
Real Seifert forms 20 years after

Maciej Borodzik
www.mimuw.edu.pl/~mcboro

Institute of Mathematics, University of Warsaw

Budapest, May 2019

www.mimuw.edu.pl/~mcboro


Milnor fibration

Let f : (Cn+1,0)→ (C,0) be a polynomial map with 0 ∈ Cn+1 an
isolated critical point.

Theorem (Milnor)

For ε > 0 sufficiently small, the map Ψ: S2n+1
ε \ f−1(0)→ S1

given by Ψ(z) = f (z)/|f (z)| is a locally trivial fibration. The fiber
Ψ−1(1) has homotopy type of a wedge sum of some finite
number (µ) of spheres Sn.

Definition
Let Ft be the fiber Ψ−1(t). The geometric monodromy ht (for
t ∈ S1) is a diffeomorphism ht : F1 → Ft , smoothly depending
on t .

Remark
We sometimes consider Ψ on S2n+1 \N(f−1(0))→ S1. Then Ft
are manifolds with boundary.We have h1|∂Ft = id.
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Homological invariants

Definition
The homological monodromy is the map
h : Hn(F1;Z)→ Hn(F1;Z) induced by the monodromy.

Take a cycle α ∈ Hn(F1, ∂F1;Z). The image h1(α) has the
same boundary. Hence h1(α)− α is an absolute cycle.

Definition
The map defined just above is called the variation map and
denoted var : Hn(F1, ∂F1;Z)→ Hn(F1;Z).



Homological invariants

Definition
The homological monodromy is the map
h : Hn(F1;Z)→ Hn(F1;Z) induced by the monodromy.
Take a cycle α ∈ Hn(F1, ∂F1;Z). The image h1(α) has the
same boundary. Hence h1(α)− α is an absolute cycle.

Definition
The map defined just above is called the variation map and
denoted var : Hn(F1, ∂F1;Z)→ Hn(F1;Z).



Homological invariants

Definition
The homological monodromy is the map
h : Hn(F1;Z)→ Hn(F1;Z) induced by the monodromy.
Take a cycle α ∈ Hn(F1, ∂F1;Z). The image h1(α) has the
same boundary. Hence h1(α)− α is an absolute cycle.

Definition
The map defined just above is called the variation map and
denoted var : Hn(F1, ∂F1;Z)→ Hn(F1;Z).



Seifert form

Definition
The Seifert form is the map Hn(F1;Z)× Hn(F1;Z)→ Z given by
L(α, β) 7→ lk(α,h1/2β).

Theorem (Picard–Lefschetz package)

We have L(varα, β) = 〈α, β〉, where 〈·, ·〉 is the
Poincaré–Lefschetz duality pairing.
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Hermitian Variation Structure. Definition

We gather these objects (variation, intersection form,
monodromy, Seifert form) into a structure.

Definition (Hermitian Variation Structure, Némethi 1995)

An ε = ±1 hermitian variation structure is a quadruple
(U; b,h,V ), where

I U is a finite dimensional vector space

(U = Hn(F1;C));

I b : U → U∗ is a C-linear endomorphism with b∗ ◦ θ = εb,
where θ : U → U∗∗ is a natural isomorphism

(b : Hn(F1;C)→ Hn(F1, ∂F1;C));

I h : U → U is b-orthogonal, that is h
∗ ◦ b ◦ h = b

(h is the
homological monodromy)

.
I V : U∗ → U is a C-linear endomorphism with
θ−1 ◦ V ∗ = −εV ◦ h∗ and V ◦ b = h − I

(V is the variation
map.)
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Hermitian Variation Structure. Remarks

Exercise
Deduce the axioms of V from the properties on previous slides.

Lemma
If b is an isomorphism (such a structure is called
non-degenerate), then V = (h − I)b−1. The HVS is determined
by the triple (U; h,b).

Lemma
If V is an isomorphism (such a structure is called simple), then
h = −εV (θ−1 ◦ V ∗)−1 and b = −V−1 − ε(θ−1 ◦ V ∗)−1, so V
determines the HVS.

Remark
Complexity of formulas gives us sometimes possibility to deal
with degenerate/non-simple cases.
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Hermitian Variation Structure. Classification

I Classification exists essentially for simple HVS;

I The starting point is the Jordan block decomposition for h;
I For λ ∈ S1: two structures V (λ, k ,±1) for each Jordan

block;
I For |λ| < 1: one structure V (λ, k) corresponding to a

Jordan block with e.v. λ and 1/λ.
I Each simple structure is a direct sum of structures

corresponding to Jordan blocks.

Definition
Given a simple HVS, Hodge numbers pk

λ(±1) (for λ ∈ S1) and
qk
λ indicate how many times the given basic structure enters the

HVS as a summand.
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I Hodge numbers determine the mod-2 spectrum of
singularity;

I They determine monodromy over C;
I Good way to state theorems, like monodromy theorems.



Hermitian Variation Structure. Properties

I Hodge numbers determine the mod-2 spectrum of
singularity;

I They determine monodromy over C;

I Good way to state theorems, like monodromy theorems.



Hermitian Variation Structure. Properties

I Hodge numbers determine the mod-2 spectrum of
singularity;

I They determine monodromy over C;
I Good way to state theorems, like monodromy theorems.



HVS for knots

I Let S be a Seifert form for a knot K ;

I Make it invertible by S-equivalence (possible by Kawauchi);
I Associate a HVS with V = S−1;
I If K is a link of singularity, then the HVS is the same as the

one given by Picard–Lefschetz package;
I We obtain Hodge numbers for knots (and more generally

for links).
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Classical invariants for links

Theorem (—, Némethi, 2011)

Let K be a knot and pk
λ(ε), qk

λ the Hodge numbers.
I The Alexander polynomial and higher Alexander

polynomials are determined from the Hodge numbers.

I For example, ∆ is the characteristic polynomial of
h = S−1ST .

I The Tristram–Levine signature of K is determined by pk
λ(ε).

More precisely pk
λ(ε) for odd k determine the jumps at λ

and for k even determine the peek at λ.
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Example

Consider a slice knot 820.
I It has Alexander polynomial (t − λ)2(t − λ)2 with
λ = 1

2(1 + i
√

3).

I Hence either p1
λ(+1) + p1

λ(−1) = 2 or p2
λ(ε) = 1 for some ε.

I In the first case the Alexander module is not cyclic, but we
know that 820 has cyclic Alexander module (Nakanishi
index is 1).

I Hence p2
λ(ε) = 1. The signature function is constantly zero

for t 6= λ, λ and equal to ε for t = λ, λ.
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Applications

Theorem (Murasugi’s inequality)

Let K ⊂ S3 be a knot bounding a surface S ⊂ B4. Then
|σt (K )| ≤ 2g(S) for almost all t ∈ S1.

I Hodge numbers relate signature to the spectrum of a
singular point (if K is algebraic).

I Murasugi’s inequality translates into semicontinuity of
spectrum.

I We (—, Némethi 2013) obtain not only another proof of
spectrum semicontinuity, but various other statements on
semicontinuity.

I In particular, semicontinuity of spectrum of a plane curve
singularity depends on topological data only.

I . . . unlike semigroup semicontinuity established by Gorsky
and Némethi in 2013, which depends on the smooth data.
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Blanchfield pairings

A more popular point of view is via Blanchfield pairings.

Theorem (Blanchfield 1959)

Let K be a knot and X the knot exterior. Consider the universal
abelian cover π : X̃ → X. Let H = H1(X̃ ;Z) regarded as a
Z[t , t−1] module. Then there exists a non-degenerate
sesquilinear pairing H × H → Q(t)/Z[t , t−1], which is a knot
invariant. The pairing is determined by the Seifert form of K
and it determines the S-equivalence class of Seifert forms.

Remark
The pairing is a more sophisticated version of the linking
pairing on a rational homology 3-sphere.

Remark
If S is a Seifert matrix, then H = Z[t , t−1]n/(tS − ST )Z[t , t−1]n

and the pairing is given by (a,b) 7→ aT (tS − ST )−1(t − 1)b.
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Blanchfield pairings over R

I Let Λ = R[t , t−1]. Consider a Λ-module H and a pairing
H × H → R(t)/Λ.

I Assume there are no (t ± 1) torsion parts of H.

(This
means that t ± 1 does not divide the Alexander polynomial,
or h has no eigenvalues ±1.)

I Then H decomposes as an orthogonal sum of modules of
form Λ/bk

ξΛ, Λ/c`ξΛ, where

I For ξ ∈ S1, Im ξ > 0, bξ = (t − ξ)(t − ξ)t−1;
I For ξ /∈ (S1 ∪ R), |ξ| < 1,

cξ = (t − ξ)(t − ξ)(t−1 − ξ)(t−1 − ξ);
I For ξ ∈ R \ {0}, |ξ| < 1, cξ = (t − ξ)(t−1 − ξ).

Remark
This decomposition corresponds to the Jordan block
decomposition of the monodromy operator.
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Pairings over cyclic modules

Theorem
Every non-degenerate sesquilinear pairing over Λ/bk

ξΛ is
equivalent to a pairing

(a,b) 7→ εab
bk
ξ

,

where ε = ±1 and the pairings with different sign are not
isometric.

Theorem
All non-degenerate sesquilinear pairings over Λ/ck

ξ Λ are
isometric.
This reminds of classification of HVS.
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A step further. Twisted Alexander polynomials

I Let N be a 3-dimensional manifold

and
φ : π1(N)→ GL(Cn[t , t−1]) be a unitary representation.

I Let Ñ be the universal cover.
I The chain complex C∗(Ñ;Z) has a structure of a Z[π1(N)]

module.
I Via φ, C[t , t−1]n ⊗ C∗(Ñ;Z) has a structure of a

C[t , t−1]-module.
I The homology of this complex is denoted by

H∗(N;C[t , t−1]nφ) and it is called the twisted homology.
I For a knot K , if N = M(K ), the zero-surgery, the order of

H∗(N;C[t , t−1]nφ) is called the twisted Alexander
polynomial, see Kirk–Livingston.
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H∗(N;C[t , t−1]nφ) is called the twisted Alexander
polynomial, see Kirk–Livingston.



Twisted Blanchfield pairing

I Miller and Powell defined rigorously twisted Blanchfield
pairing for H∗(N;C[t , t−1]nφ).

I We can use the ‘Hodge’ decomposition of the pairing and
obtain ‘Hodge numbers’.

I We work over C[t , t−1] and not R[t , t−1] (it is harder!).
I From the ‘Hodge numbers’ we can recover ‘twisted

signatures’.

Example (—, Conway, Politarczyk 2018)
Using a specific representation of π1(M(K )) we can recover
Casson–Gordon signatures.

Remark
Using the abstract algebraic approach we obtain a very general
cabling formula for twisted Blanchfield pairings, which specifies
to the cabling formula of Litherland.
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Hedden–Kirk–Livingston knot

I Let
K = T (2; 15)#T (2,3; 2,13)#− T (2; 13)#− T (2,3; 2,15);

I K is algebraically slice, i.e., in particular Tristram–Levine
signature is zero a.e.;

I No known invariant from HF or HFI or Kh can detect
non-sliceness of K ;

I Hedden, Kirk and Livingston used Casson-Gordon
invariants to show non-sliceness. The proof is rather
specific;

I We can algorithmically compute the ‘Hodge numbers’
related to the Casson-Gordon invariants and show
non-sliceness in a simple way.
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Remarks

I We do not know if all algebraic knots are linearly
independent in the concordance group;

I We expect that there are non-trivial combinations for which
Casson-Gordon obstruction vanishes;

I Can we use more general L2-invariants?
I Another question: the spectrum of a plane curve singularity

is topological. Can we recover the spectrum of a general
hypersurface singularity from some topological data?
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