A HOPF GALOIS EXTENSION FROM THE QUANTUM SYMPLECTIC GROUP

Chiara Pagani

SISSA - International School for Advanced Studies, Trieste, Italy

A notion which extends to noncommutative geometry the one of principal fiber bundles in differential geometry is the one of faithfully flat Hopf-Galois extensions. In the continuous limit, Hopf-Galois extensions are objects dual to principal fibrations.

In this talk I would like to give a concrete example of a noncommutative principal bundle $A(S_q^4) \subset A(S_q^7)$, a quantization of the Hopf bundle $S^7 \to S^4$, which is obtained starting form quantum groups.

The algebra $A(S_q^7)$, a deformation of the algebra of polynomials functions on S^7 , is obtained as a subalgebra of the symplectic quantum group $Sp_q(2)$. This algebra turns out to be the "total space" of a quantum $SU_q(2)$ -principal bundle over $A(S_q^4)$. The "base space" $A(S_q^4)$, a deformation of the algebra of polynomials on S^4 , is the algebra generated by the entries of a projection $p \in Mat_4(A(S_q^7))$.

In particular, as said, it is possible to introduce a right coaction of $SU_q(2)$ on $A(S_q^7)$ such that the corresponding algebra of coinvariants coincides with $A(S_q^4)$ and the extension $A(S_q^4) \subset A(S_q^7)$ is Hopf-Galois and faithfully flat.

The projection p quantizes the anti-instanton of charge -1, here the topological charge is computed by comparing the class in K-theory of p with the fundamental K-homology class of $A(S_q^4)$.

Based on the paper "A Hopf bundle over a quantum four-sphere from the syplectic group" by Giovanni Landi, Chiara Pagani, Cesare Reina, [math.QA/0407342].