epsilon \bar{a} b}{b_{\xi}^{k}},
$$

where $\epsilon= \pm 1$ and the pairings with different sign are not isometric.

Theorem

All non-degenerate sesquilinear pairings over $\wedge / c_{\xi}^{k} \wedge$ are isometric.
This reminds of classification of HVS.

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold and $\phi: \pi_{1}(N) \rightarrow G L\left(\mathbb{C}^{n}\left[t, t^{-1}\right]\right)$ be a unitary representation.
- Let \widetilde{N} be the universal cover.

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold and $\phi: \pi_{1}(N) \rightarrow G L\left(\mathbb{C}^{n}\left[t, t^{-1}\right]\right)$ be a unitary representation.
- Let \widetilde{N} be the universal cover.
- The chain complex $C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{Z}\left[\pi_{1}(N)\right]$ module.

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold and $\phi: \pi_{1}(N) \rightarrow G L\left(\mathbb{C}^{n}\left[t, t^{-1}\right]\right)$ be a unitary representation.
- Let \widetilde{N} be the universal cover.
- The chain complex $C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{Z}\left[\pi_{1}(N)\right]$ module.
- Via $\phi, \mathbb{C}\left[t, t^{-1}\right]^{n} \otimes C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{C}\left[t, t^{-1}\right]$-module.

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold and $\phi: \pi_{1}(N) \rightarrow G L\left(\mathbb{C}^{n}\left[t, t^{-1}\right]\right)$ be a unitary representation.
- Let \widetilde{N} be the universal cover.
- The chain complex $C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{Z}\left[\pi_{1}(N)\right]$ module.
- Via $\phi, \mathbb{C}\left[t, t^{-1}\right]^{n} \otimes C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{C}\left[t, t^{-1}\right]$-module.
- The homology of this complex is denoted by $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$ and it is called the twisted homology.

A step further. Twisted Alexander polynomials

- Let N be a 3-dimensional manifold and $\phi: \pi_{1}(N) \rightarrow G L\left(\mathbb{C}^{n}\left[t, t^{-1}\right]\right)$ be a unitary representation.
- Let \widetilde{N} be the universal cover.
- The chain complex $C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{Z}\left[\pi_{1}(N)\right]$ module.
- Via $\phi, \mathbb{C}\left[t, t^{-1}\right]^{n} \otimes C_{*}(\widetilde{N} ; \mathbb{Z})$ has a structure of a $\mathbb{C}\left[t, t^{-1}\right]$-module.
- The homology of this complex is denoted by $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$ and it is called the twisted homology.
- For a knot K, if $N=M(K)$, the zero-surgery, the order of $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$ is called the twisted Alexander polynomial, see Kirk-Livingston.

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.
- We can use the 'Hodge' decomposition of the pairing and obtain 'Hodge numbers'.

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.
- We can use the 'Hodge' decomposition of the pairing and obtain 'Hodge numbers'.
- We work over $\mathbb{C}\left[t, t^{-1}\right]$ and not $\mathbb{R}\left[t, t^{-1}\right]$ (it is harder!).

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.
- We can use the 'Hodge' decomposition of the pairing and obtain 'Hodge numbers'.
- We work over $\mathbb{C}\left[t, t^{-1}\right]$ and not $\mathbb{R}\left[t, t^{-1}\right]$ (it is harder!).
- From the 'Hodge numbers' we can recover 'twisted signatures'.

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.
- We can use the 'Hodge' decomposition of the pairing and obtain 'Hodge numbers'.
- We work over $\mathbb{C}\left[t, t^{-1}\right]$ and not $\mathbb{R}\left[t, t^{-1}\right]$ (it is harder!).
- From the 'Hodge numbers' we can recover 'twisted signatures'.

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.
- We can use the 'Hodge' decomposition of the pairing and obtain 'Hodge numbers'.
- We work over $\mathbb{C}\left[t, t^{-1}\right]$ and not $\mathbb{R}\left[t, t^{-1}\right]$ (it is harder!).
- From the 'Hodge numbers' we can recover 'twisted signatures'.

Example (—, Conway, Politarczyk 2018)
Using a specific representation of $\pi_{1}(M(K))$ we can recover Casson-Gordon signatures.

Twisted Blanchfield pairing

- Miller and Powell defined rigorously twisted Blanchfield pairing for $H_{*}\left(N ; \mathbb{C}\left[t, t^{-1}\right]_{\phi}^{n}\right)$.
- We can use the 'Hodge' decomposition of the pairing and obtain 'Hodge numbers'.
- We work over $\mathbb{C}\left[t, t^{-1}\right]$ and not $\mathbb{R}\left[t, t^{-1}\right]$ (it is harder!).
- From the 'Hodge numbers' we can recover 'twisted signatures'.

Example (—, Conway, Politarczyk 2018)

Using a specific representation of $\pi_{1}(M(K))$ we can recover Casson-Gordon signatures.

Remark

Using the abstract algebraic approach we obtain a very general cabling formula for twisted Blanchfield pairings, which specifies to the cabling formula of Litherland.

Hedden-Kirk-Livingston knot

- Let

$$
K=T(2 ; 15) \# T(2,3 ; 2,13) \#-T(2 ; 13) \#-T(2,3 ; 2,15)
$$

Hedden-Kirk-Livingston knot

- Let $K=T(2 ; 15) \# T(2,3 ; 2,13) \#-T(2 ; 13) \#-T(2,3 ; 2,15)$;
- K is algebraically slice, i.e., in particular Tristram-Levine signature is zero a.e.;

Hedden-Kirk-Livingston knot

- Let $K=T(2 ; 15) \# T(2,3 ; 2,13) \#-T(2 ; 13) \#-T(2,3 ; 2,15)$;
- K is algebraically slice, i.e., in particular Tristram-Levine signature is zero a.e.;
- No known invariant from HF or HFI or Kh can detect non-sliceness of K;

Hedden-Kirk-Livingston knot

- Let
$K=T(2 ; 15) \# T(2,3 ; 2,13) \#-T(2 ; 13) \#-T(2,3 ; 2,15)$;
- K is algebraically slice, i.e., in particular Tristram-Levine signature is zero a.e.;
- No known invariant from HF or HFI or Kh can detect non-sliceness of K; I haven't checked yet the Alfieri-Kang-Stipsicz invariant. Sorry.

Hedden-Kirk-Livingston knot

- Let $K=T(2 ; 15) \# T(2,3 ; 2,13) \#-T(2 ; 13) \#-T(2,3 ; 2,15)$;
- K is algebraically slice, i.e., in particular Tristram-Levine signature is zero a.e.;
- No known invariant from HF or HFI or Kh can detect non-sliceness of K;
- Hedden, Kirk and Livingston used Casson-Gordon invariants to show non-sliceness. The proof is rather specific;

Hedden-Kirk-Livingston knot

- Let
$K=T(2 ; 15) \# T(2,3 ; 2,13) \#-T(2 ; 13) \#-T(2,3 ; 2,15)$;
- K is algebraically slice, i.e., in particular Tristram-Levine signature is zero a.e.;
- No known invariant from HF or HFI or Kh can detect non-sliceness of K;
- Hedden, Kirk and Livingston used Casson-Gordon invariants to show non-sliceness. The proof is rather specific;
- We can algorithmically compute the 'Hodge numbers' related to the Casson-Gordon invariants and show non-sliceness in a simple way.

Remarks

- We do not know if all algebraic knots are linearly independent in the concordance group;

Remarks

- We do not know if all algebraic knots are linearly independent in the concordance group;
- We expect that there are non-trivial combinations for which Casson-Gordon obstruction vanishes;

Remarks

- We do not know if all algebraic knots are linearly independent in the concordance group;
- We expect that there are non-trivial combinations for which Casson-Gordon obstruction vanishes;
- Can we use more general L^{2}-invariants?

Remarks

- We do not know if all algebraic knots are linearly independent in the concordance group;
- We expect that there are non-trivial combinations for which Casson-Gordon obstruction vanishes;
- Can we use more general L^{2}-invariants?
- Another question: the spectrum of a plane curve singularity is topological. Can we recover the spectrum of a general hypersurface singularity from some topological data?

