Khovanov invariants for knots

Maciej Borodzik

Institute of Mathematics，University of Warsaw
Warsaw， 2018

A knot is a possibly tangled circle in \mathbb{R}^{3} :

A knot is a possibly tangled circle in \mathbb{R}^{3} :

Definition

A knot in \mathbb{R}^{3} is an image of a smooth embedding $\phi: S^{1} \rightarrow \mathbb{R}^{3}$. A link is "a knot with more than one component".

Knots

A knot is a possibly tangled circle in \mathbb{R}^{3} :

Definition

A knot in \mathbb{R}^{3} is an image of a smooth embedding $\phi: S^{1} \rightarrow \mathbb{R}^{3}$. A link is "a knot with more than one component".

Knots

A knot is a possibly tangled circle in \mathbb{R}^{3} :

Definition

A knot in \mathbb{R}^{3} is an image of a smooth embedding $\phi: S^{1} \rightarrow \mathbb{R}^{3}$. A link is "a knot with more than one component".

Knots

A knot is a possibly tangled circle in \mathbb{R}^{3} :

Definition

A knot in \mathbb{R}^{3} is an image of a smooth embedding $\phi: S^{1} \rightarrow \mathbb{R}^{3}$. A link is "a knot with more than one component".

Distinguishing knots

- A knot invariant assigns a simpler (more tractable) object to a knot;

Distinguishing knots

- A knot invariant assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;

Distinguishing knots

- A knot invariant assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;

Distinguishing knots

- A knot invariant assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;
- Should have a meaning;

Distinguishing knots

- A knot invariant assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;
- Should have a meaning;
- Should really distinguish knots.

Polynomial invariants

- Assign a polynomial to a knot.

Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.

Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.

Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.

Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.
Alexander and Jones polynomials are polynomials in one variable (formally in $t^{1 / 2}$ and $t^{-1 / 2}$, so Laurent polynomials. HOMLYPT is a two-variable polynomial.

Polynomial invariants

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.
Alexander and Jones polynomials are polynomials in one variable (formally in $t^{1 / 2}$ and $t^{-1 / 2}$, so Laurent polynomials. HOMLYPT is a two-variable polynomial.
There are many more polynomial invariants, but these are the most basic. They have a special property.

Skein relation

Skein relation

Definition (Informal)

A skein relation is a relation between the polynomials for links differing at a single place of the diagram.

Skein relation for Alexander and Jones polynomial

Let A be the Alexander polynomial and J be the Jones polynomial.

Skein relation for Alexander and Jones polynomial

Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_{+}}(t)-A_{L_{-}}(t)=$ $\left(t^{1 / 2}-t^{-1 / 2}\right) A_{L_{0}}(t)$.

Skein relation for Alexander and Jones polynomial

Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_{+}}(t)-A_{L_{-}}(t)=$

$$
\left(t^{1 / 2}-t^{-1 / 2}\right) A_{L_{0}}(t) .
$$

- For Jones:

$$
\begin{aligned}
& t^{-1} J_{L_{+}}(t)-t J_{L_{-}}(t)= \\
& \left(t^{1 / 2}-t^{-1 / 2}\right) J_{L_{0}}(t) .
\end{aligned}
$$

Skein relation for Alexander and Jones polynomial

Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_{+}}(t)-A_{L_{-}}(t)=$

$$
\left(t^{1 / 2}-t^{-1 / 2}\right) A_{L_{0}}(t)
$$

- For Jones:

$$
\begin{aligned}
& t^{-1} J_{L_{+}}(t)-t J_{L_{-}}(t)= \\
& \left(t^{1 / 2}-t^{-1 / 2}\right) J_{L_{0}}(t)
\end{aligned}
$$

Remark

There are various normalizations of the Alexander and Jones polynomials, which lead to different looking formulas.

Jones vs. Alexander

Alexander polynomial	Jones polynomial

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well
Satisfies $A\left(t^{-1}\right)=A(t)$	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation
$\Delta_{K}(t)= \pm 1$ for knots	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Multiplicative for connected sums	as well
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order 2, 3, 4

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order $2,3,4$
All polynomials satisfying above points can be realized	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Belongs to $\mathbb{Z}\left[t, t^{-1}\right]$ for knots	as well
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order $2,3,4$
All polynomials satisfying above points can be realized	$? ?$

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order 2, 3, 4
All polynomials satisfying above points can be realized	$? ?$
There are knots with $A(t) \equiv 1$	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
Satisfies $A\left(t^{-1}\right)=A(t)$	No such relation
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order 2, 3, 4
All polynomials satisfying above points can be realized	$? ?$
There are knots with $A(t) \equiv 1$	$? ?$

Alexander polynomial	Jones polynomial
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order $2,3,4$
All polynomials satisfying above points can be realized	$? ?$
There are knots with $A(t) \equiv 1$	$? ?$
Topological meaning per- fectly understood	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
$\Delta_{K}(t)= \pm 1$ for knots	Jdetermined on roots of unity of order 2,3,4
All polynomials satisfying above points can be realized	$? ?$
There are knots with $A(t) \equiv 1$	$? ?$
Topological meaning per- fectly understood	We know very little beyond combinatorics

Jones vs. Alexander

Alexander polynomial	Jones polynomial
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order $2,3,4$
All polynomials satisfying above points can be realized	$? ?$
There are knots with $A(t) \equiv 1$??
Topological meaning per- fectly understood	We know very little beyond combinatorics
Computable in polynomial time	

Jones vs. Alexander

Alexander polynomial	Jones polynomial
$\Delta_{K}(t)= \pm 1$ for knots	J determined on roots of unity of order $2,3,4$
All polynomials satisfying above points can be realized	$? ?$
There are knots with $A(t) \equiv 1$	$? ?$
Topological meaning per- fectly understood	We know very little beyond combinatorics
Computable in polynomial time	Most likely exponential time needed

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.

Cube of resolutions. Part 1.

- We specify resolutions of a knot diagram.

Cube of resolutions. Part 1.

$$
\rangle\langle\langle\cdots \cdots \nmid \cdots \cdots\rangle
$$

- We specify resolutions of a knot diagram.
- Take a knot.

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 0-resolution of the first crossing.

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 1-resolution of the first crossing.

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.
- Take a knot.

Enumerate its crossings.

- 0-resolution of the second crossing.

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 010 resolution.

Cube of resolutions. Part 1 .

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 010 resolution.
- Any triple $\{0,1\}^{3}$ gives a resolution.

Cube of resolution

Jones polynomial

We have

$$
\begin{aligned}
\left(q^{-1}+q\right)^{3}-3 q\left(q^{-1}+q\right)^{2}+ & 3 q^{2}\left(q^{-1}+q\right)-q^{3}\left(q^{-1}+q\right)= \\
& -q^{6}\left(q^{-2}-q^{-3}+q^{-4}-q^{-9}\right)
\end{aligned}
$$

Jones polynomial

We have

$$
\begin{aligned}
\left(q^{-1}+q\right)^{3}-3 q\left(q^{-1}+q\right)^{2}+ & 3 q^{2}\left(q^{-1}+q\right)-q^{3}\left(q^{-1}+q\right)= \\
& -q^{6}\left(q^{-2}-q^{-3}+q^{-4}-q^{-9}\right)
\end{aligned}
$$

In this way we obtain the Jones polynomial for the (negative) trefoil. Factor $-q^{-6}$ is a normalization.

Khovanov's approach

Khovanov's approach

Main Idea

Replace factor $q+q^{-1}$ in the cube of resolution by a two-dimensional vector space V.

Khovanov's approach

Khovanov's approach

Khovanov's approach

Explanation

The meaning of V^{3} is the tensor product. An element in V^{3} is a linear combination of triples (a, b, c) (written usually $a \otimes b \otimes c$). We have $a_{1} \otimes b \otimes c+a_{2} \otimes b \otimes c=\left(a_{1}+a_{2}\right) \otimes b \otimes c$, but not $a_{1} \otimes b_{1} \otimes c_{1}+a_{2} \otimes b_{2} \otimes c_{2}=\left(a_{1}+a_{2}\right) \otimes\left(b_{1}+b_{2}\right) \otimes\left(c_{1}+c_{2}\right)$. $\operatorname{dim} V^{\otimes 3}=(\operatorname{dim} V)^{3}$ and not $3 \operatorname{dim} V!$

Khovanov's approach

Khovanov's approach

Khovanov's approach

Khovanov's approach

Maps in Khovanov's approach

- An arrow can either merge two circles into one.

Maps in Khovanov's approach

- An arrow can either merge two circles into one.
- Or split one into two circles.

Maps in Khovanov's approach

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \rightarrow V$.

Maps in Khovanov's approach

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \rightarrow V$.
- In the second case we need a map $V \rightarrow V \otimes V$.

Maps in Khovanov's approach

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \rightarrow V$.
- In the second case we need a map $V \rightarrow V \otimes V$.
- Without extra structure, it is hard to define such maps consistently.

Maps in Khovanov homology

- Think of V as a space of affine functions $a x+b$ with $a, b \in \mathbb{Z}$.

Maps in Khovanov homology

- Think of V as a space of affine functions $a x+b$ with $a, b \in \mathbb{Z}$.
- The map $V \otimes V \rightarrow V$ is the linear part of the product: $1 \otimes 1 \mapsto 1, x \otimes 1,1 \otimes x \mapsto x, x \otimes x \mapsto 0$.

Maps in Khovanov homology

- Think of V as a space of affine functions $a x+b$ with $a, b \in \mathbb{Z}$.
- The map $V \otimes V \rightarrow V$ is the linear part of the product: $1 \otimes 1 \mapsto 1, x \otimes 1,1 \otimes x \mapsto x, x \otimes x \mapsto 0$.
- The map from $V \rightarrow V \otimes V$ 'copies' the function on the generators: $x \mapsto x \otimes x, 1 \mapsto 1 \otimes 1$.

Maps in Khovanov homology

- Think of V as a space of affine functions $a x+b$ with $a, b \in \mathbb{Z}$.
- The map $V \otimes V \rightarrow V$ is the linear part of the product: $1 \otimes 1 \mapsto 1, x \otimes 1,1 \otimes x \mapsto x, x \otimes x \mapsto 0$.
- The map from $V \rightarrow V \otimes V$ 'copies' the function on the generators: $x \mapsto x \otimes x, 1 \mapsto 1 \otimes 1$.
- Combining these maps (and after some sign adjustments) we obtain maps replacing + and - signs.

Global maps. Revised

Khovanov invariant

Theorem (Khovanov 2000)
The maps d_{0}, d_{1} and d_{2} satisfy $d_{2} \circ d_{1}=0$ and $d_{1} \circ d_{0}=0$. The abelian groups ker $d_{i} /$ im d_{i-1} are independent of the knot diagram.

Khovanov invariant

Theorem (Khovanov 2000)

The maps d_{0}, d_{1} and d_{2} satisfy $d_{2} \circ d_{1}=0$ and $d_{1} \circ d_{0}=0$. The abelian groups ker $d_{i} / \operatorname{im} d_{i-1}$ are independent of the knot diagram.

Remark

In mathematics, a sequence of vector spaces V_{0}, \ldots, V_{s} together with linear maps $d_{i}: V_{i} \rightarrow V_{i+1}$ satisfying $d_{i} \circ d_{i-1}=0$ for all i is called a cochain complex. The groups $\operatorname{ker} d_{i} / \mathrm{im} d_{i-1}$ are called cohomology groups.

Khovanov invariant

Theorem (Khovanov 2000)

The maps d_{0}, d_{1} and d_{2} satisfy $d_{2} \circ d_{1}=0$ and $d_{1} \circ d_{0}=0$. The abelian groups ker $d_{i} /$ im d_{i-1} are independent of the knot diagram.

Remark

In mathematics, a sequence of vector spaces V_{0}, \ldots, V_{s} together with linear maps $d_{i}: V_{i} \rightarrow V_{i+1}$ satisfying $d_{i} \circ d_{i-1}=0$ for all i is called a cochain complex. The groups $\operatorname{ker} d_{i} / \mathrm{im}_{i-1}$ are called cohomology groups.

Yes, I know, saying 'a vector space over \mathbb{Z} ' is an abuse.

Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).

Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.

Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.

Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor's conjecture (on the unknotting number of torus knots).

Properties of Khovanov invariant

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor's conjecture (on the unknotting number of torus knots).
- Computational complexity is daunting.

Making it better

- We said that Khovanov invariant is cohomology of a chain complex.

Making it better

- We said that Khovanov invariant is cohomology of a chain complex.
- Many people are familiar with cohomology of topological spaces.

Making it better

- We said that Khovanov invariant is cohomology of a chain complex.
- Many people are familiar with cohomology of topological spaces.

Question

Given a knot K can one construct a topological space X such that the cohomology of X is the Khovanov invariant of K ? Is there a consistent construction?

Lipsitz and Sarkar construction

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).

Lipsitz and Sarkar construction

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).

Lipsitz and Sarkar construction

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).
- Another construction of flow categories using cubical flow categories and Burnside categories (2014, jointly with Lawson).

Lipsitz and Sarkar construction

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).
- Another construction of flow categories using cubical flow categories and Burnside categories (2014, jointly with Lawson).
- Invited to the ICM in 2018.

Periodic knots

- A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z} / p.

Periodic knots

- A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z} / p.
- Which knots are p-periodic?
- A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z} / p.
- Which knots are p-periodic?

- A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z} / p.
- Which knots are p-periodic?

- A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z} / p.
- Which knots are p-periodic?

- A knot is p-periodic if it admits a diagram invariant under rotation by \mathbb{Z} / p.
- Which knots are p-periodic?

not periodic

Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;

Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;

Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
- Borodzik, Politarczyk 2018: Another, much stronger, periodicity criterion based on equivariant Khovanov invariants.

Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
- Borodzik, Politarczyk 2018: Another, much stronger, periodicity criterion based on equivariant Khovanov invariants.

Question

Does there exists equivariant Khovanov homotopy type?

Equivariant Khovanov homotopy type

> Theorem (B. — Politarczyk — Silvero 2018, Stoffregen — Zhang 2018)

There exists equivariant Khovanov homotopy type.

Equivariant Khovanov homotopy type

> Theorem (B. - Politarczyk — Silvero 2018, Stoffregen Zhang 2018)

There exists equivariant Khovanov homotopy type.
BPS approach proves also that equivariant cohomology of this space is Politarczyk's equivariant Khovanov invariant.

Perspectives

- Construct HOMLYPT homotopy type;
- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.
- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.
- Understand, why Khovanov invariants work.
- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.
- Understand, why Khovanov invariants work.
- Find a simpler way to calculate Khovanov invariants.

