NONCOMMUTATIVE METHODS IN ALGEBRAIC TOPOLOGY

Max Karoubi
Université Paris 7. UFR de Mathématiques
2, place Jussieu, 75251 Paris Cedex 05
e.mail : karoubi@math.jussieu.fr
http://www.math.jussieu.fr/~karoubi/

The aim of this talk is to define noncommutative "différential forms" on a space X (simplicial set) with a new algebraic structure called "quasi-commutative". Roughly speaking this differential graded algebra of differential forms - called $A=\$ *(X)$ - is given with a submodule $\mathrm{A} \bar{\otimes} \mathrm{A}$ of the usual tensor product $\mathrm{A} \mathbb{\otimes}_{\mathrm{B}} \mathrm{A}$, on which the product is commutative. Moreover, the inclusion of the submodule into A A is a quasi-isomorphism. This submodule $\mathrm{A} \bar{\otimes} \mathrm{A}$ is called the "reduced tensor product" of A by itself and controls in some sense the noncommutativity of the algebra A .
A fascinating prototype of this algebra is given (in degree 0) by the algebra of functions f on the set of integers, constant at $+\infty$ and $-\infty$ (two different constants) ; the differential of f is then given by the formula of the "difference calculus", i.e. $f(x+1)-f(x)=\omega(x)$ (instead of the usual differential). One should note that $\omega(\mathrm{x})$ is 0 at $\pm \infty$.
Starting with this basic example, we build the algebra $\$^{*}(\mathrm{X})$ which is quasi-isomorphic to the usual cochain algebra $\mathrm{C}^{*}(\mathrm{X})$ (over any coherent commutative ring k). However, it has a much richer and interesting structure.
For instance, we show how Steenrod operations and more generally cup i-products can be easily defined in this context (avoiding the heavy simplicial machinery). We also describe explicitly a complex which cohomology is isomorphic to the cohomology of the r-iterated loop space of X (generalizing previous work of Adams and Hilton for $\mathrm{r}=1$). Finally, using some recent results of M.A. Mandell and assuming some finiteness hypothesis on X, we show how the full (integral) homotopy type of X can be recovered from this new algebraic structure (with the choice of $k=\mathbf{Z}$).
If X is a finite complex, the algebra $\mathbb{Q}^{*}(\mathrm{X})$ has other mysterious structures. From its construction, one may define for instance a representation of the braid group $\mathbb{3}_{\mathrm{n}}$ on $\sqrt[9]{2}(\mathrm{X})^{\otimes n}$. This action may be factorized through the usual action of the symmetric group $⿷_{n}$ only when restricted to the reduced tensor product of n factors $\Omega *(X)^{\otimes n}$.

