Khovanov invariants for knots

Maciej Borodzik

Institute of Mathematics, University of Warsaw

Warsaw, 2018

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 三臣 - のへで

A knot is a possibly tangled circle in \mathbb{R}^3 :

<ロト < 回 > < 回 > < 回 > 、

A knot is a possibly tangled circle in \mathbb{R}^3 :

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is "a knot with more than one component".

イロト 不得 トイヨト イヨト

ъ

A knot is a possibly tangled circle in \mathbb{R}^3 :

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is "a knot with more than one component".

→ Ξ → → Ξ →

ъ

A knot is a possibly tangled circle in \mathbb{R}^3 :

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is "a knot with more than one component".

 $\equiv \rightarrow$

A knot is a possibly tangled circle in \mathbb{R}^3 :

Definition

A *knot* in \mathbb{R}^3 is an image of a smooth embedding $\phi: S^1 \to \mathbb{R}^3$. A *link* is "a knot with more than one component".

 A knot invariant assigns a simpler (more tractable) object to a knot;

э

- A knot invariant assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

- A *knot invariant* assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

- A *knot invariant* assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;
- Should have a meaning;

個人 くほん くほん

- A *knot invariant* assigns a simpler (more tractable) object to a knot;
- Should be the same no matter how the knot is drawn;
- Should be computable;
- Should have a meaning;
- Should really distinguish knots.

個 とくき とくきと

• Assign a polynomial to a knot.

<ロト < 回 > < 回 > < 回 > 、

ъ

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.

★週 ▶ ★ 恵 ▶ ★ 恵 ▶ →

э

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.

伺き くほき くほう

ъ

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.

同 ト イ ヨ ト イ

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.

Alexander and Jones polynomials are polynomials in one variable (formally in $t^{1/2}$ and $t^{-1/2}$, so Laurent polynomials. HOMLYPT is a two-variable polynomial.

・ 同 ト ・ ヨ ト ・ ヨ ト

- Assign a polynomial to a knot.
- Alexander polynomial defined in 1928.
- Jones polynomial discovered in 1984.
- HOMFLYPT polynomial constructed in 1985 by Hoste, Ocneanu, Millet, Freyd, Yetter, and independently by Przytycki and Traczyk in 1986.

Alexander and Jones polynomials are polynomials in one variable (formally in $t^{1/2}$ and $t^{-1/2}$, so Laurent polynomials. HOMLYPT is a two-variable polynomial. There are many more polynomial invariants, but these are the

most basic. They have a special property.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Skein relation

Maciej Borodzik Khovanov invariants for knots

Definition (Informal)

A *skein relation* is a relation between the polynomials for links differing at a single place of the diagram.

イロト 不得 とくほ とくほ とう

3

Let A be the Alexander polynomial and J be the Jones polynomial.

프 🖌 🛪 프 🕨

Let A be the Alexander polynomial and J be the Jones polynomial.

• We have: $A_{L_+}(t) - A_{L_-}(t) = (t^{1/2} - t^{-1/2})A_{L_0}(t).$

伺 とくき とくき とう

э

Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_+}(t) A_{L_-}(t) = (t^{1/2} t^{-1/2})A_{L_0}(t).$
- For Jones:

 $t^{-1}J_{L_+}(t) - tJ_{L_-}(t) = (t^{1/2} - t^{-1/2})J_{L_0}(t).$

伺き くほき くほうし

Let A be the Alexander polynomial and J be the Jones polynomial.

- We have: $A_{L_+}(t) A_{L_-}(t) = (t^{1/2} t^{-1/2})A_{L_0}(t).$
- For Jones:

 $t^{-1}J_{L_{+}}(t) - tJ_{L_{-}}(t) = (t^{1/2} - t^{-1/2})J_{L_{0}}(t).$

Remark

There are various normalizations of the Alexander and Jones polynomials, which lead to different looking formulas.

Alexander polynomial	Jones polynomial

ヘロト 人間 とく ヨン 人 ヨトー

Alexander polynomial	Jones polynomial
Multiplicative for connected	
sums	

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	

<ロト <回 > < 回 > < 回 > < 回 > <

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well

<ロト <回 > < 回 > < 回 > < 回 > <

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well

<ロト <回 > < 回 > < 回 > < 回 > <

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well
Satisfies $A(t^{-1}) = A(t)$	

ヘロト 人間 とく ヨン 人 ヨトー

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well
Satisfies $A(t^{-1}) = A(t)$	No such relation

<ロト <回 > < 回 > < 回 > < 回 > <

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well
Satisfies $A(t^{-1}) = A(t)$	No such relation
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	

Alexander polynomial	Jones polynomial
Multiplicative for connected	as well
sums	
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well
Satisfies $A(t^{-1}) = A(t)$	No such relation
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4

Alexander polynomial	Jones polynomial
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well
Satisfies $A(t^{-1}) = A(t)$	No such relation
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity of order 2, 3, 4
All polynomials satisfying above points can be realized	

Alexander polynomial	Jones polynomial
Belongs to $\mathbb{Z}[t, t^{-1}]$ for knots	as well
Satisfies $A(t^{-1}) = A(t)$	No such relation
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity of order 2, 3, 4
All polynomials satisfying above points can be realized	??

Alexander polynomial	Jones polynomial
Satisfies $A(t^{-1}) = A(t)$	No such relation
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4
All polynomials satisfying	??
above points can be realized	
There are knots with $A(t) \equiv 1$	

ヘロト 人間 とく ヨン 人 ヨトー

Alexander polynomial	Jones polynomial
Satisfies $A(t^{-1}) = A(t)$	No such relation
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4
All polynomials satisfying	??
above points can be realized	
There are knots with $A(t) \equiv 1$??

ヘロト 人間 とくきとくきとう
Alexander polynomial	Jones polynomial
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4
All polynomials satisfying	??
above points can be realized	
There are knots with $A(t) \equiv 1$??
Topological meaning per-	
fectly understood	

<ロト <回 > < 回 > < 回 > < 回 > <

Alexander polynomial	Jones polynomial
$\Delta_{\kappa}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4
All polynomials satisfying	??
above points can be realized	
There are knots with $A(t) \equiv 1$??
Topological meaning per-	We know very little beyond
fectly understood	combinatorics

ヘロト 人間 とく ヨン 人 ヨトー

Alexander polynomial	Jones polynomial
$\Delta_{\kappa}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4
All polynomials satisfying	??
above points can be realized	
There are knots with $A(t) \equiv 1$??
Topological meaning per-	We know very little beyond
fectly understood	combinatorics
Computable in polynomial	
time	

ヘロト 人間 とく ヨン 人 ヨトー

Alexander polynomial	Jones polynomial
$\Delta_{\mathcal{K}}(t) = \pm 1$ for knots	J determined on roots of unity
	of order 2, 3, 4
All polynomials satisfying	??
above points can be realized	
There are knots with $A(t) \equiv 1$??
Topological meaning per-	We know very little beyond
fectly understood	combinatorics
Computable in polynomial	Most likely exponential time
time	needed

ヘロト 人間 とく ヨン 人 ヨトー

• We specify *resolutions* of a knot diagram.

・ロン ・ 一 レ ・ 日 と ・ 日 と

 $\supset \subset (0, 1)$

• We specify *resolutions* of a knot diagram.

3

- We specify *resolutions* of a knot diagram.
- Take a knot.

< 🗇 🕨

프 에 에 프 어

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.

프 에 에 프 어

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 0-resolution of the first crossing.

프 에 에 프 어

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 1-resolution of the first crossing.

코어 세 코어

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 0-resolution of the second crossing.

코어 세 코어

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 010 resolution.

ヨンドヨン

- We specify resolutions of a knot diagram.
- Take a knot. Enumerate its crossings.
- 010 resolution.
- Any triple {0, 1}³ gives a resolution.

코어 세 코어

イロト 不得 とくきとくきとうきょう

 $(q+q^{-1})^3 q^0 \quad 3(q+q^{-1})^2 q^1$

 $3(q+q^{-1})q^2 (q+q^{-1})^2q^3$

くロン 不同 とくほう 不良 とうほう

 $(q+q^{-1})^3 q^0$ - $3(q+q^{-1})^2 q^1$ + $3(q+q^{-1})q^2$ - $(q+q^{-1})^2 q^3$

(ロ) (同) (ヨ) (ヨ) (ヨ)

We have

$$(q^{-1}+q)^3 - 3q(q^{-1}+q)^2 + 3q^2(q^{-1}+q) - q^3(q^{-1}+q) = -q^6(q^{-2}-q^{-3}+q^{-4}-q^{-9})$$

ヘロト 人間 とくほとく ほとう

We have

$$(q^{-1}+q)^3 - 3q(q^{-1}+q)^2 + 3q^2(q^{-1}+q) - q^3(q^{-1}+q) = -q^6(q^{-2}-q^{-3}+q^{-4}-q^{-9})$$

In this way we obtain the Jones polynomial for the (negative) trefoil. Factor $-q^{-6}$ is a normalization.

★週 ▶ ★ 国 ▶ ★ 国 ▶ .

Maciej Borodzik Khovanov invariants for knots

<ロト < 回 > < 回 > < 回 > 、

Main Idea

Replace factor $q + q^{-1}$ in the cube of resolution by a two-dimensional vector space V.

Maciej Borodzik Khovanov invariants for knots

ъ

イロト イポト イヨト イヨト

ヘロト 人間 とくきとくきとう

3

<ロト <回 > < 回 > < 回 > < 回 > <

Explanation

The meaning of V^3 is the tensor product. An element in V^3 is a linear combination of triples (a, b, c) (written usually $a \otimes b \otimes c$). We have $a_1 \otimes b \otimes c + a_2 \otimes b \otimes c = (a_1 + a_2) \otimes b \otimes c$, but not $a_1 \otimes b_1 \otimes c_1 + a_2 \otimes b_2 \otimes c_2 = (a_1 + a_2) \otimes (b_1 + b_2) \otimes (c_1 + c_2)$. dim $V^{\otimes 3} = (\dim V)^3$ and not $3 \dim V$!

(日本) (日本) (日本)

<ロト <回 > < 回 > < 回 > < 回 > <

Maciej Borodzik Khovanov invariants for knots

Maps in Khovanov's approach

• An arrow can either merge two circles into one.

くぼう くほう くほう

Maps in Khovanov's approach

- An arrow can either merge two circles into one.
- Or split one into two circles.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \to V$.

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \to V$.
- In the second case we need a map $V \to V \otimes V$.

<回とくほとくほと。

- An arrow can either merge two circles into one.
- Or split one into two circles.
- In the first case we need a map $V \otimes V \to V$.
- In the second case we need a map $V \to V \otimes V$.
- Without extra structure, it is hard to define such maps consistently.

・ 同 ト ・ ヨ ト ・ ヨ ト
• Think of *V* as a space of affine functions ax + b with $a, b \in \mathbb{Z}$.

ヘロト 人間 とくほとく ほとう

- Think of *V* as a space of affine functions ax + b with $a, b \in \mathbb{Z}$.
- The map $V \otimes V \to V$ is the linear part of the product: $1 \otimes 1 \mapsto 1, x \otimes 1, 1 \otimes x \mapsto x, x \otimes x \mapsto 0.$

・ロト ・聞 と ・ ヨ と ・ ヨ と ・

- Think of *V* as a space of affine functions ax + b with $a, b \in \mathbb{Z}$.
- The map $V \otimes V \to V$ is the linear part of the product: $1 \otimes 1 \mapsto 1, x \otimes 1, 1 \otimes x \mapsto x, x \otimes x \mapsto 0.$
- The map from $V \rightarrow V \otimes V$ 'copies' the function on the generators: $x \mapsto x \otimes x$, $1 \mapsto 1 \otimes 1$.

★週 ▶ ★ 注 ▶ ★ 注 ▶ →

- Think of *V* as a space of affine functions ax + b with $a, b \in \mathbb{Z}$.
- The map $V \otimes V \to V$ is the linear part of the product: $1 \otimes 1 \mapsto 1, x \otimes 1, 1 \otimes x \mapsto x, x \otimes x \mapsto 0.$
- The map from $V \rightarrow V \otimes V$ 'copies' the function on the generators: $x \mapsto x \otimes x$, $1 \mapsto 1 \otimes 1$.
- Combining these maps (and after some sign adjustments) we obtain maps replacing + and - signs.

ヘロン 人間 とくほ とくほう

Global maps. Revised

Theorem (Khovanov 2000)

The maps d_0 , d_1 and d_2 satisfy $d_2 \circ d_1 = 0$ and $d_1 \circ d_0 = 0$. The abelian groups ker $d_i / \text{ im } d_{i-1}$ are independent of the knot diagram.

Maciej Borodzik Khovanov invariants for knots

イロト 不得 とくほ とくほ とう

Theorem (Khovanov 2000)

The maps d_0 , d_1 and d_2 satisfy $d_2 \circ d_1 = 0$ and $d_1 \circ d_0 = 0$. The abelian groups ker $d_i / \text{ im } d_{i-1}$ are independent of the knot diagram.

Remark

In mathematics, a sequence of vector spaces V_0, \ldots, V_s together with linear maps $d_i: V_i \rightarrow V_{i+1}$ satisfying $d_i \circ d_{i-1} = 0$ for all *i* is called a cochain complex. The groups ker $d_i / \operatorname{im} d_{i-1}$ are called cohomology groups.

イロト 不得 とくほ とくほ とう

Theorem (Khovanov 2000)

The maps d_0 , d_1 and d_2 satisfy $d_2 \circ d_1 = 0$ and $d_1 \circ d_0 = 0$. The abelian groups ker $d_i / \text{ im } d_{i-1}$ are independent of the knot diagram.

Remark

In mathematics, a sequence of vector spaces V_0, \ldots, V_s together with linear maps $d_i : V_i \rightarrow V_{i+1}$ satisfying $d_i \circ d_{i-1} = 0$ for all *i* is called a cochain complex. The groups ker $d_i / \operatorname{im} d_{i-1}$ are called cohomology groups.

Yes, I know, saying 'a vector space over \mathbb{Z} ' is an abuse.

ヘロト 人間 ト 人 ヨ ト 人 ヨ ト

• Detects the unknot (Kronheimer, Mrowka 2011).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.

伺 とく ヨ とく ヨ と

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor's conjecture (on the unknotting number of torus knots).

- Detects the unknot (Kronheimer, Mrowka 2011).
- Detects the Hopf link and the trefoil.
- Specifies to and generalizes the Jones polynomial.
- Can be used to prove the Milnor's conjecture (on the unknotting number of torus knots).
- Computational complexity is daunting.

/₽ ▶ ∢ ⊇ ▶ ∢

• We said that Khovanov invariant is cohomology of a chain complex.

ъ

イロト イポト イヨト イヨト

- We said that Khovanov invariant is cohomology of a chain complex.
- Many people are familiar with cohomology of topological spaces.

イロト 不同 とくほ とくほ とう

3

- We said that Khovanov invariant is cohomology of a chain complex.
- Many people are familiar with cohomology of topological spaces.

Question

Given a knot K can one construct a topological space X such that the cohomology of X is the Khovanov invariant of K? Is there a consistent construction?

イロト 不同 とくほ とくほ とう

• First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).

イロト イポト イヨト イヨト

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).

イロト 不同 とくほ とくほ とう

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).
- Another construction of flow categories using cubical flow categories and Burnside categories (2014, jointly with Lawson).

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ …

- First construction of Khovanov homotopy type using flow categories and Cohen-Jones-Segal (2012).
- New invariants of knots coming from cohomological operations (2013).
- Another construction of flow categories using cubical flow categories and Burnside categories (2014, jointly with Lawson).
- Invited to the ICM in 2018.

(画) (ヨ) (ヨ)

 A knot is *p*-periodic if it admits a diagram invariant under rotation by Z/p.

<ロト < 回 > < 回 > < 回 > 、

- A knot is *p*-periodic if it admits a diagram invariant under rotation by Z/p.
- Which knots are p-periodic?

<ロト < 回 > < 回 > < 回 > 、

- A knot is *p*-periodic if it admits a diagram invariant under rotation by Z/p.
- Which knots are p-periodic?

イロト イポト イヨト イヨト

- A knot is *p*-periodic if it admits a diagram invariant under rotation by Z/p.
- Which knots are p-periodic?

ъ

イロト イポト イヨト イヨト

- A knot is *p*-periodic if it admits a diagram invariant under rotation by Z/p.
- Which knots are p-periodic?

ъ

イロト イポト イヨト イヨト

- A knot is *p*-periodic if it admits a diagram invariant under rotation by Z/p.
- Which knots are p-periodic?

イロト 不得 とくほと くほとう

3

Politarczyk 2014: Construction of equivariant Khovanov invariants;

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶ □

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
- Borodzik, Politarczyk 2018: Another, much stronger, periodicity criterion based on equivariant Khovanov invariants.

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivariant Khovanov invariants

- Politarczyk 2014: Construction of equivariant Khovanov invariants;
- Politarczyk 2015: New periodicity criterion based on equivariant Jones polynomial;
- Borodzik, Politarczyk 2018: Another, much stronger, periodicity criterion based on equivariant Khovanov invariants.

Question

Does there exists equivariant Khovanov homotopy type?

イロト イポト イヨト イヨト

Theorem (B. — Politarczyk — Silvero 2018, Stoffregen — Zhang 2018)

There exists equivariant Khovanov homotopy type.

イロト イポト イヨト イヨト 二日

Theorem (B. — Politarczyk — Silvero 2018, Stoffregen — Zhang 2018)

There exists equivariant Khovanov homotopy type.

BPS approach proves also that equivariant cohomology of this space is Politarczyk's equivariant Khovanov invariant.

イロト 不得 とくほ とくほ とう

• Construct HOMLYPT homotopy type;

<ロト <回 > < 回 > < 回 > < 回 > <

æ

- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.

イロト 不得 トイヨト イヨト

- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.
- Understand, why Khovanov invariants work.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

- Construct HOMLYPT homotopy type;
- Construct a homotopy type that reflects and intertwines the quantum grading.
- Understand, why Khovanov invariants work.
- Find a simpler way to calculate Khovanov invariants.

伺き くほき くほう